
AMdEX Reference Architecture – version 1.0.0

L. Thomas van Binsbergen1, Merrick Oost-Rosengren1,2, Hayo Schreijer3,
Freek Dijkstra4, and Taco van Dijk5

1University of Amsterdam
2AMS-IX
3deXes
4Surf
5Waag

February 2024

Contents

1 Introduction 3
1.1 About this document . 3
1.2 Initiative and Fieldlab Project . 4
1.3 The Approach . 6

1.3.1 Principles . 7
1.3.2 Public values . 8

2 High-Level Architecture 9
2.1 Scope and Terminology . 9
2.2 Users and Roles . 10
2.3 Components . 14

2.3.1 Data plane . 15
2.3.2 Control plane . 17
2.3.3 Governance plane . 20

2.4 Connecting to AMdEX . 22
2.4.1 Dataspaces and ecosystems . 23
2.4.2 Service providers . 24
2.4.3 Connecting to AMdEX services . 25
2.4.4 Dataspace interoperability . 28

3 Policy Administration and Enforcement 29
3.1 Scope . 29
3.2 Administration . 32

3.2.1 Policy types . 32
3.2.2 Policy construction . 33

3.3 Specification . 36
3.4 Enforcement . 40

4 Use Cases 45
4.1 University Personnel – UNL WOPI . 45

4.1.1 Scenario 1 – Manual Approval . 47
4.1.2 Scenario 2 – Automatic Processing and Clearing 49
4.1.3 Scenario 3 – Trusted Third Party . 51

4.2 Rare disease – DIPG . 54
4.2.1 The DIPG Network . 54

1

4.2.2 Scenario 1 – requesting access to data 56
4.2.3 Scenario 2 – making data available 58

4.3 Research Data Exchange . 62
4.3.1 Secure Analysis Environment (SANE) 62
4.3.2 Goals . 63
4.3.3 Data Sharing Conditions . 64
4.3.4 Findings . 66

2

Chapter 1

Introduction

1.1 About this document

Status of the document The current version of the document is 1.0.0; the first publicy
released version. A revised version of the high-level architecture is found in Chapter 2 and has
been extended with a section on ‘connecting to AMdEX’. A complete and revised description
of the UNL use case is found in Section 4.1. The RDX and DIPG use cases are in their first,
complete version. The chapter on policy administration and enforcement has seen its first
revisions. An index has been added.

Refer to this document as follows
L. Thomas van Binsbergen, Merrick Oost-Rosengren, Hayo Schreijer, Freek Dijkstra, and
Taco van Dijk. AMdEX Reference Architecture – version 1.0.0. Ed. by L. Thomas van
Binsbergen. Feb. 2024. doi: 10.5281/zenodo.10565915

Intended audience This document is intended for organizations and individuals inter-
ested in learning about the AMdEX approach and/or interested in participating in AMdEX
as a member of the AMdEX community, service providers in particular. Contributors to other
data exchange initiatives might find it interesting to learn about the AMdEX approach and
to gain insight into how their initiative may connect to AMdEX.

Acknowledgments The authors would like to express gratitude to Mike Kotsur for feed-
back on earlier versions of this document and to participants of AMdEX community events
for providing feedback. Further gratitude is expressed to the students of the Software Engi-
neering Master programme of the University of Amsterdam who contributed to parts of the
architecture in this document, in particular: Jorrit Stutterheim, Quinten Colthof, Tessa van
Lobbrecht, Jonathan Karels, and Florine de Geus.

Purpose of the document The primary goal of this document is to describe the AMdEX
approach to sharing data and the AMdEX reference architecture comprised of governance
solutions and technical solutions. Central to the approach are the AMdEX community
members that cooperate as a consortium within AMdEX dataspaces and within a certain

3

https://doi.org/10.5281/zenodo.10565915

Figure 1.1: The timeline for the AMdEX initiative laid out in 2020.

ecosystem. This document also explains how AMdEX works in practice, both from a user’s
perspective, in relation to other initiatives, and by presenting existing use cases. In partic-
ular, this document describes:

• The principles guiding the design of the AMdEX technical architecture

• The users, roles, components and APIs that form AMdEX dataspaces and ecosystems

• The administration and enforcement of policies within AMdEX

• Use cases from the AMdEX Fieldlab, explained in terms of the aforementioned roles
and components

An important aspect of AMdEX is the explicit connection made between data sharing
agreements and conditions and applicable laws (soft infrastructure) on the one hand and
the (hard) technical infrastructure on the other hand. This document describes how that
connection is made and the process by which laws and agreements are integrated into the
technical domain.

1.2 Initiative and Fieldlab Project

The Amsterdam Data Exchange (AMdEX) initiative is a collaboration between the orga-
nizations Amsterdam Internet Exchange (AMS-IX), Amsterdam Economic Board (AMEC),
the University of Amsterdam (UvA), Surf, and Dexes. The founders joined forces with
the goal of developing neutral, generic, and independent infrastructure that ensures (data)
sovereignty in data sharing initiatives. In 2020, the timeline for the initiative depicted in
Figure 1.1 was laid out.

After the initial exploration phase, a fieldlab project was funded by the ‘European Re-
gional Development Fund’ (ERDF) or ‘Europees Fonds for Regionale Ontwikkeling’ (EFRO),
providing the opportunity to develop pilots and to work out the operations of the future
AMdEX association. The main goals of the AMdEX Fieldlab project were to:

• Develop a generic prototype with basic functionality in support of data exchange pro-
cesses with:

4

– an open, federated infrastructure

– that supports at least a few data exchange ‘archetypes’ (see 2.1 and 3.2.2),

– potentially scales to many-to-many applications and large data volumes, and

– the possibility for service providers to test and improve their solutions.

• Execute a number of selected use cases with which the functionality of the prototype
can be tested in practice.

• Develop business cases for scaling to a fully operational AMdEX organization.

• Interact with regional, national, and international initiatives to build a community and
(potential) collaborations.

The design for the open, federated infrastructure is discussed in Chapter 2. The use cases
executed within the project are described in Chapter 4. The first version of this document
serves as a deliverable within the AMdEX Fieldlab project. Specifically, this document
(partially) substantiates the following deliverables (in Dutch):

D3.2: Referentie-architectuur gericht op maximaal hergebruik en schaalbaarheid,
met de infrastructuur-componenten met mechanismen voor noodzakelijke aan-
passingen en met gestandaardiseerde interfaces voor koppeling van deelmarkt-
plaatsen en diensten.

D3.1: ‘Technologiekaart’ met een overzicht van bestaande benaderingen en tech-
nische opties.

D4.3: Prototype proxy service1 voor t.b.v. interoperabiliteit met andere datas-
paces. Ook komen data, diensten en gebruikers van Dexes beschikbaar op de
AMDEX infrastructuur (M24).

D4.4: Prototype van de koppeling van de Dexes Datadeel Marktplaats via de
Proxy service2.

D5.1: Rapport over minimaal 4 geselecteerde use cases, met een bloemlezing van
(experimentele) resultaten en leermomenten.

Deliverable D5.1 is also covered separately.
A higher-level goal of the AMdEX Fieldlab project has been to discover what ‘AMdEX’

should be for it to realize the goals and vision identified by the project partners. The
following possible responses to this question have been discussed and considered:

• A philosophy on how data exchange processes are to be executed and should be gov-
erned in order to promote (data) sovereignty, give control to participants and facilitate
legal (e.g. GDPR) compliance. An important aspect of the philosophy is that AMdEX
dataspaces exist in support of ad hoc consortia of AMdEX participants and are gov-
erned by certain ‘rules of engagement’.

1Rather than using the term ‘proxy service’, the capabilities referred to are instead realized by the data
exchange service and the connectors (see Section 2.4) by which dataspace members connect to the service.

2See the previous footnote.

5

• An advanced ‘authority provider’ and ‘notary’ operating according to EU standards
on dataspaces.

• A framework for supporting data exchange ecosystems.

• A community whose members share the philosophy, adhere to the rules of engagement,
and find potential consortium partners within the community to initiate exchanges.

• Or simply a community of people and organizations working on data exchange.

• An association whose members establish certain rules of engagement3, steer the exec-
utive organization, and collectively decide on other aspects of governance

• An executive organization that provides several services to the community, of which a
few possible suggestions are listed below:

– Facilitate the community by organizing meetings, networking, support during
funding-application processes, management of (research) projects, etc.

– Facilitate consortia (to be) by supporting the consortium building process and pro-
viding templates of legal agreements, data exchange archetypes, and data sharing
conditions.

– Communicate on behalf of the community, e.g., through the organization of mee-
tups and forms of external communication such as press releases and a website.

– Maintenance of the reference architecture, e.g., through the collection or develop-
ment of standards, protocols and reference implementations.

– Operating a ‘trusted infrastructure’ through which dataspace members can con-
nect to certain architecture components hosted by the organization (see 2.2 and
see 2.3).

– Provide certification to organizations to confirm, for example, the compliance
of the organization AMdEX rules of engagement and the technical capability to
fulfill certain roles, as laid out in this document (see Section 2.2)

An association or executive organization does not yet exist; the full (legal) structure
of the planned AMdEX organization is still to be established. The precise governance and
operations of the organization are also not yet finalized, not formalized and subject to change.
The items listed above reflect the discussions held within the AMdEX Fieldlab project.

1.3 The Approach

The goal of AMdEX is to support data exchange and data processing activities between
organizations. AMdEX is neutral with respect to the type of data exchanged between orga-
nizations, their motivations for choosing to participate, and the conditions organizations wish
to apply. As such, AMdEX dataspaces, in which organizations are connected for the purpose

3Separate from laws, consortium agreements and sharing conditions.

6

of data exchange, are not devoted to a particular domain (e.g. financial or medical) and are
not targeted towards specific kinds of users or organizations. The dataspaces are expected
to be created for a specific, shared purpose – such as an individual use case – are relatively
small in size, and are interoperable – an organization can participate in multiple dataspaces
and data can be exchanged between dataspaces (if permitted by sharing conditions).

Although neutral, AMdEX impose governance principles for sharing data on participants
in AMdEX, as determined by the members of the AMdEX organization. Moreover, consortia
should adhere to applicable national and international regulations. This topic is discussed
further in Chapter 3 on ‘Policy Administration and Enforcement’.

The AMdEX approach is to raise trust within a consortium by providing certain neutral
soft and hard infrastructure. The key novelty is in the governance procedures, consortium
agreements, and laws and regulations (soft infrastructure) that are directly integrated into
the dataspace (hard infrastructure) that supports the exchange of data between members.
Monitoring and control mechanisms within the hard infrastructure are connected to compo-
nents that determine end enforce the compliance of transactions. Chapters 2 and 3 address
the legal and technical challenges of the AMdEX approach.

1.3.1 Principles

The following set of principles underpin the AMdEX approach:

1. AMdEX is neutral with respect to:

• the goals and intentions of the dataspace members

• the type of data being exchanged or processed

• the techniques used to exchange or process data

2. AMdEX does not store, process or consume data assets within dataspaces

• It follows that AMdEX is not the member of any dataspace

• AMdEX may process meta-data for the purpose of governance and enforcement

3. Data processing within AMdEX dataspaces should proceed in accordance to:

• the AMdEX Rules of Engagement (established by AMdEX members),

• the consortium agreement made between members of a dataspace,

• the conditions established between members of a dataspace as part of an individual
transaction (regarding a resource or service), and

• the applicable laws and regulations

In the future, AMdEX dataspaces may also explicitly consider public values expressed as
social policies or codes of conduct. The extent to which AMdEX is compatible with certain
values is reflected upon in the next section.

7

1.3.2 Public values

The founding members of AMdEX have collaborated within the AMdEX Fieldlab project
with Waag4 to investigate how public values can be embedded in dataspaces. As such, public
values have been an explicit consideration in the design of the architecture. Specifically, a
goal for the project has been to support dataspaces that serve public interests – even though
AMdEX is intended to be neutral with respect to the goals and intentions of dataspace
members (first principle in Section 1.3.1).

An example of a dataspace that serves a public interest is a datacommon (see Section 2.1).
Together with Waag, the AMdEX partners have investigated datacommons, although a
thorough evaluation through a use case has yet to be performed.

The extent to which the architecture enables dataspaces that are aligned with public val-
ues is reflected upon throughout this document. Examples of public values are: accessibility,
transparency, inclusivity, equity (including the protection of vulnerable and marginalized
groups), transparency, public benefit or interests (e.g sustainability, advancement of sci-
ence/ and healthcare), and the privacy and security of individuals. Below is a list of aspects
of the architecture that align well with public values:

• The architecture is designed to facilitate the integration of privacy-enhancing technolo-
gies in data exchange process, as illustrated by the application of synthesis data in the
UNL use case in Section 4.1.2.

• The UNL use case has also been used to investigate the trade-off between two public
values: energy efficiency and privacy through data synthesis [27].

• The architecture is designed to give control to individual members through the specifi-
cation of policies, which may be individual policies (such as consent, see Section 4.2.3),
or social policies and codes of conduct on behalf of a community (see Chapter 3).

• Transparency is promoted by the architecture through the publication of (formal)
interpretations of laws and contracts and through the logs of exchange processes held
by the Notary components (see Section 2.3). Meta-policies may be needed to determine
who is authorized to read which policies.

• The application of open standards promotes collaborations for public benefit.

4https://waag.org

8

Chapter 2

High-Level Architecture

This chapter describes the high-level architecture of AMdEX following a top-down approach:
starting from introducing terminology, to describing users, roles, software components and
API interfaces. The architecture comprises of components whose development and opera-
tionalization are the responsibility of different members of the AMdEX community. The
high-level architecture lays-out how the components work together to realize data exchange
scenarios within AMdEX dataspaces. In addition, the architecture is a reference for the var-
ious members of the AMdEX community. The current version of this chapter describes the
architecture at the level of detail obtained by the partners of the AMdEX Fieldlab project.
As a deliverable for the AMdEX Fieldlab project this document forms the initial input of a
continuous process of revision.

2.1 Scope and Terminology

In this document, an asset refers to an algorithm or a data asset, where a data asset is
either a data stream, a dataset or a data point (an individual value such as an integer).

The scope of the architecture includes support for the following processes:

• The sending and receiving of assets from one organization to another which may
involve the transfer of an individual dataset, a subscription to a data-stream, or transfer
of an algorithm,

• the processing of data by applying an algorithm to one or more input data assets,
producing a new data asset that can be shared,

• the procurement of data assets, algorithms, and services through offers and agree-
ments contingent on conditions categorized as:

– pre-conditions, to be satisfied before an agreement is made, a transaction is
performed, or an asset is accessed or used, or

– post-conditions that continue to hold after the asset has been made available
and/or has been accessed or used, or that apply to the result of data processing.

9

The term data exchange is used for all of the aforementioned processes. Data exchange
processes are often interlinked. For example, an agreement can be made that gives a company
access to certain analysis results, obtained by the sharing of data from the owner of a sensor
with a specialized company processing the data in order to produce the analysis results.

The described data exchange processes are intended to support various patterns for the
exchange of data encountered in practice, referred to as data exchange archetypes, such as:

• The sharing of a (possibly anonymized or pseudonymized) dataset by an organization
directly or indirectly with another organization, referred to as data sharing

• Compute-to-data solutions in which the holder of a data asset executes an algorithm
provided by a data consumer on the asset and only shares the result with the data
consumer. Such a solution is also referred to as data visitation.

• Third-party solutions in which an organization functions as an intermediary to, for
example, store datasets or run algorithms on behalf of the consortium.

• Privacy-enhancing or privacy-preserving techniques, possibly provided as a service by
a third party, such as:

– Secure Multi-Party Computation (sMPC) and secret sharing

– Federated Machine Learning (FML) techniques

– Differential Privacy (DP)

– Synthesized data generation

Exchange processes are executed within a dataspace, an umbrella term describing several
kinds of data exchange collaborations such as:

• Datatrust: A dataspace in which a trustee stewards data rights in the interest of a
group of beneficiaries often for economic, social or cultural benefit of the group.

• Datacommon: A dataspace in which data is pooled and shared as a common resource.
Datacommons specifically address power imbalances by democratizing access to and
availability of data, and often has a cause for the public/common good. A commons
is governed by the collective, including those affected by the exchange of data.

• Datamarket: A dataspace in which data is used in a transactional manner and in-
centives for sharing data are financially driven.

More detail on possible user flows is provided by analyzing the roles of users and various
service providers.

2.2 Users and Roles

Organizations wishing to form a consortium and collaborate within a dataspace have to come
to an agreement on several aspects of the data exchange, ranging from the business case and

10

Local
infrastructure
(services)

AMdEX
(hard and soft)
infrastructure

Fieldlab
Dataspace
Providers

Fieldlab Dataspaces / Use Cases

RDX

Surf

Smart
Buildings

Marine-
terrein UNL DIPG Airplane

Maintenance

UvADexes AMS-IX

AMdEX
Fieldlab

AMdEX
Association

Luminis KPN Tapp EquinixDellFacility
Apps

Figure 2.1: Layout of the different entities involved in AMdEX Fieldlab use cases. The
AMdEX Fieldlab consortium is to be replaced by a future AMdEX association.

legal requirements to the chosen functionality and operationalization, as identified by the
Data Sharing Coalition [5]. Organizations may not be aware of all the technical solutions
and the possible service providers that can provide meaningful services to consortium-to-be.
AMdEX can support new consortia by helping organizations find the archetype suitable to
their use case and help identifying whether any roles are not fulfilled by the members of
the consortium. For example, perhaps a compute provider is needed to apply a trusted
third-party archetype. In addition, AMdEX will provide templates of legal agreements and
archetype specifications (see Section 3.2) that serve to configure the technical infrastructure
on which a dataspace runs.

Dataspace providers A dataspace is set up and hosted by a dataspace provider.
Dataspace providers are essential members of the AMdEX community as they are the face of
AMdEX to many users (consortia members). They are responsible for the operationalization
of many of the components of the AMdEX architecture, and should abide by the AMdEX
guiding principles and rules of engagement. A dataspace provider can service many (pos-
sible interconnected) dataspaces for different consortia that are not necessarily bound to a
single sector. However, dataspace providers may specialize and focus on specific sectors, as
each sector may come with its specific requirements. Figure 2.1 shows the relation between
dataspaces (supporting use cases), dataspace providers running dataspaces, service providers,
and the AMdEX infrastructure and organization using the AMdEX Fieldlab project as an
example. Dataspaces with many common governance aspects may be gathered within an
ecosystem. Figure 2.2 provides a high-level overview of different roles that interact in a
dataspace through the AMdEX infrastructure.

