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ABSTRACT
This paper introduces a novel method for defining software lan-
guages incrementally as the composition of smaller languages, start-
ing from reusable components for the specification of syntax and
semantics. The method is enabled by the combined application
of several advanced techniques implemented in functional lan-
guages: datatypes à la carte for the fine-grained composition of (ab-
stract) syntactic categories, generalised top-down parsing enabling
the composition of executable (concrete) syntax specifications and
composable micro-interpreters that implement the operational se-
mantics of certain reusable components known as ‘funcons’. We
demonstrate the method makes it possible to perform incremen-
tal language development with prototyping. The generality of the
method is demonstrated through a variety of case studies.

KEYWORDS
software language engineering, language composition, syntax, se-
mantics, interpretation

1 INTRODUCTION
Incremental programming is a style of programming in which soft-
ware is built in a step-by-step fashion by submitting code fragments
that, for example, declare a single type or execute a single state-
ment with immediate feedback on the validity and effect of the code
fragment. This style of programming is naturally supported by read-
eval-print-loop (REPL) interpreters (also referred to as interactive
shells) such as JShell and IPython and computational notebooks
such as Jupyter [5] and Mathematica [4]. In the context of software
engineering, a common usage of a REPL is to test a library under
development by loading its latest version and interacting with the
functions it defines, perhaps in combination with functions from
other libraries (under development). In the context of data science,
a common usage of a computational notebook is the simultaneous
development and testing of a scientific workflow. In the context of
language-oriented programming [18], an incremental programming
environment should support the definition and testing of language
constructs (akin to library functions), also in combination with the
constructs of other languages, by extending language definitions
and by running test programs written in the language(s) currently
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under construction. However, there are various challenges to re-
alising such a system. For example, simultaneously extending the
syntax and semantics of a language definition without modifying
or recompiling existing parts are requirements of solutions to the
well-documented expression problem coined by Wadler [17]. As
another example, the composition of two deterministic context-free
grammars may produce a non-deterministic context-free grammar
to which the parsing technology of choice is not applicable or which
results in ambiguities that need to be resolved.

In this paper we experiment with an approach to incremental
language development enabled by certain functional techniques for
modular language specification: data types á la carte [11], combi-
nators for concrete syntax specification and generalised LL (GLL)
parsing [14, 15], and micro-interpreters implementing the opera-
tional semantics of a reusable library of fundamental programming
languages constructs known as ‘funcons’ [13]. The funcons of the
Funcons-beta library [8] are used as a common base language on
top of which object languages are defined. The practicality of this
approach is to be evaluated in this paper.

The full version of this paper is to contribute by:
• Presenting a novel approach for incremental language defi-
nition with reusable components

• Presenting an implementation of the approach as a frame-
work consisting of existing Haskell EDSLs resulting from re-
cent advances in modular language specification techniques

• Demonstrating the applicability and generality of the ap-
proach through various case studies and in comparison with
existing approaches to language extension and unification

2 BACKGROUND
The initial algebra semantics of Goguen et al. [3], concisely de-
scribed by Mosses in [6], provides important formal foundations
and terminology to our work, as it can be seen to capture the es-
sential elements of many existing semantic specification formalism
such as denotational semantics and attribute grammar semantics.
In initial algebra semantics, a multi-sorted signature lays out the
operations of a language. Abstract syntax is defined by assigning
value constructors to the operations (as an initial algebra) accord-
ing to their structure, as determined by the signature. Semantics
are defined by assigning ‘semantic domains’ to sorts and functions
to operations (within an evaluation algebra) that map the values
(within their respective semantic domains) computed for operands
to the value describing the result of applying the operation to these
operands.

As a solution to the expression problem [17], data types á la
carte [11] provides a method for assembling data types and func-
tions from individual components to form signatures and initial
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algebras, and evaluation algebras respectively. With this technique,
signatures of independent languages can be freely composed, en-
abling mixing of syntactic constructs of different languages.