The technical role of AMdEX is to (directly or indirectly) realize (automated) governance

11

Dataspace provider Governance provider

Ecosystem provider

AMdEX

Ecosystem governance provider

Exchange provider

Dataspace member

Control plane
Only metadata

flows here

Data plane
Actual flow of
(data) assets

Control and
governance

infrastructure

Processing
and services
infrastructure

AMdEX
framework

Figure 2.2: The types of entities involved in facilitating dataspaces, reflecting the division
between the data plane (bottom), control plane (top) and governance plane (top-right).
There is a one-to-many relation between some of the vertical layers of the diagram, e.g.,
AMdEX supports multiple dataspaces and a dataspace supports multiple members.

in dataspaces. This can be achieved in the following ways:

• AMdEX provides the reference architecture, standards, protocols and reference imple-
mentations of components that can be configured according to archetype and agreement
templates. Together, these elements form the ‘AMdEX framework’.

• In addition to the above, AMdEX operationalizes certain components in addition to
the components operationalized by dataservice providers. Close collaboration and
cooperation between AMdEX and dataspace providers is needed in both cases.

The components operationalized by AMdEX, ecosystem and dataspace providers are
organized in a control plane. A hard distinction is made with the data plane in which
data exchange processes execute. As explained further in Section 2.3, the data plane and
control plane interact to enable the essential features of AMdEX dataspaces, such as asset
discovery, access control and auditing. In accordance to AMdEX principles (Section 1.3.1),
the control plane does not store or process (data) assets. Only meta-data is processed.
Figure 2.5 is a variant of Figure 2.2 in which the components of the AMdEX architecture,
discussed in Section 2.3, are mapped onto the entity types.

Dataspace members The members of a consortium, and thereby the users interacting
with a dataspace, are classified according to the following roles (visualized in Figure 2.3):

• Data provider: An organization making one or more data assets available for data
sharing. The data provider is not necessarily the owner of the data asset but may

12

Dataspace
Member

Data
Consumer

Service
Provider

Asset
Provider

Algorithm
Provider

Data
Provider

Compute
Provider

Exchange
Provider

Storage
Provider

Figure 2.3: A taxonomy of dataspace members.

provide the asset on behalf of the owner. The organization can register (offer) a data
asset in a catalog alongside the pre- and post-conditions for accepting the offer and
accessing or using the data.

• Algorithm provider: An organization making one or more algorithms available for
data processing. The algorithm provider is not necessarily the owner of the algorithms.
The organization can register (offer) the algorithm in a catalog alongside the pre- and
post-conditions for accepting the offer, accessing the algorithm and using the algorithm.
Together, data providers and algorithm providers are referred to as asset providers.

• Data consumer: An organization wishing to access or use data assets made available
(directly or indirectly, via processing) by data providers within their dataspace. A data
consumer can submit requests by selecting a template corresponding to one of the data
exchange archetypes offered by the consortium. The resulting data exchange process
may be a simple data access request or may consists of several processing steps.

• Data service provider: An organization that offers a particular service to other
members of the dataspace, such as (temporary) storage and data processing (i.e., pro-
viding ‘compute’ as a service), and connectivity between members (‘exchange’).

An exchange provider may provide connectivity by, for example, running a message-
brokering service. An exchange provider may also play a more active role, coordinating
the execution of, for example, a federated machine learning protocol.

Note that roles may overlap. For example, a compute service provider can consume an
algorithm and a dataset in order to apply the algorithm to the dataset and then provide the
result as a dataset to members of the dataspace. Common overlapping roles are, for example,
standardization (algorithm and compute), secure multi-party computation (compute and
exchange) and logging/tracing (exchange and data provider1).

Dataspace users The roles described above have in common that they are fulfilled by
users – individuals that interact with the software, possibly on behalf of an organization – and
software components. Figure 2.4 shows the users and components associated with dataspace
member roles. In the next section, these roles will be concretized as inter-communicating

1Viewing the produced logs and traces as a dataset possibly subjected to sharing conditions.

13

Data provider

Data Owner

Provider
node

Service provider

Resource
Owner

Member node
e.g. compute

Data consumer

Data User

Consumer
node

Figure 2.4: A dataspace member role (box) is fulfilled by the combination of a user (stick
figure) and a software component (circle).

software components with certain capabilities in the data plane. As we shall see, the users do
not only interact with components in the data plane, but also in the control and governance
plane.

Connectivity with an AMdEX dataspace itself may be provided as a service. The service
provider then acts as a proxy by playing one or more roles in a dataspace on behalf of an
organization or individual. For example, a software company may play the role of data
provider on behalf of a sensor owner and connect through an exchange provider with other
dataspace members.

2.3 Components

An overview of the components of the high-level AMdEX architecture is given in Figure 2.5.
The discussion around the components in this section is focused on control and governance
infrastructure within the control plane, i.e. without access to actual (data) assets, only meta-
data. The architecture does not prescribe that all control and governance takes place in the
control plane. Exchange providers typically provide process orchestration, for example to
coordinate the execution of a federated machine learning or secure multi-party computation
protocol. Dataspace members may also perform their own policy enforcement. For example,
a data provider may (double) check conditions to ensure their policies are properly enforced.
In general, components running in the data plane can exert a more powerful form of control,
more easily and effectively, by being ‘closer’ to the sources of resources and their access
points. The trade-off between operating on actual data or meta-data only is discussed
throughout this document, with a bias towards the latter, more challenging case. Note that
an implementation for a particular dataspace or use case does not have to implement all the
components or can implement multiple components as a single service2.

The architecture contains components that can be categorized in various ways. Some
components are internal in that only other components interact with them and users do not.
Components may be optional in that (valuable) data exchange processes can be executed

2Although for various reasons this may not be recommend, such as scalability and adaptability.

14

without them, if desired. A component may be modular in that the component itself consists
of smaller sub-components that help to achieve its function. A component may be distributed
in that it is running across difference sites, requiring a procedure to ensure consistency. A
component may be federated in that multiple instances of it exist, possibly hosted at different
sites, which collaborate to achieve a function together and display a form of hierarchy. A
component may be operationalized by (i.e., run within the network domain of) a dataspace
member, a dataspace provider, an ecosystem provider, or the AMdEX organization. And
components can be categorized based on the type of functionality they implement. In this
categorization we refer to the data plane, control plane3 and governance plane.

Data exchange processes are realized in the data plane with the exchange of assets be-
tween, and the execution of algorithms by, members of a consortium. The components of
the data plane are described in Section 2.3.1. The control plane consists of components that
can help consortium members exert control over the data exchange processes such as by of-
fering and finding available assets, enforcing conditions on transactions and processing steps,
and orchestrating the automated execution of data exchange processing steps. The compo-
nents of the control plane are described in Section 2.3.2. The governance plane covers those
components of the control plane that facilitate the direct integration of governance aspects
into the data exchange processes. The components of the governance plane are described in
Section 2.3.3. In accordance with AMdEX principles (see Section 1.3.1), the components of
the control plane and governance plane only process meta-data.

2.3.1 Data plane

The components of the data plane (listed at the end of this subsection) work together to
realize data exchange processes.

Exchange processes A data exchange process consists of a series of steps producing a
data asset that is of interest to a data consumer. Some of these steps may be required in
order to satisfy the policies of one or more involved data providers, e.g. anonymization.
The steps are performed by instances of components of the data plane operationalized by
different consortium members, depending on the role the members play in the consortium.
Conceptually, every dataspace member is responsible for one component referred to as a
member node. In reality, member node instances are expected to have their own (poten-
tially complex) architecture, distributed across the local network of the organization that
owns the component. Depending on the roles consortium members play, the member node of
a consortium member is expected to perform certain steps, but not necessarily certain others.
For this reason, the member node component describes certain shared functionality and is
extended by a consumer node, a provider node, and a compute node to provide func-
tionality specialized to certain roles. Just as a consortium member can play multiple roles,
a member node can instantiate multiple types of member nodes. For example, a compute
provider (role) is expected to be fulfilled by a member node that simultaneously instantiates
a consumer, provider and compute node. Table 2.1 displays the processing steps performed

3https://www.rfc-editor.org/in-notes/rfc3746.txt

15

https://www.rfc-editor.org/in-notes/rfc3746.txt

Dataspace provider Governance provider

Ecosystem provider

AMdEX

Ecosystem governance provider

Exchange provider

Dataspace member

Control and
governance

infrastructure

Processing
and services
infrastructure

Connector

AMdEX
framework

Policy Store
(universe)

Registry
(universe)

Catalog
(universe)

Registry Catalog Policy store

Registry Catalog Policy store

Enforcement
Orchestrator

Process
Orchestrator

Auditor NotaryNotary

Connector

Connector

Provider
node

Dataspace member

Connector
Consumer

node

Dataspace member

Connector
Compute

node

Monitor

Monitor Monitor Monitor

Clearing Policy
Reasoner

Control plane
Only metadata

flows here

Data plane
Actual flow of
(data) assets

Figure 2.5: A categorization of the AMdEX architecture components within a data plane,
control plane and governance plane (right-hand side of control plane). The components are
also organized according to which (type of) entity runs the component.

by the different types of member nodes. At a minimum, a member node provides certain
shared functionality that is required by all dataspace members, such as identification.

• Member node: This component connects dataspace users to other members/users
and connects to components in the control plane. Specialized (extensions) of the node
are listed below. This component captures shared functionality such as providing an
identity, discovery, and connection to the control plane.

• Consumer node: An extension of a member node that initiates data sharing and
processing requests and may receive data sets or acquire access to data streams.

• Provider node: An extension of a member node that resolves URIs for assets (datasets,
streams, or algorithms) and registers assets in the catalog, subject to sharing and pro-
cessing conditions.

• Compute node: An extension of a member node that performs compute steps, pos-
sibly on instruction, receives assets (same capabilities as a consumer node), and sends
datasets or provides access to a datastream (same capabilities as a provider node).

16

Step Description Inputs Effect Node
init initiate an ex-

change request
template, assets,
role assignments

clearing starts consumer

receive receive an asset asset, sender ID stream access or asset
download from a re-
mote source

consumer/
compute

send send an asset asset,
receiver ID

access to a local stream
or asset is given

provider/
compute

compute run an algorithm
on some input data

algorithm, input
data assets

a data asset is pro-
duced locally

compute

Table 2.1: The processing steps that can be performed by the different types of member
nodes of the data plane.

• Monitor: A monitor is a module of a member node that provides information about
the execution of processing steps to the Process Orchestrator and Enforcement Orches-
trator.

2.3.2 Control plane

The control plane contains components (listed at the end of this subsection) for onboard-
ing members, registering and findings assets, submitting exchange requests and executing
transactions.

Member and asset registration The registry and catalog components (discussed below)
are federated components of which instances are hosted at multiple registration levels. The
registration levels form a hierarchical tree structure, depicted in Figure 2.6. Motivated by
AMdEX Fieldlab use cases, three registration levels have been identified: universal, ecosys-
tem, and dataspace. The hierarchy can be extended by adding additional levels. The levels
form 1-to-many relations. There is one ‘universe’ that can support multiple ecosystems which
in turn can support multiple dataspaces.

As federated components, instances of the registry and catalog will be operationalized
by different organizations depending on registration levels. Any components at universal
level are expected to be operationalized by AMdEX, or a party on behalf of AMdEX, and
the components at dataspace/ecosystem level are operationalized by dataspace/ecosystem
providers. A dataspace member may decide to host its own catalog – effectively adding a
fourth layer to the hierarchy – possibly simplifying integration in a dataspace and facilitating
connections to non-AMdEX dataspaces or catalogs.

From request to transaction An exchange request specifies which data exchange pro-
cess a data user would like to initiate4 with the request (see Section 2.3.1 and Table 2.1).

4In some cases it may be desirable to have exchange processes initiated automatically in response to some
event, e.g. at the end of every month or when a new version of an asset is available. In these cases another
node than a consumer node can be imagined as initiating the request.

17

Figure 2.6: Registration levels at which members and assets can be registered.

Figure 2.7: The lifetime of an exchange process as it goes through various stages.

The lifetime of a request is visualized in Figure 2.7. An exchange request comprises of an
exchange template and a collection of assets and role assignments that instantiate the ex-
change template (requesting, Figure 2.7). The assets and resources involved in the request
have been registered in one or more of the applicable catalogs and offered by registering us-
age conditions (together referred to as an offer) in the policy store (offering). Different
offers can be registered in the policy store as being applicable to the same catalog entry.
Before assets can be offered and requested, all involved members must be registered in the
registry of the dataspace (onboarding). A data user can go through an optional process in
which a proposal is negotiated with other consortium members (proposing). An example
of this mostly social process is given in Section 4.2. The role assignments of the request
determine how the abstract roles of the template are concretized by member nodes (see also
Section 3.3), resulting in a sequence of processing steps, starting with an ‘init’ and ending
with a ‘receive’ of the same consumer node.

Before a request is turned into an agreement, the owners of the assets may have to give
permission for the usage of their asset(s) within the request. Similarly, the owners of compute
nodes (compute providers) may have to give permission for the usage of their infrastructure
within the request. These permissions may be manually provided when needed or can be
derived from policies. Additionally, the request needs to be checked for compliance with
pre-conditions, the consortium agreement and other higher-level policies. Some of the pre-
conditions may require certain clearing steps to be fulfilled, e.g., the requesting data consumer
may have to pay for the upcoming transaction. The acquisition of manual permissions can
also be seen as clearing steps. As such, a request is transformed into an agreement by a joint
accepting, clearing and checking procedure (clearing). The agreement is registered in the
policy store together with data confirming the (successful) execution of the clearing steps.

The template of a request describes the data exchange process as a sequence of processing
steps (from Table 2.1) assigned to roles. This sequence of processing steps is referred to as a

18

plan and forms an integral part of the agreement. An agreement is executed by executing
the processing steps of the plan computed for the request (processing). These steps can
be executed manually by the members involved, or automatically through orchestration. At
each step, the processing of the step will be checked (again) for compliance against the latest
policy and with the latest policy information. This can be done by the relevant components
in the control plane or the data plane (see Section 2.3.3 and Chapter 3 for further discussion).
When successful, the execution results in a completed transaction and a number of log files
that together form a dossier used for ex-post (after the fact) compliance checks (auditing).
The completed transaction is registered in the policy store, together with a reference to
the dossier. When unsuccessful, e.g., because certain steps were not performed or dynamic
policy enforcement prevented a non-compliant action (see also Section 3.4), a dossier is still
produced with all relevant logging information needed for auditing. The auditing process also
involves the checking of post-conditions, possibly considering certain external information in
addition to the dossier. This may cause one or more parties to trigger a process in which the
compliance of the transaction is disputed. Any disputes to the transaction are also registered
in the policy store.

• Registry: The registry is a federated component of which instances keep track of
registered members at a particular registration level. A registration is the result of
an on-boarding process. Members are registered as performing one or more roles at a
certain registration level. The higher level registries can be used to find new members
for joining a dataspace based on the role they play (services they provide).

• Catalog: The catalog is a federated component of which instances keep track of
registered assets at a particular registration level. Assets are registered with meta-
data, exchange conditions and applicable exchange archetypes. The conditions needs to
be compliant with the consortium agreement, the exchange archetypes and policies at
higher policy levels (see Section 3.2). Members can register and find assets registered at
their level and higher levels. Unless otherwise stated when offered, visibility of offered
resources travels ‘downward’ in the registration hierarchy, e.g. resources offered at
the ecosystem level can be found in the Catalogs of dataspaces within that ecosystem.
Assets can be registered multiple times in different catalog instances and under different
conditions. A catalog at the dataspace level can receive exchange requests for one or
more assets that are to be exchanged according to an exchange template provided
alongside the request. Requests are processed by the Clearing component.

• Clearing: This component turns exchange requests to agreements by ensuring and
checking that all pre-conditions of the request have been satisfied, i.e., that all manual
permissions for executing the requests’ plan have been given, that all sharing condi-
tions have been met and that the steps of the plan would not violate the consortium
agreement, laws and regulations and other high-level policies. The result of clearing is
an agreement on a plan that is ready for execution. The clearing component is mod-
ular with several sub-components/modules fulfilling specific functions of the clearing
process such as collecting manual permissions and processing payments.

• Process Orchestrator: This component orchestrates data exchange processes (when
needed) by sending out instructions for executing processing steps to member nodes

19

and receives feedback from member nodes on successfully executed processing steps.
The orchestrator drives and tracks the step-by-step execution of a plan. Execution
may succeed, resulting in a (completed) transaction, or may fail, in which case logging
information is (also) made available. In the data plane, a data exchange provider may
provider similar functionality (see Section 2.4.2).

• Process Notary: This internal (and possibly distributed) component serves as a
ledger to keep track of the status changes to exchange requests, agreements and trans-
actions throughout the entire life-cycle of a request. The ledger retains a log of status
updates based on input from the Catalog, Clearing and the Process Orchestrator com-
ponents.

2.3.3 Governance plane

The governance components (listed at the end of this subsection) are responsible for the con-
trol processes that directly relate to the governing of the dataspace, including compliance
with laws, regulations, ecosystem rules, consortium agreements and data exchange condi-
tions. The AMdEX approach to automating compliance considers both ex-ante (‘before the
fact’) and ex-post (‘after the fact’) enforcement, observing the social reality in which not all
violations can be prevented. Ex-post processes such as auditing based on logs and other,
external information are necessary for various reasons. There may not be a consensus be-
tween consortium members on the precise legal interpretation that is to be applied, on the
events that occurred or the qualification given to these events. Moreover, new information
may come to light that could potentially change the assessment of the compliance of a trans-
action. This is especially relevant to (post-)conditions that can only be checked outside of
the control of the dataspace, e.g., when a consumed data asset is made available outside
the consortium against the will of the consortium. Therefore, compliance checks occur at
various stages in the lifetime of a data exchange process.

1. During offering: the exchange conditions assigned to an asset need to be consistent
with the consortium agreement and higher-level policies. For example, the consortium
may disallow payment requirements and privacy regulations demand a legal basis for
processing (i.e. lawful processing based on consent or a legal obligation).

2. During clearing: the exchange (pre-)conditions are checked and, where needed, pro-
cesses are started to satisfy the pre-conditions. The plan produced by instantiating an
exchange template is checked for compliance.

3. During processing: individual processing steps are checked for compliance. This
happens both before and after they are executed:

• before: a member node can request permission from the Enforcement Orchestra-
tor, or a Process Orchestrator checks permission before sending an instruction

• after: a Process Orchestrator was informed that a processing step was executed
and checks this event for compliance

20

In both cases, the Process Orchestrator requests compliance decisions from the En-
forcement Orchestrator and all communication is logged, including the observation of
any violations. Local policy reasoning by a member is possible as well, e.g. in order
to verify the compliance of the step against local policies or to verify whether any
obligations are assigned to the member. The possibility of checking compliance during
the execution of a processing step is discussed in Section 3.4.

4. During auditing: a (fully or partially executed) transaction and the logs produced
during the execution of the transaction are assessed. At present this is still a manual
process; possibilities for (partial) automation are to be investigated. Manual assess-
ment is needed for many types of post-conditions encountered in practice. Observations
that may affect compliance with post-conditions can be (manually) brought into this
process, e.g. the observation that a data asset is used for a differnet purpose than
intended. This topic is discussed further in Chapter 3 and some of the use case de-
scriptions in Chapter 4.

The role of monitoring Compliance is assessed through the submission of policy queries
to a Policy Reasoner. In order to answer a query, the Policy Reasoner needs a policy set
and policy information as input. The policy set is the result of composing those policy
sets, registered at the policy store, that are deemed relevant to an exchange process. Which
policy sets are deemed relevant is determined by the consortium, the owners of assets, and
the providers of services, used in the request. The resulting composition may be inconsistent
in that reasoning with the composition is impossible or will not yield unambiguous results.
Inconsistency is to be checked when policy sets are registered in the policy store.

Policy information is all (other) information needed to assess compliance, such as infor-
mation about the assets and members involved in a request. Not all such information can be
(made) available, further explaining the need for ex-post enforcement processes. Some infor-
mation is to be provided dynamically, within the lifetime of an exchange process. Monitors
are components of the data plane that provide (dynamic) information about processing steps
as they relate to a particular data exchange process. For example, a monitor can provide
the amount of records produced by a compute step, or the K-anonymity achieved by data
synthesis. Informing the process orchestrator of executed processing steps can also be seen
as monitoring. As such, monitoring is crucial for governing exchange processes. However,
as components of the data plane, dataspace members are in control over the monitoring
information provided. Manual governance and enforcement practices are required to ensure
members make the necessary information available, e.g., through certification. Additional
information about monitoring is provided in Section 3.4.

• Policy Store: The Policy Store is a federated component of which instances keep track
of registered policy sets at a particular registration level. Policy sets are registered with
meta-data such as links to normative sources (e.g., legal sources) and version numbers.
Depending on the registration level, different authorities can register policies in the
Policy Store (see Section 3.2). Members are able to instantiate templates of data
sharing and data processing conditions to associate the resulting conditions with the
assets they register in the Catalog. A policy store provides both an API- and user-
interface for registering, finding and selecting policy sets.

21

• Policy Reasoner: This internal component receives policy queries to determine the
consistency of policies (validation) and the compliance of plans (ex-ante enforcement),
processing steps (dynamic enforcement), and transactions (ex-post enforcement). In
the latter three cases, a policy query consists of a sequence of processing steps and
is sent by the Clearing component, Process Orchestrator and Auditor components
respectively through the Enforcement Orchestrator. Validation queries are sent by the
Catalog when assets with conditions are registered and by the Policy Store when policy
sets are registered. The response to a query is based on a policy set received from the
policy store and additional policy information provided alongside the request (e.g.,
meta-data about members, assets, etc., analogous to policy information in attribute-
based access control).

• Enforcement Orchestrator: This internal component mediates between the Policy
Reasoner and the Clearing, Process Orchestrator and Auditing components to ensure
the reasoner is given the required policy information to answer a particular policy
query. The Policy Reasoner informs the Enforcement Orchestrator of any missing
information. In response, the Enforcement Orchestrator will send information requests
to the components capable of producing the information. For example, the Registry
can provide the attributes of a dataspace member and Clearing can obtain manual
permissions.

• Enforcement Notary: This internal (and possibly distributed) component serves as
a ledger to keep track of the policy queries to the Policy Reasoner and policy decisions
by the Policy Reasoner related to a specific transaction. The ledger retains a references
to versions of policy sets, provided policy information, and the decision made by the
Policy Reasoner.

• Auditor: This component provides a user-interface to the transaction logs produced
throughout the lifetime of data exchange requests and stored in the process and enforce-
ment notaries. These logs necessarily only contain meta-data. To audit the compliance
of transactions of individual processing steps, monitors are required at the nodes in
the data plane, or it should be possible to bring in outside information. The logs pro-
duced by monitors in the data plane are necessarily distributed and may themselves
be subjected to access control. A comprehensive auditing process thus requires a solu-
tion within the consortium. The integration of control plane and data plane auditing
requires further investigation.

2.4 Connecting to AMdEX

For the average user that shares data or uses data, AMdEX will be a nearly invisible compo-
nent. Service providers, instead, offer services to data owners and data users, helping data
owners and users to share data. The data owners and users can then see AMdEX merely
as a means to gain confidence that the data is being shared in a trustworthy way. Whereas
users interact with service providers, service providers interact with AMdEX in support of

22

Figure 2.8: A conceptual scheme of the roles that connect to AMdEX

their users. This section provides additional details on the realization of AMdEX dataspace
or ecosystem, focusing in particular on the connections between participants.

Participants can roughly be divided in the following three categories (roles in Section 2.2)
in a data sharing scheme (see also Figure 2.8).

• Data providers: parties that collect data or handle data for entitled parties like data
owners.

• Data consumers: parties that provide services and applications to data users to
create value based on available data.

• Service providers: parties that support the process of sharing data.

To connect to AMdEX, the above mentioned providers will need to make actual connec-
tions and interfaces with AMdEX provided components. Do note that every data provider,
data consumer and service provider connects to AMdEX, directly or indirectly, in order to
facilitate a distributed, safe and trusted data exchange.

The roles of data owner and data user, as entitled parties, are important from a legal
viewpoint in particular, but the do not necessarily need to make any technical connection to
AMdEX when they are serviced by the service providers.

2.4.1 Dataspaces and ecosystems

A dataspace is a virtual environment where data providers and data consumers connect,
and where specific rules are applicable, e.g. as captured in a consortium agreement. A
dataspace can be a closed environment where only specific parties are connected as members
and perform transactions. A dataspace can be a public space, in the sense that it is open
for anyone to offer assets accessible to other parties on the dataspace. Figure 2.9 shows how
an organization (or individual) can be a member of multiple dataspaces at once, potentially
playing a different role in each. In both cases, however, a participant needs to connect to

23

Figure 2.9: Organizations and individuals can play different roles in different dataspaces.

infrastructure in order to connect to other participants, either directly – through their own
member node – or indirectly – as a user of a provider offering the connection as a service.

In the Netherlands, parties in a specific economical or social domain (sector), organize
themselves in an ecosystem. When data providers and data consumers become a member of
an ecosystem, they connect to one or more dataspaces within the ecosystem. An ecosystem
may form a potentially very large and complex landscape of providers and consumers of
various assets and services, each with their specific expertise and (partial) knowledge on data
exchange processes. For this reason, parties may offer ‘connecting to AMdEX’ or ‘running
shared AMdEX services’ as a service to ecosystems and their members. The mentioned
shared services (‘Algemene Voorzieningen’ in Figure 2.11) are, among possible others, some or
all of the control and governance components discussed in the previous section. In summary,
both individuals, dataspaces and ecosystems require service providers.

2.4.2 Service providers

Several types of service providers may be involved in running a dataspace or ecosystem.
Some service providers are members of dataspaces, offering services as data transformation,
data analysis, and compute or storage resources (see Figure 2.3 and Figure 2.10). For
example, a compute provider may efficiently process data streams providing large quantities
of data and forward aggregated results to a storage provider for publication. Other service
providers play a role in the infrastructure of a dataspace, such as dataspace and ecosystem
providers hosting (parts of) the shared service (in the control plane, see Figure 2.5). Data
exchange providers (in the data plane, see Figure 2.5) assist data providers, data consumers
and member service providers with their connection to other members of dataspaces and
ecosystems. Crucially, data exchange providers also connect to the dataspace and ecosystem
providers running shared services, helping to ensure that members follow the rules and
conditions of the ecosystem and the dataspaces (through policies, as discussed further in
Chapter 3). Note that the service providers themselves must adhere to laws and governance

24

Figure 2.10: Member service providers offer support in the exchange process between
providers and consumers in the data plane.

rules in order to guarantee the sovereignty of participants and the privacy of data subjects.
Therefore, service providers need to be audited and certified.

Some data exchange providers may provide primarily communication as a service. For
example, a telecommunication company offering fast network communication to connect sen-
sors producing large data streams. Other data exchange providers may play additional roles
on top of the communication, e.g. to orchestrate the execution of multi-party computation
protocols such as federated machine learning, differential privacy or secret sharing. In these
cases, data exchange providers are also hosting process orchestration and may provide com-
pute power as a service, i.e. are also playing the role of dataspace provider, data exchange
provider and compute provider simultaneously.

2.4.3 Connecting to AMdEX services

The previous subsections describe various connections between participants of dataspaces
with different roles. For these connections, the AMdEX architecture describes two types of
connectors:

• Data plane connector or exchange connector: a connector between member nodes
directly or via a data exchange provider, and

• Control plane connector or trust connector: a connector between the shared
services and a data exchange provider or member nodes directly.

Connectors are involved in most5 actions, transactions and events transpiring in a dataspace.
A connector provides connections on several interfaces (APIs), some of which are mandatory

5Note that some user actions may be directly with a component in the control plane, as indicated by the
dashed line in Figure 2.10, such as a user registering a dataset in a Catalog.

25

Figure 2.11: The ecosystem approach to data exchange where data assets and applications
(‘toepassingen’) can be exchanged through the application of shared services (‘Algemene
voorzieningen’) provided as part of the AMdEX framework.

or optional to implement. The connectors are the points of contact between the (local)
infrastructure of the participants and therefore require implementation or integration within
the local infrastructure. Through connectors, members communicate to other members and
the shared services of the control (and governance) plane either directly or via a data exchange
provider. In the latter case, the data exchange provider implements the interfaces (APIs)
as if a member node and the host of the shared services, relaying messages on top of any
additional message it may send (e.g. for orchestration or enforcement purposes).

Important motivations for including ‘connectors’ in the architecture are to achieve sepa-
ration of concern6 and to offer a standardized7 way of accessing the Registry for identification
and authentication, and the enforcement services (Reasoner and notaries through the En-
forcement Orchestrator) for authorization, auditing, and accountability. These two aspects
of the control plane connector are captured by the following mandatory interfaces:

1. The trust API. The trust API connects the Registry and provides identification ser-
vices, keeping track of all parties that are a member of an ecosystem or dataspace.
The API provides token-based authentication to secure further communication be-
tween parties. Each time an AMdEX service or a service provided by data providers,
data consumers and service providers is used, a call will be made to the trust registry to
check whether parties are valid members and to provide tokens for further transaction.

2. The authorization API. The authorization API provides access to the governance
and enforcement services described in Section 2.3.3 and Chapter 3. As such, the

6In [31], it is discussed how the ‘sidecar’ design pattern enables connector implementations to be separated
from the message-passage mechanism of the implementation of the data exchange provider.

7Although standardization has not yet been achieved.

26

API is used for policy and compliance related requests at different moments of the
lifetime of an exchange process: offering, clearing, processing and auditing
(see Figure 2.7 and Section 2.3.3). Most importantly, the authorization API gives
authorization for individual processing steps such as data access when permitted by
policies. Authorization requests provide information that may be collected by the
Process Notary and Enforcement Notary for accountability purposes.

The following additional APIs may be implemented:

3. The catalog API. This API is used for publishing assets and offers in the Catalog.
Asset and service providers can publish their assets and services so they are visible to
members in the ecosystem and dataspaces. Each assets has one or more links to ‘offer’
policies that determine the pre- and post-conditions for the offered asset or service.

4. The policy store API. In the Policy Store the offers and agreements are stored that
can be used for authorizations. Asset and service providers use this API to publish
‘offers’ and ‘agreements’ (see Section 2.3.2) in the Policy Store so these are part of the
collection of policies that are enforced on an ecosystem and/or dataspace. Users given
the right authority may publish policies that interpret laws, regulations and consortium
agreements (see Section 3.2).

5. The accountability API. For the purpose of accountability, parties should keep track
of logging information in order to provide audit trails of events and transactions that
take place on their infrastructure as part of data exchange process steps. This informa-
tion is provided to the Process Notary through the accountability API together with
(other) monitoring information. The information held by both notaries form the audit
trails for complete data exchange processes. Note that this is a controversial feature as
some of the logging information may be sensitive (e.g. reveal company secrets). Fur-
ther research is required to see whether these logs can be made available only under
certain conditions, reusing the existing components of the architecture for enforcement.

6. The auditor API. The Auditor API gives access to the logs held by the Process and
Enforcement Notaries. Only users with special authority should receive authorization
to access these logs. This information can be used for manual auditing or (partially)
automatic auditing. Future research is required for understanding the extent to which
auditing may be automated based on the available logs and its use for accountability.

Table 2.2 gives an overview of the APIs of the control plane connector together with relevant
examples of implementations and information models.

To improve adaption, we strive to provide a “standard data connector” that provides
basic API implementations to the shared services and can be easily extended and specialized
for provision by data exchange, dataspace or ecosystem providers. This approach is inspired
by various European initiatives in which data connectors are being developed (e.g. for
IDSA [14]). Ideally, AMdEX supports these data connectors and, vice versa, are the AMdEX
connectors supported by other data exchange initiatives.

27

Connector API Example standard Example implementation
Trust API OpenAuth iShare
Authorization API XACML, eFLINT AMdEX policy reasoner
Catalog API DCAT Dexes Catalog API
Policy store API ODRL, eFLINT Keyrock policy enf., Karels 2023 [21]
Accountability API – –
Auditor API – –

Table 2.2: An overview of the conconnector APIs with examples of comparable implemen-
tations and relevant languages, standards and information models.

2.4.4 Dataspace interoperability

Interoperability defines how data and ‘trust’ can be exchanged between various parties and
components. For AMdEX, the separation of the actual data exchange and the control and
governance process that supports the exchange are essential (see the AMdEX principles
in Section 1.3.1). AMdEX does not handle data (only meta-data) and, as such, AMdEX
developments on the control and governance processes (as is reflected in the focus of this
document). Instead, dataspace (and ecosystem) members handle the actual data exchange.
In other words, for AMdEX interoperability is primarily about how the exchange of “trust”
between parties, dataspaces, and ecosystems. Trust is concretized through the preservation
of sovereignty (ownership, authority) and control (the ability have an influence) as assets
and services are made available across dataspaces and ecosystems. Technically, the inter-
connection is realized by the federated nature of the Registry, Catalog and Policy Store
components, as described in Section 2.3 and suggested in Figure 2.5. Chapter 3 gives further
detail about the administration and enforcement of policies, providing a form of sovereignty
and control to dataspace members.

In addition, interoperability is also about the exchange of data and trust with dataspaces
that are outside of the scope of AMdEX, e.g. residing in other European Union member
states. For example, a data provider that is part of an ecosystem in the Netherlands should
be able to give access to its data to a data consumer that is connected to a comparable
ecosystem in Denmark.

The following design decisions have been made with a special consideration on interop-
erability, both within and outside of AMdEX.

1. AMdEX uses open standards for connectors and APIs,

2. AMdEX connectors should incorporate external connectors based on open standards,

3. AMdEX embraces iShare as the European standard for identification and authentica-
tion to enable inter- and intra-dataspace interoperability.

28

Chapter 3

Policy Administration and
Enforcement

This chapter zooms in on the application of ‘policies’ in the AMdEX architecture and the
AMdEX Fieldlab project, and answers the following questions:

• What does AMdEX consider as ‘policies’? What types of policies are in scope?

• Who is responsible for specifying (and selecting) policies? And at which stages of
setting up, maintaining or interacting with a dataspace should this happen?

• What information should policy specifications contain? And in what language can
policies with the required information be formulated?

• How are policies enforced within the architecture? What are different approaches for
doing so? And how do these approaches differ in terms of trust required and control
offered to stakeholders?

• How can policy reasoning be made accountable and auditable?

The answers to these questions provided in this chapter are the result of a coming together
of a multiple lines of theoretical research conducted at the University of Amsterdam (jointly
with TNO) and the practical objectives of the AMdEX Fieldlab project. This ‘coming
together’ has not been completed and future research and experiments are needed to answer
remaining questions. This chapter reflects the state of the discussion towards the end of the
AMdEX Fieldlab project.

3.1 Scope

In the context of data exchange, the term ‘policy’ can simultaneously refer to: (a) the
technical term encountered in the fields of distributed computing, databases, networking, and
cloud computing, and to (b) the social construct with which organizations determine how
members of the organization are expected to behave in certain situations, e.g. organizational
policies and governmental policies. In the technical case, the term policy is referring to a

29

Figure 3.1: The architecture for policy enforcement proposed by the XACML standard [24].

mechanism by which an infrastructure is controlled, most often dynamically, and policies can
be seen as configuration parameters set by actors that are not otherwise capable of controlling
the infrastructure. Typical examples are routing policies, access control policies, resource
management policies, and firewall rules. These kinds of policies tend to be fine-grained,
domain-specific and not widely applicable in other contexts. On the other hand, the social
kind of policies tend to be high-level and regulate the behaviors of human actors rather than
infrastructure components (but they may also be domain-specific). In both cases, policies
are specified in separation from the executive processes in order to maximize adaptability.
One of the goals of AMdEX is to bring the two meanings of the term ‘policy’ together by
explicitly connecting social policies with technical policies that influence behavior within a
technical infrastructure.

A similar motivation is behind the XACML architecture for (attribute-based) access con-
trol [24] shown in Figure 3.1. The architecture explicitly separates the technical means of
enforcing (technical) policies from the administration of (organizational) policies set by an
organization to govern the access to its resources. As a result, policies can be easily adapted
without having to modify the technical infrastructure. Conversely, new enforcement mech-

30

anisms can be introduced to control access to resources without having to modify the way
policies are expressed. Policies can also be migrated to (reused across) other infrastructures
without (much) modification.