The GLL combinator library [14] forms an EDSL for the specifi-
cation of (context-free) grammars using BNF-like operators. The
combinator expressions formed by applying the core combinators
of this library can themselves be parameterised; achieving ‘reuse
through abstraction’. This way, reusable components for (concrete)
syntax specification can be defined [12]. The components are exe-
cutable since combinator expressions can be evaluated according
to the GLL parsing algorithm [9, 10, 15]. By applying generalised
parsing, there is no need to restructure the grammar to suit the
parsing technology as the composition of two or more context-free
grammars is a context-free grammars (and generalised parsing al-
gorithms work on all context free grammars). However, the result
of a composition may be an ambiguous grammar, even when the
input grammars are unambiguous, demanding the integration of
ambiguity reduction strategies.

The component-based approach to operational semantics pre-
sented in [7] is centred around reusable definitions of the funda-
mental constructs of programming – funcons for shorts. As ex-
plained in [13], ‘micro-intepreters’ can be generated from funcon
definitions. The micro-interpreters are compositional evaluation
functions expressing the behaviour of an individual funcon that can
be generated and compiled separately. In this paper we leverage the
generality of the Funcons-beta [8] library to be able to express the
semantics of various languages in a shared based language, apply-
ing the micro-interpreters generated for funcons as the constructs
of an EDSL.

By combining the three described techniques, language exten-
sions and compositions can be written in a highly modular fashion,
permitting rapid prototyping. Via the method proposed in [16]
and implemented in [2], REPLs for the resulting languages can be
obtained with minimal effort.

Erdweg et al. provide a framework for discussing and comparing
meta-languages, tools and formalisms that support various form of
incremental language development [1]. In particular, the authors
define the concepts of (modular) language extension, restriction,
and unification which they apply to both the syntax, static seman-
tics, operational semantics and IDE services of languages. In this
paper we adopt their terminology and use their framework as the
basis for our evaluation.

3 MOTIVATING EXAMPLE
To illustrate the approach, we start with a simpleWhile language
supporting while-loops, assignments, integer expressions, and less-
than-equal comparison expressions. The language is implemented
with several building blocks, which can be combined to construct
the concreteWhile language. The lines beginning with ghci> denote
operations in the Haskell REPL and lines beginning with repl>
denote operations in the REPL for the constructed language.

ghci> import Whilelang
ghci> repl pWhile
repl> x = 1
repl> while (x =< 5) x = x + 1 done

In the example, theWhilelangmodule is imported which exports the
definition ofWhile syntax and funcon translation. The repl function
starts a read-eval-print-loop session for the language definition
given as an argument.

As is, While does not support for printing. To overcome this, we
define the printing construct as a language extension.
ghci> data Print a = Print a deriving Functor
ghci> instance ToFuncons Print where
|toFuncons (Print a) = print_ [a, string_ "\n"]
ghci> pPrint pArg = "print" <::=>

iPrint <$$> keyword "print" **> pArg

Viewed as a language, the printing language is abstract in the sense
that it requires an argument to determine for what kind of expres-
sions it is capable of printing the value. For example, support for
printing inWhile can be added by choosingWhile expressions as
the argument to the printing language.
...
ghci> let pWhilePrint :: Parser (Whilelang.Sig :+: Print)

= pWhile <||> pPrint pExpr
ghci> repl pWhilePrint
repl> x = 1
repl> while (x =< 5) x = x + 1 done
repl> print(x)
6

The example uses the ⟨| |⟩ operator to compose two languages,
which allows syntax of both languages to occur at the top-level.
Such a composition is a coarse-grained composition, because lan-
guage constructs of both languages can be used but not freely mixed.
Furthermore, the final parser of the composed language has type
Parser (Whilelang.Sig :+: Print)1, which composes the signature of
While with the signature of the print language, allowing language
constructs from both languages to occur in the parsing result.