The AMdEX architecture follows this approach, with a Policy Store playing the role of
XACML’s policy administration point (PAP), a Policy Reasoner playing the role of policy
decision point (PDP), an Enforcement Orchestrator playing the role of Context Handler, and
both Process Orchestrators, Clearing modules, and Member Nodes (potentially) playing the
role of policy enforcement points (PEPs). Alternatively, or in addition, a member may also
decide to provide their own policy enforcement, for example a data provider hosting a Policy
Reasoner (PDP) to verify access requests to their assets. Besides administering policies as
an PAP, the Policy Store should also provide an API to extract policy sets that are used by
the Policy Reasoner to make decisions on particular cases. For these purposes, policy sets
should be publishable in the sense that they cannot be altered, although possible superseded
by newer, updated versions, and remain available.

The conversion of organizational policies to access control policies is typically performed
by system administrators in close consultation with privacy or security officers, as often
seen in the healthcare domain. This process is typically not formalized and the connection
between the two types of policies may not be explicated. Moreover, besides organizational
policies, access to resources is also regulated by national and international laws and regu-
lations, and temporary agreements can be made between parties that require (temporary)
adaptations to the policies, e.g., in the form of delegations, consent for processing or data
sharing agreements (contracts). The XACML policy language is comparatively low-level and
specific in nature, making it difficult or impossible to express the higher-level, social policies
directly.

At the University of Amsterdam, jointly with TNO, experiments have been conducted
that demonstrate how ‘social policies’ can be formalized in machine-readable fashion. The
taken approach is based on the fundamental normative concepts of the legal scholar Ho-
hfeld [18]. The FLINT language is based on Hohfeldian concepts and can be used to specify
normative documents in a machine readable fashion [8, 7]. The eFLINT language [3] is an
executable variant that enables implementation as a policy decision point (Policy Reasoner).
The eFLINT language has been developed with several important design criteria in mind
that improve policy administration:

• Expressiveness. The language makes it possible to express both technical policies
and social/organizational policies within the same language. Moreover, the two can
be explicitly connected such that system-level decisions are based on higher-level rea-
soning on the normative positions of actors in the system. This property has been
demonstrated ‘in the lab’ using the DIPG use case [2] further discussed in Section 4.2.

• Modularity. Policies are specified as the composition of smaller policy fragments,
maximizing reuse and extensibility of policies. Extensions and compositions can also
be made dynamically, i.e., as the system is running.

• Accountability. The language is rule-based and uses a form of logic programming
(classical AI) that makes it possible to explain policy decisions. Moreover, the language

31

keeps track of executed actions, observed events, and their effects, making it possible
to trace the input used in policy decisions.

Within this chapter, the term ‘policy’ is to be interpreted in the broader sense, encompassing
at least the following types of policies considered to be relevant to data exchange processes:
(inter)national laws and regulations, data sharing agreements, consortium agreements, shar-
ing conditions, and access and usage control policies. This type of generality is hard to
achieve using conventional access control mechanisms. Usage control mechanisms general-
ize access control with policy languages that are significantly more expressive [28]. Usage
control is proposed as a control mechanism in the reference architecture document of the
International Data Spaces Alliance (IDSA) [25]. More information on policy specification
and usage control can be found in Section 3.3 and Section 3.4.

3.2 Administration

Policy administration is the process by which policies are registered, extended1, and selected
for use within dataspaces. The process raises both legal and technical questions, partially
answered by this section.

• Who is responsible for the policies and the decisions made based on the policies? How
can policies be administered in an accountable and reusable fashion?

• What policies (in particular: laws and regulations) should be applied within a certain
dataspace and are relevant to a certain action? Who decides this? How can this be
recorded?

• Via what process are social policies (often legal documents) formalized as executable
policies? And who performs this task?

3.2.1 Policy types

Policies are administered in the federated Policy Store component of the architecture at
different registration levels by different administrators on behalf of authorities. For example,
the owner of a data asset may determine the conditions under which the asset can be used
which are formalized and administered by a data custodian on behalf of the owner. An
overview of different types of policies and their corresponding authorities and administrators
are listed in Table 3.1. The federated nature of the Policy Store and the Catalog make it
possible to register the same asset under different conditions within different dataspaces or
ecosystems.

The policy types can be seen to form a hierarchy (visualized in Figure 3.2) corresponding
to some extent to the hierarchy of the registration levels. Each level introduces details and
specifics as relevant to a particular dataspace, ecosystem or resource and does so in relation to
applicable legislation. For example, the international GDPR privacy regulation is applicable

1For reasons of accountability, policies may not be removed or modified once they have been used in
accountable decision making processes. This topic is discussed in Section 3.4

32

Figure 3.2: The hierarchy formed by policies applied within the AMdEX architecture.

to the scenarios of the DIPG case study (see Section 4.2) and is specialized by the regulatory
document of the DIPG Network consortium. The document determines that, in terms of the
GDPR, the members are jointly considered a joint controller, members can be considered
the controller of specific data assets, and the Dutch Childhood Oncology Group (DCOG),
that operates the DIPG registry, is considered a processor [30].

3.2.2 Policy construction

We consider at least three parties involved in the administration of a particular policy.
Firstly, the authority with the (legal) power to instigate the relevance of a policy to a par-
ticular situation, expressing the policy using natural language in a document with a certain
legal status (e.g., a legislation or contract). Secondly, the experts that formalize the nat-
ural language expression of the policy by forming a legal interpretation of the policy and
expressing it as a technical, executable policy. Thirdly, the administrator responsible for
determining which executable policies are applicable to a certain ecosystem, dataspace or re-
source. This determination is done by registering a policy within one or more Policy Stores,
possibly through the instantiation of policies (policy templates) already registered (see be-
low). These responsibilities may overlap and are highly inter-dependent. For example, the
authority determines when a particular policy is legally applicable whereas the administra-
tor determines applicability at the technical level. As another example, the formalization of
policies requires intimate knowledge about the policies this policy extends or specializes.

The types of policies discussed previously necessarily contain large amounts of legal
knowledge and technical knowledge. Legal expertise is required to interpret legislation,
to formulate agreements and to align these agreements with legislation and other relevant
policies. Software expertise is required to turn legal interpretations into computational ar-
tifacts that are consistent, non-ambiguous, explicate inter-dependencies, and can be used
for effective reasoning. The construction of policies is therefore inherently a collaborative
exercise between legal and software experts, but also between (legal and software) experts
responsible for different types of policies within the policy hierarchy; the person formaliz-
ing a consortium agreement may not be the person formalizing the legislations on which it
depends.

Policies are expected to be frequently revised and multiple, alternative versions may co-
exist (e.g., for archiving and accountability purposes, or because multiple interpretations

33

Authority Policy type Administrator Mechanism Registration
level

(Inter)National
authorities

Legislation ? Formalized to be reused across
ecosystems and dataspaces

Universe

(Inter)National
authorities

Sector-specific
legislation

Ecosystem
provider

Formalized to be reused across
the dataspaces of this ecosystem

Ecosystem

Ecosystem au-
thority

Ecosystem
agreement

Ecosystem
provider

Policies established to govern all
dataspaces within the ecosystem

Ecosystem

Dataspace au-
thority

Consortium
agreement

Dataspace
provider / cus-
todian

An agreement between consor-
tium members that determines
archetypes of data exchange and
dataspace-level conditions

Dataspace

Data/Resource
owner

Resource con-
ditions, offers

Data producer /
service provider
/ custodian

Conditions on the use of a par-
ticular resource, set as part of an
offer and turned into an agree-
ment when the offer is accepted

Dataspace

? Agreements,
transactions

Notary (Auto-
mated)

Created once a request has been
made, offers accepted, and nec-
essary clearing checks performed

Dataspace

Data/Resource
owner

Dispute Data producer /
service provider
/ custodian

Perceived non-compliance of a
transaction can be reported

Dataspace

Table 3.1: Overview of different types of policies in the AMdEX policy hierarchy with the
(legal) authorities determining the policies and the administrators formalizing and registering
these policies at a certain registration level.

can be given). Policies cannot be deleted or modified; revisions happen by publishing new
fragments that supersede other fragments from a particular moment onward. This decision
promotes accountability and is needed to preserve the consistency of previous offers and
agreements. Moreover, laws are revised in a similar fashion, as is reflected in the design of
wetten.nl, the website on which Dutch laws are published in a structured and searchable for-
mat. To maximize reuse, policies should be modularized and configurable, e.g., as blueprints
or templates. These requirements demand an expressive policy specification language and a
rich data model for structuring policies, as is further discussed in Section 3.3.

Data Exchange Archetype Templates The observations made in this section show that
the process of policy construction is complex and faceted, and it is unsure what this process
will look like in the long term. Within the AMdEX Fieldlab project, a pragmatic approach
has been taken, defining and applying policies in an ad-hoc fashion depending on the goals of
a particular use case. However, the policies discussed in the context of the AMdEX Fieldlab
use cases and use cases studied by the Data Sharing Coalition2 have been analyzed in order to
extract patterns in data exchange. Following the approaches of Shakeri [29] and Zhang [33],
these patterns have been formalized as so-called data exchange archetypes.

Data exchange archetypes are frequently occurring patterns in the exchange of data as-
sets, algorithms and resources. Figure 3.3 and Figure 3.4 visualize data exchange archetypes

2https://datasharingcoalition.eu/use-cases/

34

wetten.nl
https://datasharingcoalition.eu/use-cases/

Figure 3.3: Exchange archetypes taken from [29]. TTP abbreviates ‘trusted third party’.

of exchange processes involving one3, two or three parties. The archetypes contain enough
details to be useful as policies for configuring a data exchange infrastructure, although de-
tails specific to a particular use case or dataspace are omitted. The missing details are to be
provided as part of an instantiation process. The archetypes are formulated once and for all
as templates with certain parameters, such as which party plays the role of data producer
or compute provider. The parameters are instantiated when an archetype is applied for a
particular request within a dataspace.

A collection of data exchange templates have been formulated in the eFLINT language
and is available online4. The collection covers the archetypes of Figure 3.3 and Figure 3.4.
Templates for archetypes, sharing agreements, and data sharing conditions are to be made
available as part of the AMdEX Framework and can be offered by dataspace or ecosys-
tem providers to simplify the policy administration process for members. A consortium
determines which archetypes can be applied within the dataspace of the consortium. Data
producers and service providers can further restrict within which archetypes their assets and
resources can be used and may set additional conditions they may wish to put in place.
The repository containing the archetype templates also demonstrates how the templates are
instantiated by applying the templates to use cases of the Data Sharing Coalition.

3The ‘private operation’ archetype does not really describe an exchange process.
4https://gitlab.com/eflint/data-exchange-templates

35

https://gitlab.com/eflint/data-exchange-templates

Figure 3.4: Additional archetypes involving three parties.

Policy composition Based on these ideas, the process by which policies are composed
and applied within a dataspace contains at least the following steps:

1. Interpretation and formalization of normative sources such as legislation, AMdEX’
rules of engagement, ecosystem rules, agreement templates, archetypes templates and
condition templates. The resulting policies are abstract in the sense that certain details
are omitted and are to be specified in the later steps.

2. Creating a consortium agreement by selecting a sharing agreement template and
selecting the templates for applicable legislation, archetypes and conditions. Details
of the consortium and its members are provided to instantiate the templates, e.g.,
determining which member plays which role in an archetype and setting the parameters
of conditions (e.g., the length of an embargo period).

3. Creating usage conditions as part of the offering of assets or services. This is achieved
by specializing condition templates. The chosen conditions must be consistent with
the consortium agreement. These may be pre- and post-conditions.

4. As part of auditing, the trace of a data exchange process may be checked for compli-
ance against the original and additional or alternative policies (interpretations).

A data model is required for the described composition of policies, as well as a modular
policy specification language that supports templating.

3.3 Specification

As discussed in the previous section, many policies, and policies of different kindes, are
expected to be relevant to a dataspace or (the steps of) a particular data exchange process
within that dataspace. For various reasons, these policies should be specified as separate
policy fragments. Each fragment may be set by a different authority and registered by a
different administrator. Individual policy fragments should also be linked to the legal text
of which it forms an interpretation, promoting transparency and accountability. Different
versions of legal texts and policy fragments may have to co-exist as outdated versions may

36

have to be maintained for accountability purposes. The following information model for
policy administration accounts for these situations.

• A source fragment is a legal text set by a certain authority, has a legal status, and
has a certain time period of validity. Examples are sections, articles, members and
clauses in laws, regulations and sharing agreements. A source fragment has zero or
more source fragments as children forming a tree structure, e.g. the members of an
article or the articles in a section. A source fragment can have zero or more alternatives
set by different authorities (e.g. different jurisdictions) or administrators (e.g. different
interpretations), or with a different period of validity.

• A normative source is a nominated source fragment and a selection between alter-
natives of the descendants of the source fragment for which holds that:

– for every fragment exactly one alternative is selected,

– all the selected fragments must be set by the same authority, and

– there must exist a time window in which all the selected fragments valid.

A normative source can be published in the sense that it remains available without
alteration as a coherent policy set applicable to specific scenarios.

• A normative template is a normative source in which some concepts are left abstract
– referred to as parameters – and to be concretized the moment the normative source
is applied to a particular case, e.g. which parties play the role of buyer and seller in a
purchasing agreement. Some open terms may remain abstract.

• A policy fragment is a policy specification written in a particular policy language,
linked to a particular version of a source fragment for which it forms the formal inter-
pretation, may be versioned, and has dependencies on other policy fragments.

• A policy set is a collection of policy fragments for which one can determine:

– whether all the policy fragments have been written in the same language,

– whether all the dependencies of all the policy fragments are included in the set,

– whether the policy fragments together are unambiguous and logically consistent,

– and all the linked source fragments together form a normative source. If this is
the case, the policy set is referred to as a normative policy.

• A policy template is a normative policy formalizing a normative template. An
instantiation mechanism should concretize the parameters and transform the policy
template into a normative policy.

The relations between policy fragments, policy sets, source fragments, and normative
sources are expected to be very complex in practice. The full process by which these relations
are maintained for ecosystems, dataspaces and resources has not been determined yet nor
validated in practice. Legal and software expertise will have to come together in this process,
as well as representatives of multiple organizations with different roles and interests.

37

Category Requirement Description

Abstraction Levels of abstraction Specifications can be written at different levels of
abstraction, e.g. social and system policies.

Concretization A concept can concretize another concept, e.g.
‘storage’ concretizes ‘processing’ from the GDPR.

Inheritance A concept can inherit from another concept, e.g.
the ‘store asset’ action inherits the pre- and post-
conditions of the ‘process asset’ action.

Templating A policy specification can have parameters that
can be replaced by concrete values.

Composition Modularity Policy specifications can be written as (small)
composable and reusable elements.

Well-formedness A composition of policy specifications can be an-
alyzed to determine it is well-formed.

Logical consistency A composition of policy specifications can be an-
alyzed to determine it has conflicting elements.

Priority mechanism A mechanism is available to determine priority
when elements of a composition are conflicting.

Versioning A policy specification can have alternatives.

Legal concepts Power Actions can affect the permissions, prohibitions
and obligations of (other) actors.

Legal obligation The expectation that an action should be per-
formed in the future or a certain state is to be
maintained can be specified.

Explicit conflicts Explicit permissions and prohibitions can be si-
multaneously assigned (logical inconsistency).

Violation responses The consequences of violations can be expressed.
Open terms A concept may be left open for later, context-

sensitive interpretation (see Concretization).
Source references A policy specification can be linked to the legal

document interpreted by it, e.g. a law or contract.

Table 3.2: A collection of requirements on policy specification languages.

Requirements on policy languages The information model does not prescribe a par-
ticular policy language for the policy fragments and supports recording policy fragments
written in different languages. However, not every policy language is equally suited for
AMdEX purposes. Based on the scope of policy administration and enforcement discussed
in the previous sections and the information model described above, requirements on policy
specification languages have been identified and listed in Table 3.2.

The requirements related to abstraction and composition are predominantly inspired by
object-oriented programming (abstraction, modularity) and declarative (logic) programming
practices (consistency and priority) and follow also from the information model.

The requirements related to legal concepts are based on legal theory and research into
the representation of legal concepts in logic programming and automating compliance in
general. The appeal of Hohfeld’s theory on fundamental legal concepts is that the framework

38

is action-oriented on the one hand and the particulars of the legal concept of power and duty
on the other hand. The power concept associates with actions of particular actors certain
consequences: the modification of normative positions held by (other) actors. The normative
positions of an actor are the obligations, prohibitions and permissions of an actor. Legal
obligations can be of two kinds: the obligation to act (referred to as a ‘duty’) and the
obligation of fact. An actor holding an obligation of fact must preserve the truth of a certain
fact, e.g. to ensure that only anonymized or encrypted data is stored. An actor holding an
obligation to act (duty) must perform a certain action5 in order to satisfy the duty, typically
before a certain deadline is reached.

A second important aspect of Hohfeld’s theory is that all normative positions create a
so-called normative relation between actors: between an actor wielding a power and the
recipients affected by the performance of the associated action (i.e. having their normative
positions changed) and the holder of a duty and the claimant that typically stands to
benefit from the performance of the associated action. As discussed in Section 3.4, normative
relations can contribute to accountability and can serve as a coordination mechanism.

Candidate languages The eFLINT language has been designed with several of the
listed requirements in mind and is therefore a good candidate for usage in AMdEX. In par-
ticular, eFLINT is based on Hohfeldian concepts. Specifications are highly modular and
extensible, making it possible to reuse policy specifications across applications and to con-
cretize concepts left abstract (parameters or open terms) in other, inherited specifications [2].
Specifications can be written at the level of abstraction of the source fragments they for-
malize and well-formedness checks are available on compositions. A model checker has been
developed for eFLINT that can be used to find possible logical inconsistencies [12]. Perform-
ing prohibited actions or not satisfying duties (in time) result in violations. Such violations
can grant powers to actors to act on the violation. The associated actions of these powers
may have normative consequences. As such, it is possible to specify responses to violations
as well as the consequences of these responses.

However, not all criteria are met. In particular, eFLINT does not have its own module
system. And contrary to the FLINT language on which it is based [8], eFLINT does not
maintain references to source fragments. For both aspects it relies on an external mechanism
for administering eFLINT fragments as modules and linking these with source fragments.
The information model described in this section complements eFLINT in these regards. An
example implementation of the information model can be found in [21].

As opposed to Deontic Logics such as found in [16], prohibitions are not explicated and
are instead inferred from the absence of permissions. Access control languages typically
also have rules that explicitly determine ‘permit’ or ‘deny’ decisions. As a result, eFLINT
specifications cannot produce conflicts between permissions and prohibitions, which is a
limitation from a legal perspective, as in legal/social practice such situations can occur.

The XACML policy language is highly modular; policies are formed by rules and
can be gathered (composed) in policy sets [24]. Although modular, there are no abstraction
mechanisms available in the XACML policy language. Templating may be possible using
generic templating engines. Explicit conflicts between ‘permit’ and ‘deny’ decisions can

5Or one of a set of alternative actions.

39

occur and policy sets need therefore be associated with a priority algorithm that determines
precedence between rules. Other legal concepts are not directly part of the language. Note
that ‘obligations’ in access control literature, including on XACML, are not always equivalent
to legal obligations. In the context of XACML, an obligation is an operation that needs to
be performed by an enforcement point alongside the execution of a policy decision. Such
obligations are not legal obligations in the sense that they describe an obligation held by an
actor and do not refer to the expectation to act in the future or to maintain a certain state.
The combination of a language and enforcement mechanism that supports usage control can
potentially represent legal obligations.

The Open Digital Rights Language (ODRL) [19] has several ideas in common with
Hohfeldian legal theory. In particular, normative positions can be associated with two actors,
an assigner and an assignee, and normative positions are associated with actions. The
information model of ODRL mentions obligations, duties, permissions, and prohibitions. The
power concept is not explicitly mentioned, but depending on the enforcement mechanism
employed by a user of ODRL, the ‘grantUse’, ‘consequence’ and ‘remedy’ concepts can
potentially be used to realize powers and to express the consequences of violations. The
duty concept is ambiguous in the sense that it refers both to a concept more akin to a pre-
condition and to a Hohfeldian obligation to act [22]. Policies can also be composed and a
basic form of inheritance between policies is supported, i.e. inheriting the rules of a parent
policy. The meta-data on ODRL policies also includes a ‘isReplacedBy’ property, enabling a
form of versioning. The ODRL language can be extended with so-called ‘profiles’ that extend
the vocabulary and associate additional semantics to the terms of the new vocabulary.

ODRL inspired the AMdEX architecture with its usage of ‘offers’ and ‘agreements’.
ODRL rules are part of a policy set that is offered by an assigner and may be accepted
by an assignee to form an agreement. Sharing conditions in AMdEX are used in a simi-
lar way: a sharing condition template is instantiated by a resource owner when making a
resource available as an offer. A consumer requests resources that, after having their condi-
tions enforced in clearing, results in an agreement ready for processing (see Section 2.3 and
Figure 2.7).

A more detailed, future study is required for ODRL, (novel) ODRL profiles, and other
policy languages, in particular languages for usage control [28] such as the Obligation Specifi-
cation Language (OSL) [17], its successors, and LUCON, the language used by the IDSA [20].

3.4 Enforcement

The division between policy specification in the previous section and policy enforcement
in this section follows the notion that an access control model is the combination of a
policy language and a mechanism to enforce policies within a software system. This section
discusses how policy information is gathered and exchanged, and how policy decisions are
enforced. Access and usage control models have been analyzed to extract requirements on
monitoring and enforcement which are part of Table 3.3. The legal requirements have been
added in support of the legal concepts discussed in the previous section and the principles
of ‘accountability’ and ‘human-in-the-loop’ (see in particular the ‘external observations’ and
‘ex-post’ requirements).

40

Category Requirement Description

Monitoring Actions and events Relevant events and actions can be observed.
Attributes (Changes to) Attributes of the system, actors and

resources can be observed.
Expected actions The mechanism keeps track of actions that are ex-

pected to be performed (may result in violations).
Invariants The mechanism keeps track of whether certain in-

variants are maintained (may result in violations).
Continuous monitoring Monitoring is continuous or at small intervals.
External observations Users can bring in information and observations

about events and actions external to the system.

Enforcement Interception Actions with enforceable pre-conditions can be
prevented following a policy decision.

Roll-back Actions with enforceable post-conditions can be
undone following a policy decision.

Interruption Actions can be interrupted and undone following
a violation caused by the action.

Effects Actions and events can affect attributes in a way
specified by the policy language.

Legal requirements Accountable The decisions made by the mechanism can be jus-
tified, traced and linked to legal interpretations.

Static ex-ante Determine whether an application is compliant
before it is executed, i.e. compliance-by-design

Dynamic ex-ante Violations can be prevented at run-time
Dynamic ex-post Run-time violations can occur and be acted upon

either automatically or through a user-action
Static ex-post Decisions can be (re-)analyzed for compliance,

e.g. given new interpretations or information.

Table 3.3: A collection of requirements on policy enforcement mechanisms.

41

The original UCON usage control model [28] goes beyond access control by allowing
attributes to be mutated as the consequence of actions (‘effects’) and thereby enabling access
to be conditioned by the executed of prior actions. The UCON+ model goes further and
includes the monitoring of ‘continuous events’ [15]. The ODRL language can be used to
express ‘expected actions’ whose fulfillment needs to be monitored [19].

The ability to monitor expected actions and invariants makes it possible to monitor
compliance with obligations of fact (invariants) and obligations to act (expected actions).
The recorded expected actions (and their deadlines) can be compared with observations
about executed actions to determine whether violations have occurred. Ex-post mechanism
are needed to enforce legal obligations: obligation holders can be pro-actively encouraged
(e.g. reminded) to fulfill their obligations, but responses (penalties, remedies) to violations
may ultimately be necessary.

In Section 2.1 a distinction is made between pre- and post-conditions, referring to con-
ditions on assets/resource that can be checked before or after the asset/resource is accessed
or used. The post-conditions can be further distinguished as conditions that:

(a) can be enforced (directly) and automatically,

(b) must be enforced at some future moment in time,

(c) must be upheld continuously, or

(d) cannot be enforced automatically within the system at all.

Examples are:

(a) the application of algorithm X must yield an output with K-anonimity > 5,

(b) when my dataset is used as part of an analysis, I must be notified within 24 hours,

(c) the result of analyzing public dataset X must remain publicly available, and

(d) the owner of dataset X must be acknowledged when an analysis using X contributes
to a published paper

Post-conditions of type (a) are enforced using the ‘roll-back’ control mechanism. The post-
conditions of types (b,c,d) correspond to (legal) obligations of fact or to act and require ‘ex-
post’ control. In addition, type (b) requires monitoring expected actions, type (c) requires
monitoring invariants, and type (d) requires external observations. In case of the example,
a data owner may observe that a party they have shared a data asset with has recently
published a paper without acknowledgments whose results are expected to be based on the
shared asset. By bringing this information into the system, a violation can be raised and
acted upon. Note also that example (a) is an example of a policy that has information as
input that is derived from the contents of a data asset. Conditions for which this is the
case can only be enforced in the data plane as the control plane will not have access to the
contents.

In Section 2.3.3 enforcement is discussed as occurring at several moments during the
lifetime of a data exchange process, as part of offering, clearing, processing, and

42

auditing. During offering, additional policies may be set that are specific to the offered
asset or resource. These policies are then composed with the relevant higher-level policies
(see Figure 3.2) and the composition is checked for well-formedness and logical consistency.
The policy language is expected to support such checks (see Table 3.2).

When requesting the execution of a data exchange process, all policies relevant to the
request are gathered and handled through clearing, resulting in a plan of concrete processing
steps. The plan is checked for compliance with the applicable policies (‘static ex-ante’,
Table 3.3). At this stage, not all conditions can be enforced, as some may require information
that is only available at run-time, during processing (e.g. the K-anonimity of a data asset
produced by processing). Moreover, policy information can be dynamic and may change as
the plan is executed.

For these reasons, enforcement is also required in the processing stage (‘dynamic ex-
ante’ and ‘dynamic ex-post’). The formulated monitoring and ex-post enforcement require-
ments have also been inspired by run-time verification [1]. Several of the difficulties relating
to run-time verification in the context of decentralized, distributed systems are explained
in [10]. In particular, the enforcement mechanism promoted here is inherently intrusive in
that observed violations may influence the behavior of system being monitored.

As a data exchange process is executed, logs are created and maintained by the Notary
components. During auditing the logs can be analyzed in a form of off-line run-time veri-
fication or compliance checking [32]. Such ‘static ex-post’ checks are particularly important
during disputes, which are typically caused by disagreement over the (validity of) policy in-
formation or the (interpretation of) policies used during decision making. Disputes can also
be raised in response to external observations. A powerful Auditing component thus makes it
possible to reason about past data exchange processing using additional policy information,
additional (external) observations and against alternative interpretations of policies.

Acquiring policy information The enforcement described in this section relies on:

• the implementation of control mechanisms to enforce (pre- and post-)conditions that
can be localized either in the data plane or the control plane,

• the implementation of monitors to provide policy information to reason about the
satisfaction of conditions, and

• one or more Enforcement Orchestrators that mediate between the Policy Reasoner
and the control mechanisms and monitors (playing the role of Context Handler in
Figure 3.1).

The implementation of a system with such a powerful form of enforcement faces several
challenges. Firstly, a condition may express that “during processing, no networking com-
munication is permitted”, but the enforcement of such a condition requires the ability to
monitor (the existence of) network activity and the ability to interrupt processing once net-
work activity is observed. In general, member nodes and exchange providers may not provide
the control mechanisms to enforce the conditions expressed in policies. (The ‘external ob-
servation’ requirement serves as a mitigating fall-back.)

43

Secondly, even when the required monitoring and control mechanisms are available, the
information provided by the monitor, the condition on which the decision is based, and the
control mechanism executing the decision need to share a vocabulary and semantics (e.g.
use and apply the same meaning to the term “network activity”). Semantic web6 and linked
data techniques can be applied to explicate such vocabularies (or more generally: ontologies)
and to ensure “speaking the same language”. However, this raises the implementation effort,
as local conversions may be needed to convert internal information to information structured
according to the shared vocabulary. Vocabulary-independent approaches for querying linked
data have been explored [11].

Accountability and the sensitivity of policy information The ‘accountable’ require-
ment is formulated in support of the auditing processes envisioned for AMdEX dataspaces.
The prior discussions show that policy information used in policy decisions can be associated
with different entities in a system – actors/users, assets/resources, system components, and
processing steps – and can even come from outside the system. For accountability purposes,
this information should be recorded and remain available for future auditing. However, some
information may be sensitive, especially if it relates to human actors (such as consent), as-
sets/resources or processing steps (e.g. execution logs). As an example of the latter, consider
conditions that relate to the processing performed by a compute provider. These may be
enforced locally based on information obtained by monitoring the execution of an algorithm.
For accountability, (parts of) execution logs may have to be made available to an auditor.
Compute providers may generally not be willing, if the logging information is considered to
be sensitive.

Given their sensitivity, this kind of information should be treated as data assets, which can
only be used under certain conditions (e.g. for the auditing purpose). It follows that AMdEX
will not processes these assets, as AMdEX only processes meta-data (see the principles of
Section 1.3.1). A comprehensive solution for accountability and auditing must thus be found
within the consortium. Dataspace members should agree on the granularity and level of detail
with which the information is stored, by which member(s), and under which conditions. An
auditing and accountability framework that addresses these matters is subject of future
investigations.

In [34], an approach is introduced in which policies are used to enforce a form of ac-
countability. In the approach, the meta-data of a data asset contains policies that nominate
‘auditors’ – components in the system that need to sign off on actions performed on the
data asset. As a result, the auditors are guaranteed to be notified about these actions, can
reason about their compliance, and log the actions. The approach can be used to ensure
that both actors involved in the action associated with a Hohfeldian, normative relation (see
Section 3.3) are notified. This way, the claimant of a duty will be informed of the existence
of the duty and can hold the holder of the duty accountable when the duty is violated.

6http://www.w3.org/DesignIssues/LinkedData.html

44

http://www.w3.org/DesignIssues/LinkedData.html

Chapter 4

Use Cases

4.1 University Personnel – UNL WOPI

The association University of the Netherlands1 (UNL) is an umbrella organization acting on
behalf of the universities of The Netherlands. The UNL collects data about the employees of
the universities for the benefit of the universities and to report to the Ministry of Education.
This process is known as WOPI (“Wetenschappelijk Onderwijs Personeel Informatie”). The
universities have made agreements on the type of data shared and for which purpose. The
existing agreements are made available at Edustandaard2. The challenge of this use case is
the trade-off between the privacy of university personnel and the kinds of analyses that are
required. Some analyses, after all, require data points at the level of individuals and cannot
(easily) be performed on aggregated data, such as linear regressions. Another trade off that
is between the control achieved through manual intervention and the efficiency of automated
decision making. The goal of the AMdEX-UNL use case is investigate these trade-offs and
to see whether the compute-to-data and third-party computation data exchange archetypes
can offer solutions that are feasible from organizational and technical perspective.

The solutions are expected to meet the following requirements :

• The universities and the UNL should have an equal information position; both the
universities and the UNL can request data exchange in equal fashion.

• The UNL can continue to report to the ministry on behalf of the universities; the
information the UNL can acquire should be sufficient for producing the reports the
ministry expects.

• Any conditions about offered data, shared data (such as regarding aggregation levels),
and the level of detail at which the UNL can report to the ministry are recorded
transparently.

The solutions rely on the following assumptions:

1https://unl.nl
2https://edustandaard.nl/standaard_afspraken/definitieafspraken-personeel-universiteiten-wopi

45

https://unl.nl
https://edustandaard.nl/standaard_afspraken/definitieafspraken-personeel-universiteiten-wopi

Figure 4.1: Scenario 1 of the UNL use case involves two data analysis phases and an ac-
cumulation phase. The local results (phase 1) are obtained by executing a received query
(alg) and are sent to the requesting party (UNL, in the example). The requesting party
accumulates the results and executes the second query on the joint results (phase 2).

Member User Role Component
UNL analyst(UNL) data consumer / al-

gorithm provider
consumer node

University X analyst(X) data consumer consumer node
custodian(X) asset provider /

compute provider
compute node

Table 4.1: The different users, roles and architecture components associated with the mem-
bers of the UNL consortium. The consortium consists of a number of universities and the
UNL association.

• The universities have agreed on a shared format for structuring WOPI-data and a
shared understanding on how the fields are populated (e.g., use the same categories in
the same way).

• The universities are willing and able to execute queries on their local WOPI-data.

The first assumption significantly simplifies the data processing required as the algorithms
can run at the various sites without pre-processing of data. The second assumption is
necessary for the compute-to-data concept.

The University of Amsterdam has developed a prototype that demonstrates the princi-
ples, advantages and disadvantages of compute-to-data and third-party-computation. The
prototype makes it possible for data analyst and data custodians at the universities to exper-
iment with these forms of data exchange and the aforementioned trade-offs. The experienced
gained from interacting with the prototype is intended to provide input into the formation
new agreements on WOPI-data processing. The following subsections describes the user
scenarios realized by the prototype.

46

Registry Catalog

data owner

University X
:compute node

submit meta-data register

offer data asset

offer compute resource

resource owner

submit meta-data
offer synthesized data asset

UNL
:consumer node

reregister

Figure 4.2: A sequence diagram showing the interactions between users and technical com-
ponents during the onboarding of a university and of the UNL.

4.1.1 Scenario 1 – Manual Approval

Users and roles In the first usage scenario, a data analyst working for a consortium
member submits an algorithm (an SQL query) that will be sent to be applied to local
WOPI-data of one or more universities. A data custodian at a university has the power
to inspect the algorithm, to decide to apply the algorithm, and to decide, after inspection,
whether the results can be sent in return to the analyst. When results of multiple universities
are sent back, the local results are accumulated and the joint results can be further analyzed
(see Figure 4.1) by the analyst. Following from the first requirement, each consortium
member has the ability to submit data processing requests (i.e., to act as a data consumer).
All data providers (the universities) are able to determine whether to accept such requests.
The UNL itself is not a data provider, but, following the second requirement, can make data
processing requests. Table 4.1 lays out the consortium, the users, the roles they perform and
the technical components required for the UNL dataspace.

Technical solution The sequence diagram in Figure 4.2 shows the onboarding process
during which member nodes are registered in the Registry. Every university offers two
data assets and their compute resource by submitting meta-data about these services to the
Catalog. The first dataset is the WOPI-data of the university. The second data asset contains
synthesized data produced using the WOPI-data. The dataset is produced by replacing
personal information with synthetic data such that the dataset displays similar statistical
properties as the original when used in analyses. The solution assumes the algorithm for
data synthesis is agreed upon by the consortium and has been made available outside of the
control of the AMdEX infrastructure. If desired, synthesis can be added as a processing step
by applying a particular synthesis algorithm registered in the Catalog. The UNL registers
its consumer node in the Registry and does not offer any services in the Catalog.

The sequence diagram in Figure 4.3 shows the interaction between the users and technical
components that realize the described scenario. In the example, the analyst of the UNL
requests the data processing, but the process can also be initiated by university analysts,
in which case the UNL need not be involved. The request created by the analyst selects
scenario 1 as a template and selects which universities’ data is being requested by choosing
assets and providing a role assignment, i.e., the selected universities are assigned the role
of compute provider. The ‘compute’ message sent by the Process Orchestrator is a request

47

UNL
:consumer node Catalog Process

Orchestrator
University X

:compute node
University Y

:compute node
University Z

:compute node

submit query

kinit request
init transaction

offer query

compute
compute

compute

exchange query

custodian(X)

approve

custodian(Y)

approve

custodian(Z)

disapprove

send local results

exchange query

send local results

exchange query

completed

completed

completed

analyst

retrieve data

Figure 4.3: A sequence diagram showing the interaction between users and technical com-
ponents for scenario 1 of the UNL use case in which data custodians give approval based on
an inspection of (the results produced by) the query provided by the data analyst.

rather than an instruction; the application of the query to the local WOPI-data is initiated
by the custodian. In the next scenario the Process Orchestrator instructs the compute node
to perform the processing, possibly without explicit approval of the custodian. Note that
the query and the data assets are exchanged only between nodes in the data plane.

The diagram is simplified in that confirmation messages about sent/received assets from
member nodes to the Process Orchestrator are not (all) shown and in that the notary com-
ponent has been omitted. No clearing component is required in this scenario. The local
processing step is executed manually – the custodian retrieves the query, inspects it, option-
ally applies it, and after inspection of the results, decides whether to send the results to the
consumer. The accumulation of local results and the second phase of the analysis are not
shown as they are performed by the data analyst without involvement of other components
and members of the dataspace. In the prototype the accumulation is performed automati-
cally by the implementation of the consumer node. The node runs an interface in which an
analyst can use an interactive query builder to build an SQL query for submission (phase 1)
and for performing an analysis on the accumulated results (phase 2).