Coarse-grained composition is not the only style, it is also pos-
sible to perform fine-grained composition such that language ele-
ments can be freely mixed. Our previous example can be defined
as a fine-grained composition as follows.
...
ghci> repl $ pWhileFine (pPrint pExpr)
repl> x = 1
repl> while (x =< 5) print(x); x = x + 1 done
1
...
5

Instead of using the choice operator, the concrete print language
is passed as an argument to a finer definition of While. Languages
are free to define different forms of fineness via their parsers. This
enables different styles of compositions with other languages. In the
example, theWhilelang module exports a finer definition that takes
one argument which is used to extend the language constructs
possible inside while loops and at the top-level. In the example,
this style of composition makes it possible to use print statements
inside while loops, which was not possible with the coarse-grained
composition.

With our approach it is also possible to re-use existing language
components to perform extension, for example by extending a
language with syntactic sugar. In case of While, for-loops can be
1In further examples, parser types are omitted for brevity.
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added with only a parser definition by re-using the signature and
semantics ofWhile.

ghci> import Whilelang
...
ghci> pFor = "for" <::=> buildFor <$$>

pHeader <**> pWhileFine (pPrint pExpr)
where

buildFor = \var -> \start -> \end -> \body ->
iSeq (iAssign var start) iWhile (iLeq var end)

(iSeq body (iAssign var (iAdd var iLitInt 1)))
ghci> repl $ pWhileFine $ (pPrint pExpr) <||> pFor
repl> for(x = 1 to 5) print(x) done
1
...
5

The for extension uses smart constructors from theWhilelang mod-
ule to construct the actual for components, and thus no new in-
stance definition or signature components are required.

Currently,While is extended by introducing new languages or
introducing new language components. Nonetheless, While can
also be extended by using existing languages.

ghci> import Whilelang as W
ghci> import Labmbdalang as L
...
ghci> repl $ W.pWhileExprFine

((pPrint pExpr) pExpr) pExpr
where

pExpr = W.pExprFine pExpr
<||> L.pLambdaFine pExpr

repl> add5 = lambda x x + 5 done
repl> x = 0
repl> while (x =< 10) print(x); x = add5(x) done
0
5
10

In this example, we import the Whilelang module and the Lamb-
dalang module. The last module exports an implementation of
call-by-value lambda calculus. In this composition, we utilise the
pWhileExprFine parser exported by the Whilelang module. This
parser, takes two arguments, one to extend the statements ofWhile
and one to define the expressions of While. To define the expres-
sions of this language, a coarse-grained composition, composing
the While expressions and lambda expressions together. However,
both parsers used in this composition are fine-grained and are made
concrete by self-referencing the coarse-grained composition. As
a result of self-referencing,While expressions and lambda expres-
sions can be used interchangeably. In the example, this occurs in the
definition of the add5 function. The definition of the add5 function
uses assignments from While, a lambda expression from lambda,
and inside the lambda expression integer addition fromWhile. Fi-
nally, this self-referencing composition is passed as the argument
for theWhile expressions, allowing usage of both lambda andWhile
expressions inside while loops.

4 CONCLUSIONS AND FUTUREWORK
In this paper we have shown an approach to incremental language
development enabled by functional techniques for modular lan-
guage specification. With the approach, a language can be incre-
mentally defined by writing new languages, using existing language
components, or using existing languages. Furthermore, by utilising
higher-order parsers, higher-order languages are possible, enabling
both coarse- and fine-grained compositions. With fine-grained com-
positions, a level of flexibility is achieved that enables the extension
of languages with existing languages and mix language construct
from both languages arbitrarily. In addition, languages are also
executable, enabling prototyping in a REPL. Via these interactions,
a language can be quickly tested and adapted where required.

Currently, we have given an overview of our approach using an
example that extends While with support for printing, for-loops
and functions. In the final paper, we go in-depth on the technical
details of the approach and we perform case-studies to demonstrate
the genericity and applicability of the approach. Via these case-
studies, we identify the drawbacks and applicability of the approach,
and compare our approach to existing approaches for incremental
language development.
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