Reflections The parties involved in the case agree on a schema for WOPI-data (first
assumption) and on individual queries to be executed. An important difference between
the two is that the former is infrequently (at most once per year) and the latter can be
done frequently, namely once for every request through the discussed approval process. This
enables data analysts to submit a plethora of queries (throughout the year) depending on
their specific needs.

Contrary to the existing WOPI-practices, the solution offered by the prototype does
indeed give an equal information position to all participants (first requirement). (Assuming
the data custodians actly fairly, i.e. do not discriminate against a particular member.) As
a practical consequence, universities can benefit from available WOPI-data by performing
analyses and use the extracted information to inform their policy decisions.

48

In Figure 4.3, the custodian of University Z has disapproved the request. As a conse-
quence, the analyst only receives the processing results of two universities. This observation
raises the question whether an agreement can be processed if not all parties agree and par-
ticipate. This decision can be seen as a parameter of the applied template and is to be
determined by the consortium. A related question is whether custodians should be made
aware of the decisions of other custodians as this may influence their decision. The relevance
of this question is best exemplified by looking at the extreme case in which all but one cus-
todian disapprove. In this case the analyst will gain information specific to one university
and the custodian of that university may not have approved the request if they were aware
this was going to be the case.

The interface of the prototype makes it possible for the analyst to build an SQL query for
submission interactively. This query can be tested on the local data to ensure it delivers the
expected results before submitting it in a request. In some cases it may be desirable to test
the (second) query on the dataset distributed across partners. Such a debugging process is
common in data analysis, as it is in general-purpose programming. However, we do not want
to include the manual intervention of data custodians in the debugging process of a data
analyst as this is frustrating for both parties: the custodians may receive a lot of requests
and the analyst may have to wait frequently and extensively. The next scenario describes
how we experimented with the usage of synthesized data in requests that are automatically
approved, streamlining the debugging process.

4.1.2 Scenario 2 – Automatic Processing and Clearing

In the previous scenario, the compute step is executed by the data custodian, giving the
custodian control over the way the WOPI-data of their university is used. A practical
downside is that manual approval forms a bottleneck in the process, whereas certain analysis
requests may not require manual intervention. For example, the consortium may decide
that queries on synthesized data are safe. To enable the system to adapt to the type of
data that is requested – real or synthetic – the approval step should be handled by the
AMdEX infrastructure. In solution visualized in Figure 4.4, the Enforcement Orchestrator
is introduced for this purpose. The Clearing component is introduced to request manual
approval when real data is used. For simplicity, only one university is included in the image
and the interaction of the Enforcement Orchestrator with the Policy Store and Reasoner are
omitted. The assumption is that before the request has been initialized, the consortium has
registered an agreement in the policy store that determines that requests involving original
WOPI-data require manual intervention whereas requests involving synthesized data do not.

The Process Orchestrator first gathers permission from the Enforcement Orchestrator
before instructing the university to commence processing. In this example, real data is
requested and the Enforcement Orchestrator asks Clearing to gather manual approval. The
Process Orchestrator will only send the compute instruction when the processing is approved
by the custodian and this fact is communicated as a permission to the Process Orchestrator.
If synthetic data was requested instead, the Enforcement Orchestrator would inform the
Process Orchestrator about its permission without the interaction with Clearing.

49

Clearing University X
:compute node

init transaction

Process
Orchestrator

Enforcement
Orchestrator

UNL
:consumer node

compute permitted?

manual permission required
approve?

exchange query

custodian(X)

approve

aapproved
apermitted

compute
completed

send results

completed
send local results

Figure 4.4: Alternative solution in which an Enforcement Orchestrator is used to determine
whether manual intervention is required. If so, the Clearing component gathers the required
approval from data custodians. The interaction of the Enforcement Orchestrator with the
Policy Store and Reasoner are omitted.

Reflections In the prototype described, a fixed synthesis algorithm is used that is assumed
to be agreed upon by the consortium partners. The synthesized dataset is offered in the
Catalog together with the real dataset. The synthesis algorithm is applied locally without
involvement of the AMdEX infrastructure which is therefore unaware of the algorithm applied
and is unable to verify whether the dataset is indeed synthesized (and does not contain
personal data). An alternative is for the UNL (as consortium representative) to offer a
synthesis algorithm in the Catalog. In this way, the AMdEX infrastructure can be used
to enforce the proper synthesis of data. For example, the template for the synthesized
data request can be modified to include the compute step in which the synthesis algorithm is
applied. (Alternatively, this compute step can be part of the on-boarding process, potentially
avoiding some overhead.)

To avoid the transfer of the original data, the synthesis algorithm is to be applied locally
by the compute node of the university. A mechanism may then be desired to verify that the
result produced by this compute step is indeed the result of the (successful) application of the
synthesis algorithm. One option is for an auditor to verify this by attempting to reproduce
the synthesized dataset using the original dataset and the synthesis algorithm. This solution
implies that the auditor has the right to access the original dataset, the synthesized dataset,
and the algorithm. Furthermore, this solution implies that the synthesis algorithm can be
re-played (e.g., using a seed to steer the internal pseudo-random process). This example
demonstrates the importance of logging meta-data and in some cases also the archiving
of (data and algorithm) assets. The latter reveals a fundamental trade-off in the design
of the AMdEX approach: if AMdEX does not process (data) assets, then validation of the
processing steps using the assets themselves must happen outside the AMdEX infrastructure.
This observation underscores the importance of dispute resolution and external auditing

50

processes. Other options are available though. For example, the consortium can involve a
storage provider, storing encrypted assets in support of auditing/validation processes. In this
model, access permission implies receiving a key that can be used to decrypt an asset. Such
solutions have been investigated and employed in the context of secure cloud computing [26,
23] and homomorphic encryption can be used to perform computation on an encrypted asset
without decrypting the asset first.

The company BlueGen.ai3 provides data synthesis as a service. Their solution generates
a report alongside every synthesized dataset that determines ‘resemblance’, ‘utility’ and
‘privacy’ statistics, comparing the synthesized data with the original dataset from which
the dataset was generated. The existence of such a report can also be used to verify that
the offered synthesized dataset can be used for automatically approved processing. The
statistics in the report also provide a fine-grained control mechanism, enabling policies that,
for example, determine that the privacy value and utility value of a synthesized dataset must
be above a certain threshold. In a pilot, BlueGen.ai has successfully generated synthesized
data for the UNL use case that scores highly on the aforementioned criteria.

A limitation of the first (and second) scenario is that row-level data may be need to
be produced locally as a result of the first query in order for the second query to be able
to produce the desired results and that custodians may not approve such requests if they
consider it the case that too much personal information would be revealed. The first query
submitted by the analyst may perform some aggregation and/or may perform a projection
(drop some attributes) such that the result of the first query does not contain personal data.
In some cases, it may be possible to determine automatically whether (too much) personal
data is in the result and the consortium may decide that in these cases manual approval
is not needed. In the prototype we have experimented with the concept of K-anonymity,
determining for each individual how many other individuals contribute the same information
in the result set. The number k is the smallest such number and acts as a measure to quantify
the level of risk of revealing personal information associated with sharing the result set. Some
analyses, however, require that the first query provides detailed row-level data. An example
is linear regression. An alternative to denying such request or revealing the row-level data to
the analyst is the use of a trusted third party (TTP). This scenario is explored in the next
subsection.

4.1.3 Scenario 3 – Trusted Third Party

In the trusted third party (TTP) scenario an additional member4 is part of the consortium
with the role of compute provider, the TTP. The TTP is a ‘third party’ in the sense that
as an entity, they are neither a data user or data owner, but instead provide a service. The
TTP is, however, a member of the consortium and the dataspace. Figure 4.5 shows the
exchange of assets in the TTP scenario, with Surf acting as a TTP. The consortium is laid
out in Table 4.2.

In Figure 4.6 the interaction between the Process Orchestrator and the member nodes is
visualized. In this scenario, the request of the analyst instantiates the TTP template and

3https://bluegen.ai/
4One of the existing members could also fulfill the role, e.g., one of the universities or the UNL.

51

https://bluegen.ai/

Figure 4.5: Scenario 3 of the UNL use case involves two data analysis phases and an ac-
cumulation phase. The local results (phase 1) are obtained by executing a received query
(alg) and are sent to the trusted third party (Surf, in the example). The TTP accumulates
the results and executes the second query on the joint results (accumulation). The global
results (phase 2) are sent to the requesting party.

Member User Role Component
UNL analyst(UNL) data consumer / al-

gorithm provider
consumer node

Surf resource owner compute provider compute node
University X analyst(X) data consumer consumer node

custodian(X) asset provider /
compute provider

compute node

Table 4.2: The different users, roles and architecture components associated with the mem-
bers of the UNL consortium for the TTP scenario.

includes the second query. In the previous scenarios the second query was implicit and not
known to the consortium. In the prototype, the custodians of the universities can inspect
both queries to determine whether they approve their participation in the request. In the
diagram these steps are omitted for brevity.

The member nodes that received instruction from the Process Orchestrator communicate
back when they have sent the local processing results. This is important information for the
Process Orchestrator, needed to decide when and whether to send the compute instruction
to the TTP (besides being needed for logging). An important design decision is whether the
compute instruction is sent only when all or more than one universities have sent their local
results or whether one would suffice (see also the reflections paragraph in Section 4.1.1). The
Process Orchestrator also needs to know whether local results were not sent by a university
because the custodian did not approve or because the results have not been sent (yet) for
another reason. In the latter case, the compute instruction may have to be sent again.,

Reflections An important consideration to this scenario is that the TTP needs to be
trusted by the consortium members to appropriately handle the possibly sensitive data.
An alternative solution, not requiring this kind of trust, is to employ the secure multi-
party computation (sMPC) method in which a cryptographic protocol is executed between

52

UNL
:consumer node Catalog Process

Orchestrator
University X

:compute node
University Y

:compute node
TTP

:compute node

submit query

kinit request init transaction

offer query 1

compute
compute

exchange query 1

send local results
exchange query 1

send local results
completed

completed

analyst

retrieve data

offer query 2

computeexchange query 2

send global results completed

Figure 4.6: Alternative solution in which a trusted third party executes the processing step
in which the second query is applied. The data analyst only receives the global results, not
the local results produced at the universities. The process by which the custodians and the
resource owner give approval for the processing is not shown.

dataspace members. The sMPC method is applicable in TTP scenarios without actually
involving a TTP – the cryptographic protocol effectively replaces the third-party.

The different solutions explored in this section have in common that the UNL and uni-
versities have the same capabilities in terms of the submission of data analysis algorithms
(requirement 1). This is achieved in the prototype by providing all analyst with the same
compute node and interface for building queries and submitting requests. The assumption
about a shared data format (assumption 1) has made this significantly easier, although be-
spoke pre-processing algorithm could have been added to each of the compute nodes. The
second requirements requires the UNL to be able to execute sufficiently expressive queries
in order to be able to report to the Ministry of Education. The main limitations of our
solutions in this regard are that (a) the prototype is restricted to SQL queries for algorithms
and that (b) custodians may decide not to make certain local results available if these are
considered to be too sensitive. The TTP scenario was introduced to mitigate the latter.
Most important is that the consortium members come to an agreement about the kinds of
analyses that should be acceptable and that these are aligned with the requirements to re-
port to the Ministry. Once made, it would be interesting to further explore to which extent
these conditions can be automated, and what control mechanisms are needed, as we have
done for the processing of synthesized data and with K-anonymity.

53

4.2 Rare disease – DIPG

This section describes a use case executed by the University of Amsterdam, focusing on
policy administration and enforcement within a relatively simple data exchange archetype.

4.2.1 The DIPG Network

The DIPG use case concerns data sharing between medical institutions that treat patients
with the rare DIPG disease. The DIPG Network is formed between these institutions with
the goal of bringing together the horizontally5 split data collected by the institutions in order
to improve research into the disease through the availability of more datapoints. The DIPG
Network is a consortium of international medical institutions that make data available on
patients with the decease in a registry (called the ‘DIPG Registry and Imaging Repository’
and ‘DIPG Registry’ in short). In [2], the use case is introduced as follows:

Diffuse Intrinsic Pontine Glioma (DIPG), also known as diffuse midline glioma
(DMG), is a rare pediatric brain cancer for which there is no curative treatment,
despite decades of clinical trials. Children suffering from DIPG face a dismal
prognosis, with a median overall survival (OS) of eleven months and a two-year
OS of less than 10%. In order to advance DIPG research, the SIOPE DIPG/DMG
Network and Registry were established in 2011. The registry holds information
on DIPG patients across Europe and a partner registry in North America –
the International DIPG/DMG Registry – includes patient data primarily from
the USA, Canada and Australia, with additional international members. The
registry serves to improve DIPG research by granting members (conditional)
access to selected datasets in order to perform analyses with more data points
and thus higher efficacy.

This section reports on a prototype developed to experiment with the integration and
enforcement of normative documents within a dataspace for the DIPG Network. The use
case is originally from the Enabling Personalized Interventions project6 led by the University
of Amsterdam. In the prototype, parts of the following types of normative documents are
formalized using the eFLINT language [3]. A minimal version of the resulting specifications
can be found online7 of which an overview is provided by Figure 4.7.

• A regulation – the GDPR privacy regulation of the European Union [6].

• A consortium agreement – with elements derived from the ‘regulatory document’ of
the DIPG Registry and Imaging Repository [30]

The aforementioned paper [2] discusses how formalizations of these norms can be utilized
to make access control decisions in order to realize the conditional access mentioned in the

5In a horizontal split, data owners possess data of different data subjects. In a vertical split, the data of
a subject is distributed across several data owners.

6https://enablingpersonalizedinterventions.nl/
7https://gitlab.com/eflint/eflint-examples/-/tree/main/dex-dipg

54

https://enablingpersonalizedinterventions.nl/
https://gitlab.com/eflint/eflint-examples/-/tree/main/dex-dipg

ontology.eflint

consent.eflint dipg_regulatory.eflint

terms.eflint

access_control.eflint

GDPR policies DIPG policies Access Control Policies

Policy Administration and Enforcement -- DIPG Use Case

Sp
ec

ifi
ca

tio
n

A
dm

in
is

tr
at

io
n

gdpr_union.eflint access_control.eflint

En
fo

rc
em

en
t

scenario1.eflint scenario2.eflint

Figure 4.7: An overview of the dependencies between policy files used for the DIPG use
case. An arrow s −→ t indicates that the definitions from s are imported into t. The files
containing “union” bring together concepts from different specifications. The scenario files
are dynamically unfolding during the lifetime of an exchange process.

description of the use case above. The prototype described in this section demonstrates how
this kind of access control can be realized in practice.

Referring to Table 3.1, the European Union is the authority that set the GDPR. The
DIPG Network has selected an Executive Committee (EC) with several responsibilities. In
the prototype, the EC is the authority that sets the consortium agreement. The dataspace
provider (in this case the University of Amsterdam) has administered the formal interpre-
tation of (aspects of) the GDPR and the DIPG Regulatory Document as policies. The
prototype uses a basic form of Policy Store in which policies are stored as files. Separate
files are used for various aspects of the policies to promote reuse and separation of concern.
The files and their dependencies are shown in Figure 4.7.

The file “access union.eflint” – uniting the union of the GDPR policy and the Regulatory
Document with standard access control concepts – provides the context in which policy deci-
sions are made by the Policy Reasoner. The files “scenario1.eflint” and “scenario2.eflint” are
dynamically unfolding scenarios reflecting the policy information and queries communicated
with the Policy Reasoner by the Enforcement Reasoner as part of an exchange process (steps
proposing to processing of Figure 2.7 in this use case).

55

Member User Role Component
Hospital A researcher data consumer / al-

gorithm provider
consumer node

Registry custodian data provider / stor-
age provider

storage node

Table 4.3: The different members, users, roles and member nodes involved in Scenario 1.

Hospital A

Consumer node

Researcher

Registry

Registry
Storage node

Custodian

Reasoner

Figure 4.8: Diagram visualizing the dataspace members and users for DIPG scenario 1.

4.2.2 Scenario 1 – requesting access to data

Proposing a project In the first scenario, a researcher requests access to data held in
the DIPG Registry through the submission of a project proposal (see the users and roles in
Table 4.3 and Figure 4.8). At this moment, the researcher’s institution is already assumed to
be a member of the DIPG Network and the DIPG dataspace created for the DIPG Network
(onboarding, see Figure 2.7). The proposal stage involves a number of interactions between
the researcher and the executive committee of the DIPG Network as displayed in Figure 4.9
(proposing, offering). Most importantly, the proposal needs to indicate precisely the
research to be conducted in order to: (a) establish a precise purpose for the processing and

Figure 4.9: The proposing process by which a researcher (on behalf of some institution)
requests data for a particular research project and purpose. When the project is approved
by the Executive Committee (EC), a data custodian (on behalf of the EC) selects the data
and offers it to the researcher in the Catalog (offering). Image taken from [2].

56

// 1) information about hospitals , obtained during ONBOARDING

+member(HospitalA).

+affiliated -with(Researcher , HospitalA).

// 2) project P1 is PROPOSED and then approved by EC

+project(P1).

propose -project(HospitalA ,EC,P1). // P1 is ’project 1’

approve -project(EC,HospitalA ,P1).

send -letter -of-approval(DIPG ,HospitalA ,P1).

sign -letter -of-approval(HospitalA ,EC,P1).

// X1 is selected for the project (OFFERING)

+dataset(X1).

select -data(EC,HospitalA ,P1,X1). // X1 is selected for project P1

// 3) access for Researcher follows project approval and selection of X1 (PROCESSING)

?Enabled(read(Researcher ,X1)).

Listing 4.1: The eFLINT phrases (statements and queries) communicated by the
Enforcement Orchestrator to the Reasoner with an indication when the communication
happens during the execution of an exchange process (Scenario 1).

to (b) enable a precise selection of the registry’s data needed for the research.
According to Article 6(1c) of the GDPR, processed data must be minimized with respect

to the purpose of the processing. In the prototype, the registry is considered to be a sim-
ple database that holds records of patients according to an agreed upon structure and the
proposal sent by a researcher contains an SQL query to be executed on this database. The
custodian of the DIPG Network checks the query (similar to in the University Personnel use
case of Section 4.1) to determine whether this is consistent with the proposed research and
whether the selection is indeed ‘minimal’. When the proposal is accepted, the custodian will
make the selection available through an offer in the Catalog.

Accessing the selected data After these steps have been completed the researcher can
request to download the selected data (requesting). In the prototype, this request is a
simple access control request (action ‘read’) to the database of the registry (processing).
The ex-ante compliance check for this action involves several reasoning steps. The following
policy fragment (from “access union.eflint”) shows that a project and member are required
for which holds that the project has been approved (for the member), the actor sending the
access request is affiliated with the member and the accessed asset is selected for the project.
(For a full understanding of the policy fragments, the reader is referred to [3] and [2].)

Extend Act read Holds when (Exists project , member:

approved(project ,member) &&

affiliated -with(actor ,member) &&

selected(asset ,project))

The evidence that these conditions have been fulfilled is gathered by the Enforcement Or-
chestrator in the way suggested by the comment lines in Listing 4.1.

Reflections The condition that the processed data is minimal for the specified purpose
is not automatically enforced by the Enforcement Orchestrator in the above example. The
example is easily extended, however, with a policy that reflects the minimality requirement.

57

Member User Role Component
Hospital B steward data provider producer node
Registry custodian data consumer /

storage provider
storage node

Table 4.4: The different members, users, roles and member nodes involved in Scenario 2.

The selection of data for the project by the data custodian of the registry can be considered
as the qualification (by the custodian) that the selected (and subsequently processed) data
is minimal with respect to the proposed project. After processing occurred, an authority
may conclude that the offered data was not minimal or that the data was used for another
purposes than the proposed project.

The suggested treatment of the minimality requirement is a form of ‘ex-ante’ enforcement
based on a (potentially imperfect) qualification8. This extension of the example shows that a
form of ex-post enforcement is required in which additional information can be provided that
sheds a different light on a scenario. The Enforcement Notary is responsible for recording
the policy, policy information and policy query used to judge the compliance of a particular
scenario, making it possible to re-evaluate the compliance of a scenario with additional infor-
mation (auditing). In this example, the policy is the used version of “access union.eflint”
and its dependencies, the policy information contains all but the last line of Listing 4.1, and
the policy query is Enabled(read(Researcher, X1)) (the last line of Listing 4.1). In the
prototype, the Enforcement Notary keeps track of a dossier that contains these components.

As described in this section, the Policy Reasoner may be running locally at the site of the
DIPG registry or centrally, hosted by a dataspace or ecosystem provider. In the former case,
the policies (GDPR regulation, DIPG regulatory document, and the offers) need to travel
from the control plane (Policy Store) to the DIPG registry site. In the latter case, the policy
information about, for example, project approval and selected datasets, needs to be made
available to the centralized Policy Reasoner via the Enforcement Orchestrator. If policy and
policy information is considered to be sensitive, then centralizing (all) the reasoning or (all)
the policy administration may not be desired and hybrid solutions may be needed, as we have
explored in [9]. An example of sensitive policy information is consent for data processing,
which is explored in the following scenario.

4.2.3 Scenario 2 – making data available

In the second scenario, a data steward of a DIPG institution prepares data for sharing with
the DIPG registry (see Table 4.4 and Figure 4.10). The DIPG regulatory document lays out
certain pre-conditions that need to be satisfied before this form of data sharing can occur. In
particular, the document makes explicit connections with the GDPR with statements such
as:

Each Member is a controller under the GDPR with respect to the Data it enters
into the DIPG Registry. In parallel, all Member jointly are the joint controllers

8Related to the general “qualification problem” from which it follows that no model of a situation can be
complete for every possible usage of the model.

58

Hospital B

Provider node

Reasoner

Steward

Registry

Storage node
Registry

Custodian

Patient 1

Patient 2

Figure 4.10: Diagram visualizing the dataspace members and users for DIPG scenario 2.

of the DIPG Registry and the aggregated Data contained therein.

The conditions focused on in the prototype for this use case are reflected in the following code
fragments (from “dipg regulatory.eflint” and “gdpr union.eflint” respectively, see Figure 4.7).

Act make -data -available

Actor member

Recipient dcog // Dutch Childhood Oncology Group , on behalf of the Network

Related to dataset // the dataset being made available

Conditioned by coded(dataset) // which must be ’coded ’

Holds when member // The sending insitution must be a member

Extend Act make -data -available

Syncs with (Foreach donor: collect -personal -data

(controller = member // a DIPG member is considered a controller

,subject = donor // a donor (patient) is considered a data subject

,data = dataset // uniting the DIPG and GDPR notions of ’data ’

,processor = dcog // DCOG is considered the processor under the GDPR

,purpose = DIPGResearch) // the purpose of the processing is ’Research ’

When subject -of(donor , dataset)) // ensures consent is required for all donors

The second fragment formalizes several connections between the DIPG regulatory document
and the GDPR through the application of Syncs with, further explained in [2], such that the
make-data-available action effectively inherits all pre- and post-conditions of all the in-
stances of the collect-personal-data action that it synchronizes with (one for each known
donor). The following fragment (from “consent.eflint”) shows a pre-condition is defined that
determines consent must be given (by an identifiable subject), and that the data must be
‘accurate’ for the purpose for which it is collected:

Act collect -personal -data

Actor controller

Recipient subject

Related to data , processor , purpose

Creates processes ()

Conditioned by consent () && accurate -for -purpose ()

Holds when subject -of()

The ‘write’ action (from “access control.eflint”) synchronizes with make-data-available

(in “access union.eflint”) to ensure these conditions are enforced when attempting to write
to the DIPG registry:

59

Extend Act write Holds when

(Exists member: // there exists a member institution

affiliated -with(actor ,member)) && // with which the actor attempting a write is affiliated

Enabled(// and for which making data available is permitted

make -data -available(member , DCOG , asset))

In conclusion, for data to be written, the following conditions need to be fulfilled:

• The actor should be affiliated with a member of the consortium

• The data should be coded – ‘pseudonymized’ according to the regulatory document

• Consent is given to the member by each donor for the processing of their personal data
by the DCOG for the purpose of DIPG Research

• The data should be accurate for the purpose of DIPG Research

Some of these conditions are more easily checked by the steward (of a hospital) making the
data available than the custodian (of the DIPG registry) receiving the data. For example,
the steward may have access to the filled in consent forms of the donors. In contrast, the
custodian might be a better judge (e.g. based on experience) to determine whether the data
is accurate for purpose or sufficiently pseudonymized.

Related problems also appear when attempting to automate the enforcement of these
conditions. Focusing on consent, the proof that a donor has provided consent may be
sensitive information in its own right. For this reason, a solution may be preferred in which
policy enforcement happens locally at the hospital, integrated in a consent management
system. However, the custodian may prefer to perform their own checks, mitigating the risk
that enforcement was not properly executed (e.g. consent was not given by all donors or
data is not accurate for purpose). In practice, the executive committee of the DIPG requires
to see the consent form templates used by members for collecting consent.

In the prototype, the scenario in Listing 4.2 is executed by a Policy Reasoner local to
the hospital. The policy information is computed by running an algorithm to determine the
provided data is pseudonymized (coded), to check that consent has been given by donors,
and by simply asserting that the data is accurate for purpose. In an implementation of
this use case we suggest to use local reasoning both at the site of the hospital providing
data as well as at the site of the DIPG registry. In this case, both sites can use different
qualifications of the facts that determine the satisfaction of the pre-conditions. For example,
explicit consent may be required at the hospital site, whereas the availability of a consent
form template may be considered sufficient at the DIPG Registry site. Similarly, both sites
may run a different analysis algorithm to determine the accuracy of the data.

Reflections The focus on this use case has been policy administration and enforcement
under different conditions. An important consideration is also that the DIPG Network is
international and contains members both within the European Union and within the United
States. Data sharing across between partners in both jurisdictions implies having to deal
with different regulations, e.g. regarding privacy. To which extent this is possible and can
be automated is both a legal and technical question requiring further investigation.

60

// 1) information about the hospital , obtained during ONBOARDING

+member(HospitalB).

+affiliated -with(Steward , HospitalB).

// 2) information about the patients/donors , e.g. from a consent management system

+donor(Alice). +donor(Bob). // Alice and Bob are patients , identifiable in the dataset

give -consent(Alice ,HospitalB ,DCOG ,DIPGResearch).// Alice has given consent

give -consent(Bob ,HospitalB ,DCOG ,DIPGResearch). // Bob has given consent

// 3) information about the dataset (X1), asserted by the hospital

+dataset(X1).

+accurate -for -purpose(X1, DIPGResearch).

+coded(X1).

+subject -of(Alice ,X1).

+subject -of(Bob ,X1).

?Enabled(write(Steward ,X1)).

Listing 4.2: The eFLINT phrases (statements and queries) communicated by the
Enforcement Orchestrator to the Reasoner running locally at a hospital making data available
to the DIPG Registry (Scenario 2).

The descriptions in this section have focused on the ex-ante compliance questions pre-
sented to the Reasoner formalized as ?Enabled(read(Researcher,X1)) in scenario 1 and
?Enabled(write(Steward,X1)) in scenario 2. However, this use case also demonstrates the
importance of ex-post enforcement.

Firstly, by using data from the DIPG Registry, a researcher accepts the following post-
condition: “The Researcher shall not disclose or provide access to the Data to any third
party without the prior written consent of Executive Committee”. A post condition like this
can not be automatically enforced. Instead, we imagine a mechanism by which observations
affecting the compliance of actions with such post-conditions can be brought into the system
by a dataspace member, e.g. communicating that a researcher has unduly shared data with
a third party.

Secondly, the (ex-ante) decisions of compliance with conditions should be accountable.
In the prototype this is achieved by keeping dossiers of all policies and policy information
used in compliance decisions. However, the members themselves should be accountable,
e.g. keeping records of the consent preferences of their patients or of the pseudonymization
algorithm used for ‘coding’. A consent management system in which consent can be given
and withdrawn by patients dynamically, and recorded by administrators, has been considered
out of scope for this prototype.

61

4.3 Research Data Exchange

The Research Institute for Child Development and Education (RICDE) of the University
of Amsterdam (UvA) employs about 200 researchers in the field of social and behavioral
sciences. Most of the research analysis is based on collected datasets, and most of these
datasets are confidential in order to protect the privacy of the participants in the studies.

The Netherlands strives to Open Science, where scientific knowledge (scientific publica-
tions, research data, meta-data, educational resources, software and source code, and open
hardware) is openly available [13], and where datasets are Findable, Accessible, Interoper-
able, and Reusable (FAIR). However, this gives rise to the Open Science Dilemma: how to
make confidential datasets accessible?

On the one hand Open Science advocates for the dissemination of as much data as possible
on an open platform to promote scientific progress, enable transparency, and allow for the
replication of analyses. Additionally, given that scientific research is often funded with public
money, it is important to make research results and data accessible to the public. On the
other hand, legal and sovereignty issues can limit the extent to which data can be openly
shared. It is important to maintain control over confidential datasets, which can entail
legal issues such as ownership and copyright, confidentiality of personal data, restrictions on
informed consent letters, purpose limitations, bans on dual use, and prohibitions on resale.

4.3.1 Secure Analysis Environment (SANE)

The Secure Analysis Environment (SANE) is a Trusted Research Environment (TRE) devel-
oped by SURF in collaboration with ODISSEI and CLARIAH, and sponsored by PDI-SSH.
ODISSEI and CLARIAH are two organisations that provide research infrastructures for
social sciences and humanities, respectively. SANE is an variant of an compute-to-data
archetype, the “Sharing Data via Trusted Third Party (TTP)” archetype, as defined in Sec-
tion 3.2 (see Figure 3.3). In this archetype, SURF acts as a third party which performs the
computation under control of the data owner, with the software provider (also) the data
consumer (see also the third scenario of the UNL case in Section 4.1.3). Figure 4.11 gives a
visual representation of the different actors in this archetype.

A Trusted Research Environment such as SANE provides control to the data owner, be-
cause the data is only made available in a secure environment. It can not be downloaded.
Hence, it allows for the re-use of confidential data while ensuring its confidentiality. How-
ever, the current process requires a manual effort each time a researcher wishes to utilize a
confidential dataset provided by someone else. This process is depicted in Figure 4.12. In
this process, the researcher, acting as the data consumer, must locate the dataset on exist-
ing data repositories (e.g., DANS or OSF). Unfortunately, the lack of a download option for
confidential datasets means that the only available course of action is to communicate via
email with the data owner and hope that they are willing to either provide the dataset for
download or make it accessible within a secure analysis environment. This method is not
only tedious and time-consuming, but it also places a burden on the data owners.

62

Data Provider Researcher
(Algorithm Provider)

Trusted Third Party
(Service Provider)

Result Re
sul
t

Secure
container

Verification of result

Data Code
(+Data)

Figure 4.11: In the “Sharing Data via Trusted Third Party (TTP)” archetype, the Data
Provider provides the data, and the Algorithm Provider provides the algorithm. The algo-
rithm is run in a secure container at a Service Provider, and the output of this computation
is first verified by the data provider before to ensure it does not contain any confidential
information, before this output is released to the Algorithm Provider.

Transfer
Data

Negotiate
(manual)

Data
Repository

Data consumer finds
confidential dataset

Email with data
owner(s)

Data owner makes dataset
available for download or
prepares a secure analysis

environment

Data
Analysis

Data consumer
analyses the data

Offering Requesting & Clearing Processing Processing

Figure 4.12: Manual workflow for re-use of confidential data by a researcher. The terms
Offering, Requesting, Clearing, and Processing refer to the processing steps in Section 2.3.2.

4.3.2 Goals

Research Data Exchange (RDX) is a prototype that automates the process of making data
available for re-use. This prototype served two purposes:

• Get experience on the usability of connecting a data repository to a trusted research
environment, and get an understanding of the different roles involved (data owner,
data provider, data steward, data consumer, service provider);

• Get insight in which data sharing conditions are desired in practise.

The research data exchange splits the workflow in two parts: one for the data owners
(depicted in Figure 4.13) and one for the data consumers (depicted in Figure 4.14).

With RDX, a data owner can specify the data sharing conditions for each dataset (see
Section 4.3.3) and makes the dataset available for re-use. This only needs to be done once,
at the same time the (meta-)data is published on a data repository to make it findable.

63

Data
Archive

Research
Data

Exchange
Data

Repository

Archive the data in
a secure and closed

repository

Publish metadata
on a open access

repository

Specify & enforce
data sharing
conditions

Verification
/ Audit

Manual output
verification and/or
logging of activity

Onboarding Offering Clearing Auditing

Figure 4.13: Publication workflow (for data owners).

Data
Analysis

Research
Data

Exchange
Data

Repository

Data consumer finds
confidential dataset

Request access Analyses data depen-
ding on the data

sharing conditions

Offering Requesting & Clearing Processing

Figure 4.14: Re-use workflow (for data consumers).

If desired by the data owner, there is an option to perform manual output verification
for each analysis conducted by a data consumer, as well as access the records of previous
analyses conducted on the dataset. This level of control is crucial as it empowers the data
owner to maintain complete oversight of the confidential dataset and its usage.

When a researcher is interested in re-using a dataset, they can still locate the (meta)data
on an existing repository. However, instead of engaging in negotiations with the data owner
for access, the RDX prototype automatically enforces access permissions. Depending on the
data sharing conditions, the data consumer must first prove its affiliation (e.g., be part of
an existing research community) and agree to the designated sharing conditions (e.g., non-
commercial use or citation requirements). Once these conditions are met, the data consumer
can proceed to download the data or conduct analyses within a secure analysis environment.
The specific actions allowed are contingent upon the data sharing conditions established by
the data owner in the publication workflow.

4.3.3 Data Sharing Conditions

Based on small-scale interviews with potential users, and earlier experience, we can list the
following data sharing conditions. The list is roughly ordered from most important to least
important.

• Verify identity and affiliation

• Sign data sharing conditions

– Do not redistribute the dataset

– Purpose-binding; dataset may only be used to answer a specific (pre-aproved)
research questions

64

– Give credit when data is re-used

– Involvement in the analysis and co-authorship

• Verification of the analysis output before releasing the output

• Verification that the resulting paper does not contain confidential information

• Analyse in a secure analysis environment only

• Only allow verified algorithms for analysis

The prototype was able to enforce the following conditions:

• Verify email address

• Sign data sharing conditions

• Only make the dataset available after automatic verification of the above conditions

• No download allowed, analyse in a secure analysis environment only (optional)

• Verification of the analysis output before releasing the output (optional)

In total, five combinations of data sharing conditions are supported:

• Make available for download, after verification of email address and signing data sharing
conditions;

• Make available for processing in a ”tinker” secure analysis environment, after verifi-
cation of email address and signing data sharing conditions, either with or without
verification of the output by the data provider;

• Make available for processing in a ”blind” secure analysis environment, after verifi-
cation of email address and signing data sharing conditions, either with or without
verification of the output by the data provider.

The tinker- and blind secure analysis environment were provided by the SANE pilot. The
difference between the two is that the tinker SANE spins up a is a job submission process,
where the data is made available in a remote desktop Windows environment that contains
the data, and data processing tools (for the prototype R Studio and Jupyter notebook). For
the blind SANE, the data consumer must specify a Python script that is executed in a VM
were the data is made available. In both cases, the VM does not allow network connections,
so it is not possible to upload the dataset elsewhere. The result of the analysis can only be
uploaded to a specific output, where the result is logged and is optional verified by the data
owner before it is released.

65

4.3.4 Findings

Based on user interviews and demonstrations with the prototype, we came to the following
conclusions.

The prototype works as intended. We ran a few tests, and got positive responses, in
particular from the University of Amsterdam. However, the technology is still new,
and the concept of data-reuse, without data download is still novel. We found that the
SANE pilot is getting noted by data stewards and digital competence centres. However,
most individual researchers do not yet know about this possibility, let alone other
privacy enhancing technologies (PETs) that are available nowadays. By extension, the
RDX prototype was new as well for most researchers. The prototype proved to be of
benefit as a conversation starter, that helps explain the possibilities that PETs offer.

Both data steward and data owner want to be involved. We found that both the
data owners (the researcher who made a confidential dataset) as well as the data
steward (a supporting role within the organisation, acting as the data provider or data
custodian in the prototype) want to know who is using the data. The data owner
primarily from the perspective of a personal responsibility to protect the privacy of
the people who contributed their data to the study, and by extension, to the dataset.
The data steward more from the perspective of GDPR compliance. We anticipate that
when this technology is used more extensively, in particular the data steward wants
to have a hand-offs, mostly overseeing role, and that the data owner wants to remain
involved, if only as to seek potential collaborations with the people interested in their
datasets.

Data owners feel involved in their dataset. This is perhaps not surprising, as they of-
ten spend a significant amount of work collecting the data, and feel personally respon-
sible for protecting the privacy of the people involved. It can be argued that legally,
the data belongs to the university and not the researcher who collected the data, and
that for reasons of data provenance and data preservation, the data steward should
have a more prominent role (think about the situation when the researchers finds a
job elsewhere or retires). Despite professionalization of the data steward role in the
last years, and appreciation of that role by researchers, the researchers still consider
themselves the owner of “their” datasets.

For data owners, trust in the data consumer is paramount. Trust does not simply
come from an affiliation, such as being affiliated with an university. At first glance,
this seems like a subjective criterion, but upon further questioning, it was stipulated
that “a fellow researcher who has published in high-impact journals before” can be
trusted.

Logging may be used as alternative to verification. The prototype allows for the op-
tion that the data owner or the data provider verifies that the result of each analysis
no longer contains any personal information. However, neither party seemed to view
this as the ideal situation. Data stewards seem to feel that logging of the actions and
output is sufficient. That would take away the burden of manually checking of each

66

analysis, and still provides a means to correct data consumers that do not adhere to
the data sharing conditions, even if it is after the fact. The data owners also seem to
trust the consumer with the data, and do not need to check the output of each analysis.
However, they do want to check the resulting publication(s) before they are published,
since any recognizable data in a publication is a severe breach in privacy.

The prototype is not designed to protect against malicious actors. This is accept-
able by data owners and data providers. That does not mean there is no concern, but
the concern mostly stems from (a) risk of leaking identifiable information in a publi-
cation; or (b) risk of reputation damage, because a data consumers makes errors in
the analysis or draws a faulty conclusion; or (c) risk of reputation damage, because
the compute-to-data archetype is not well understood, and the general public does not
distinguish between re-use of data and redistribution of data.

A secure analysis environment may be most relevant to larger data providers. For
individual use cases, most data owners seem to prefer individually checking the reputa-
tion of the data consumer, and if sound, let them simply download the data. Only when
the data reuse is more frequently reused, and individual check can not be as thorough,
an automatic system of protection, as provided by the secure analysis environment,
may partially replace this manual check.

Automatic publication of datasets is not yet solved. In the prototype, the computa-
tion was done by a trusted third party, SURF, who had to be trusted by the data
provider to protect the data. However, this also means there must be a way for the
data provider to make the confidential data sets available to the third party. In the
prototype, this was a manual process. For actual deployment, this must be automated.

67

Bibliography

[1] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. “Introduction to
Runtime Verification”. In: Lectures on Runtime Verification: Introductory and Ad-
vanced Topics. Ed. by Ezio Bartocci and Yliès Falcone. Cham: Springer International
Publishing, 2018, pp. 1–33. isbn: 978-3-319-75632-5. doi: 10.1007/978- 3- 319-

75632-5_1.

[2] L. Thomas van Binsbergen, Milen G. Kebede, Joshua Baugh, Tom van Engers, and
Dannis G. van Vuurden. “Dynamic generation of access control policies from social
policies”. In: Procedia Computer Science 198 (2022). 12th International Conference on
Emerging Ubiquitous Systems and Pervasive Networks / 11th International Conference
on Current and Future Trends of Information and Communication Technologies in
Healthcare, pp. 140–147. issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.
2021.12.221.

[3] L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom van En-
gers. “eFLINT: A Domain-Specific Language for Executable Norm Specifications”.
In: Proceedings of the 19th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences. GPCE 2020. ACM, 2020, pp. 124–136. doi:
10.1145/3425898.3426958.

[4] L. Thomas van Binsbergen, Merrick Oost-Rosengren, Hayo Schreijer, Freek Dijkstra,
and Taco van Dijk. AMdEX Reference Architecture – version 1.0.0. Ed. by L. Thomas
van Binsbergen. Feb. 2024. doi: 10.5281/zenodo.10565915.

[5] Data Sharing Coalition. Data Sharing Canvas – A stepping stone towards cross-domain
data sharing at scale. 2021.

[6] Council of the EU. “General Data Protection Regulation”. In: Official Journal of the
European Union 59 (2016).

[7] R. van Doesburg and T. van Engers. “The False, the Former, and the Parish Priest”.
In: Proceedings of the Seventeenth International Conference on Artificial Intelligence
and Law. ICAIL 2019. ACM, 2019, pp. 194–198. doi: 10.1145/3322640.3326718.

[8] R. van Doesburg, T. van der Storm, and T. van Engers. “CALCULEMUS: Towards
a Formal Language for the Interpretation of Normative Systems”. In: AI4J Workshop
at ECAI 2016. AI4J 2016. 2016, pp. 73–77.

68

https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/https://doi.org/10.1016/j.procs.2021.12.221
https://doi.org/https://doi.org/10.1016/j.procs.2021.12.221
https://doi.org/10.1145/3425898.3426958
https://doi.org/10.5281/zenodo.10565915
https://doi.org/10.1145/3322640.3326718

[9] Christopher A. Esterhuyse, Tim Müller, L. Thomas Van Binsbergen, and Adam S. Z.
Belloum. “Exploring the Enforcement of Private, Dynamic Policies on Medical Work-
flow Execution”. In: 2022 IEEE 18th International Conference on e-Science (e-Science).
2022, pp. 481–486. doi: 10.1109/eScience55777.2022.00086.

[10] Adrian Francalanza, Jorge A. Pérez, and César Sánchez. “Runtime Verification for
Decentralised and Distributed Systems”. In: Lectures on Runtime Verification: Intro-
ductory and Advanced Topics. Ed. by Ezio Bartocci and Yliès Falcone. Cham: Springer
International Publishing, 2018, pp. 176–210. isbn: 978-3-319-75632-5. doi: 10.1007/
978-3-319-75632-5_6.

[11] André Freitas, João Gabriel Oliveira, Seán O’Riain, João C.P. da Silva, and Edward
Curry. “Querying linked data graphs using semantic relatedness: A vocabulary inde-
pendent approach”. In: Data & Knowledge Engineering 88 (2013), pp. 126–141. issn:
0169-023X. doi: 10.1016/j.datak.2013.08.003.

[12] Florine de Geus. “Model Checking Normative Systems”. University of Amsterdam,
2022. url: https://scripties.uba.uva.nl/search?id=record_51722.

[13] Stan Gielen and Jet de Ranitz. Open Science 2030 in the Netherlands: NPOS2030
Ambition Document and Rolling Agenda. Dec. 2022. doi: 10.5281/zenodo.5105529.

[14] Giulia Giussani, Sebastian Steinbuss, Mario Holesch, and Nora Gras. Data Connector
Report. International Data Spaces Association, Jan. 2024. doi: 10.5281/zenodo.

10591027.

[15] Ali Hariri, Amjad Ibrahim, Bithin Alangot, Subhajit Bandopadhyay, Antonio La Marra,
Alessandro Rosetti, Hussein Joumaa, and Theo Dimitrakos. “UCON+: Comprehensive
Model, Architecture and Implementation for Usage Control and Continuous Autho-
rization”. In: Collaborative Approaches for Cyber Security in Cyber-Physical Systems.
Ed. by Theo Dimitrakos, Javier Lopez, and Fabio Martinelli. Cham: Springer Interna-
tional Publishing, 2023, pp. 209–226. doi: 10.1007/978-3-031-16088-2_10.

[16] H. Herrestad. “Norms and Formalization”. In: Proceedings of the 3th International
Conference on Artificial Intelligence and Law. ICAIL 1993. ACM, 1993, pp. 175–184.
doi: 10.1145/112646.112667.

[17] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter. “A Policy Language for
Distributed Usage Control”. In: Computer Security – ESORICS 2007. Ed. by Joachim
Biskup and Javier López. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 531–
546. doi: 10.1007/978-3-540-74835-9_35.

[18] Wesley Newcomb Hohfeld. “Some Fundamental Legal Conceptions as Applied in Ju-
dicial Reasoning”. In: The Yale Law Journal 23.1 (Nov. 1913), pp. 16–16. doi: 10.
2307/785533.

[19] Renato Iannella and Serena Villata. “ODRL information model 2.2”. In: W3C Recom-
mendation 15 (2018).

69

https://doi.org/10.1109/eScience55777.2022.00086
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1016/j.datak.2013.08.003
https://scripties.uba.uva.nl/search?id=record_51722
https://doi.org/10.5281/zenodo.5105529
https://doi.org/10.5281/zenodo.10591027
https://doi.org/10.5281/zenodo.10591027
https://doi.org/10.1007/978-3-031-16088-2_10
https://doi.org/10.1145/112646.112667
https://doi.org/10.1007/978-3-540-74835-9_35
https://doi.org/10.2307/785533
https://doi.org/10.2307/785533

[20] Christian Jung and Jörg Dörr. “Data Usage Control”. In: Designing Data Spaces :
The Ecosystem Approach to Competitive Advantage. Ed. by Boris Otto, Michael ten
Hompel, and Stefan Wrobel. Cham: Springer International Publishing, 2022, pp. 129–
146. isbn: 978-3-030-93975-5. doi: 10.1007/978-3-030-93975-5_8.

[21] Jonathan Karels. “Design of a Framework for Storing and Reasoning About Normative
Sources with Formalised Interpretations”. University of Amsterdam, 2023. url: https:
//scripties.uba.uva.nl/search?id=record_53692.

[22] Milen G. Kebede, Giovanni Sileno, and Tom Van Engers. “A Critical Reflection on
ODRL”. In: AI Approaches to the Complexity of Legal Systems XI-XII. Ed. by Vı́ctor
Rodŕıguez-Doncel, Monica Palmirani, Micha l Araszkiewicz, Pompeu Casanovas, Ugo
Pagallo, and Giovanni Sartor. Cham: Springer International Publishing, 2021, pp. 48–
61. doi: 10.1007/978-3-030-89811-3_4.

[23] Ryan K. L. Ko, Bu Sung Lee, and Siani Pearson. “Towards Achieving Accountability,
Auditability and Trust in Cloud Computing”. In: Advances in Computing and Com-
munications. Ed. by Ajith Abraham, Jaime Lloret Mauri, John F. Buford, Junichi
Suzuki, and Sabu M. Thampi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 432–444. doi: 10.1007/978-3-642-22726-4_45.

[24] OASIS eXtensible Access Control Markup Language (XACML) Technical Committee.
eXtensible Access Control Markup Language (XACML) Version 3.0 Plus Errata 01.
July 2017.

[25] B. Otto, S. Steinbuss, A. Teuscher, and S Lohmann. IDS Reference Architecture Model
– version 3.0. Apr. 2019. doi: 10.5281/zenodo.5105529.

[26] Lúcio H. A. Reis, Marcela T. de Oliveira, and Śılvia D. Olabarriaga. “Fine-grained
Encryption for Secure Research Data Sharing”. In: 2022 IEEE 35th International
Symposium on Computer-Based Medical Systems (CBMS). 2022, pp. 465–470. doi:
10.1109/CBMS55023.2022.00089.

[27] Pepijn de Reus, Ana Oprescu, and Koen van Elsen. “Energy Cost and Machine Learn-
ing Accuracy Impact of k-Anonymisation and Synthetic Data Techniques”. In: 2023
International Conference on ICT for Sustainability (ICT4S). 2023, pp. 57–65. doi:
10.1109/ICT4S58814.2023.00015.

[28] Ravi Sandhu and Jaehong Park. “Usage Control: A Vision for Next Generation Ac-
cess Control”. In: Computer Network Security. Ed. by Vladimir Gorodetsky, Leonard
Popyack, and Victor Skormin. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 17–31. doi: 10.1007/978-3-540-45215-7_2.

[29] Sara Shakeri, Lourens Veen, and Paola Grosso. “Evaluation of Container Overlays for
Secure Data Sharing”. In: 2020 IEEE 45th LCN Symposium on Emerging Topics in
Networking (LCN Symposium). 2020, pp. 99–108. doi: 10.1109/LCNSymposium50271.
2020.9363266.

[30] SIOPE DIPG Network. “DIPG Registry and Imaging Repository – Regulatory Docu-
ment”. Online. [Online, accessed 1st July 2021]. Oct. 2018. url: https://dipgregistry.
eu/Content/files/2018-10-10SIOPEDIPGRegistry-RegulatoryDocument_v%202.

0_final.pdf.

70

https://doi.org/10.1007/978-3-030-93975-5_8
https://scripties.uba.uva.nl/search?id=record_53692
https://scripties.uba.uva.nl/search?id=record_53692
https://doi.org/10.1007/978-3-030-89811-3_4
https://doi.org/10.1007/978-3-642-22726-4_45
https://doi.org/10.5281/zenodo.5105529
https://doi.org/10.1109/CBMS55023.2022.00089
https://doi.org/10.1109/ICT4S58814.2023.00015
https://doi.org/10.1007/978-3-540-45215-7_2
https://doi.org/10.1109/LCNSymposium50271.2020.9363266
https://doi.org/10.1109/LCNSymposium50271.2020.9363266
https://dipgregistry.eu/Content/files/2018-10-10SIOPEDIPGRegistry-RegulatoryDocument_v%202.0_final.pdf
https://dipgregistry.eu/Content/files/2018-10-10SIOPEDIPGRegistry-RegulatoryDocument_v%202.0_final.pdf
https://dipgregistry.eu/Content/files/2018-10-10SIOPEDIPGRegistry-RegulatoryDocument_v%202.0_final.pdf

[31] Jorrit Stutterheim. “DYNAMOS: Dynamically Adaptive Microservice-based OS; A
Middleware for Data Exchange Systems”. University of Amsterdam, 2023. url: https:
//scripties.uba.uva.nl/search?id=record_53890.

[32] Elham Ramezani Taghiabadi, Vladimir Gromov, Dirk Fahland, and Wil M. P. van
der Aalst. “Compliance Checking of Data-Aware and Resource-Aware Compliance Re-
quirements”. In: On the Move to Meaningful Internet Systems: OTM 2014 Conferences.
Ed. by Robert Meersman, Hervé Panetto, Tharam Dillon, Michele Missikoff, Lin Liu,
Oscar Pastor, Alfredo Cuzzocrea, and Timos Sellis. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 237–257. doi: 10.1007/978-3-662-45563-0_14.

[33] Lu Zhang, Reginald Cushing, Leon Gommans, Cees De Laat, and Paola Grosso. “Mod-
eling of Collaboration Archetypes in Digital Market Places”. In: IEEE Access 7 (2019),
pp. 102689–102700. doi: 10.1109/ACCESS.2019.2931762.

[34] Xin Zhou, Reginald Cushing, Ralph Koning, Adam Belloum, Paola Grosso, Sander
Klous, Tom van Engers, and Cees de Laat. “Policy Enforcement for Secure and Trust-
worthy Data Sharing in Multi-domain Infrastructures”. In: 2020 IEEE 14th Interna-
tional Conference on Big Data Science and Engineering (BigDataSE). 2020, pp. 104–
113. doi: 10.1109/BigDataSE50710.2020.00022.

71

https://scripties.uba.uva.nl/search?id=record_53890
https://scripties.uba.uva.nl/search?id=record_53890
https://doi.org/10.1007/978-3-662-45563-0_14
https://doi.org/10.1109/ACCESS.2019.2931762
https://doi.org/10.1109/BigDataSE50710.2020.00022

Index

(data exchange) archetypes, 5, 35, 36
AMdEX, 5

community, 6
fieldlab, 4
framework, 12, 24
organization, 6
principles, 7
reference architecture, 6
rules of engagement, 5, 7
shared services, 24

asset, 9
algorithm, 9
data asset, 9
data point, 9
data stream, 9
dataset, 9

component
auditor, 22, 27
catalog, 19, 27
clearing, 19, 49
compute node, 16
connector, 25
consumer node, 16
enforcement notary, 22, 27
enforcement orchestrator, 22, 49, 57
member node, 16
monitor, 17, 27
policy reasoner, 22, 57
policy store, 21, 27
process notary, 20, 27
process orchestrator, 19, 49
provider node, 16
registry, 19, 26

conditions, 9, 34, 36

post-conditions, 9
pre-conditions, 9

control
access control, 30
usage control, 32

data consumer, 13
data exchange, 10
data exchange process, 15, 18

agreement, 18
auditing, 27, 36
offer, 18, 27
request, 17

data owner, 14
data provider, 12
data sharing, 10
data user, 14
data visitation, 10
dataspace, 10, 23

datacommon, 10
datamarket, 10
datatrust, 10
member, 12
user, 14

ecosystem, 11, 24

plane
control plane, 12, 17
data plane, 12, 15
governance plane, 20

policy, 29
administration, 27, 32
agreement, 9, 18, 27, 34

consortium agreement, 34, 36
ecosystem agreement, 34

72

enforcement, 20, 26, 40

ex-ante, 20

ex-post, 20

information, 21, 43, 44

legislation, 34

normative sources, 36

offer, 9, 18, 27

reasoner, 22

social policies, 30

privacy-enhancing techniques (PETs), 10

data synthesis, 47

provider, 24
algorithm provider, 13
asset provider, 13
compute provider, 13, 24
data exchange provider, 13, 24
data provider, 12
dataspace provider, 11, 24
ecosystem provider, 24
service provider, 13, 24
storage provder, 13

resource owner, 14

73

	Introduction
	About this document
	Initiative and Fieldlab Project
	The Approach
	Principles
	Public values

	High-Level Architecture
	Scope and Terminology
	Users and Roles
	Components
	Data plane
	Control plane
	Governance plane

	Connecting to AMdEX
	Dataspaces and ecosystems
	Service providers
	Connecting to AMdEX services
	Dataspace interoperability

	Policy Administration and Enforcement
	Scope
	Administration
	Policy types
	Policy construction

	Specification
	Enforcement

	Use Cases
	University Personnel – UNL WOPI
	Scenario 1 – Manual Approval
	Scenario 2 – Automatic Processing and Clearing
	Scenario 3 – Trusted Third Party

	Rare disease – DIPG
	The DIPG Network
	Scenario 1 – requesting access to data
	Scenario 2 – making data available

	Research Data Exchange
	Secure Analysis Environment (SANE)
	Goals
	Data Sharing Conditions
	Findings

