
Regulatory Services to Automate Compliance with
Ex-post Enforcement

Lu-Chi Liu1 , Mostafa Mohajeri Parizi1 , L. Thomas van Binsbergen⋆1 , and
Tom van Engers2

1 Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
2 Leibniz Institute, University of Amsterdam/TNO, Amsterdam, The Netherlands

This version of the contribution has been accepted for publication after peer review but is
not the Version of Record and does not reflect post-acceptance improvements or corrections. The
final publication is available at Springer

Abstract. Software systems are expected to comply with norms from a variety
of sources. However, the increasing volume and the dynamism of norms make
it rather difficult to make and keep software systems fully compliant by design.
This paper proposes an architecture of (norm-)regulated software systems that
facilitate compliance with high-level policies through regulatory services. Our
architectural model has the flexibility to adapt to norm modifications and to norm
violations by including both ex-ante as well as ex-post enforcement mechanisms.
The proposed solution is assessed using a case study and a prototype implementa-
tion in the eFLINT and ASC2 languages for modeling norms and software/social
agents respectively.

Keywords: Regulated systems· Executable specifications· Runtime compliance·
Actor-oriented programming· Distributed systems· Regulations· Law· Contracts.

1 Introduction

Law, policy, regulations, contracts, and standards contain norms that guide behavior and
raise expectations for parties to act accordingly. Software systems with automated (or
autonomous) decision-making procedures need also to be compliant with those norms
and are expected to faithfully capture the (organizational or governmental) policies be-
hind the services they implement.

Ideally software systems are “compliant by design” and only admit permitted be-
havior. However, norms may contain so-called ’open concepts’ and qualification of con-
cepts reflecting reality, i.e. mapping such concepts onto institutional concepts is a chal-
lenge and may require judgment from authorities (e.g. a judge). Furthermore, designing
fully compliant software systems is complicated due to the large volume and dynamic
nature of norms [4]. In order to achieve compliance we need services/mechanisms that
provide legal reasoning, monitoring, and enforcement.

As part of a collaboration between several research institutes and industry partners,
we investigate data-sharing architectures for systems in which norms from a variety of

⋆ Corresponding author: ltvanbinsbergen@acm.org

https://orcid.org/0000-0003-0249-1491
https://orcid.org/0000-0001-9508-809X
https://orcid.org/0000-0001-8113-2221
https://orcid.org/0000-0003-3699-8303


2 L. Liu et al.

sources can be embedded as so-called regulatory services supporting both ex-ante and
ex-post enforcement enabling subjective responses (as well as autonomous responses)
to occurrences of violations, producing traces from which detailed reports (audit trails)
can be constructed for the purposes of diagnosis. These regulatory services are derived
from (high-level) specifications written in a domain-specific language for expressing
norms: eFLINT [3]. As we will show, such regulatory services help to achieve trans-
parency in the norms applied and hence improve the trust that data-sharing and data
processing are legitimate (avoiding liabilities and costly punishments in case of norm
violations). We opt for an actor-oriented approach3 in which norms are enforced by
actors that deliver rewards or punishments, resembling regulated social systems, and
compliance is not necessarily hard-coded into the system.

In this paper we present the outline of our approach and we will demonstrate some
of the tools and languages we use to develop prototypes and perform case studies. In
particular, we show how normative specifications written in eFLINT [3] and agent spec-
ifications written in the ASC2 language [27] form executable models of regulated sys-
tems. In this paper we will present:

– An architectural model of regulated systems that involve high-level policies such
as regulations and contracts, normative services for reasoning about policies, and
enforcement services for responding to policy decisions and violations;

– A demonstration of the eFLINT language and reasoner enforcing high-level poli-
cies in a distributed system governed by norms changing over time, and;

– A discussion on (partially) automated ex-post enforcement and the real-world sce-
narios that could potentially benefit from this design.

2 Related Work

This paper contributes to the idea of regulatory services and regulated systems. To en-
sure that compliance is properly anchored, it is crucial to have a clear set of rules, a
properly configured framework, and implementable associated processes in a regulated
system. One typical example is policy-based management systems, mainly used for ac-
cess control4. Such systems use various policy-related components in their framework
to evaluate whether a certain Access Request is allowed for the requested Target Re-
source and to grant access to the requesting party if it is allowed. The access request
is evaluated against a given set of access control policies. Widely-used access control
protocols, for example XACML [31] and SAPL [21], contain components that share
similarities to what we have in our regulatory services. While access control systems
aim at access control (policies) and consider full compliance in their context, our ap-
proach depicts a more general architecture for regulated systems and includes ex-post
enforcement.

We are not the first authors to suggest the usage of ex-post enforcement. Litera-
ture addressing the topic of modeling and enforcing e-contracts often stresses that it

3 The term “actor” is used both for software components and human users of a software system.
4 We argue that access control systems are too limited to comply with the demands from e.g. the

GDPR as one should control access as well as other data processing (which should meet some
well-defined purpose), hence we rather speak about usage control.



Regulatory Services to Automate Compliance with Ex-post Enforcement 3

is important to deal with violations as it is possible to have contract breaches, espe-
cially in a business setting. In [7], Chiu et al. map the contract clauses to ECA (event-
condition-action) rules to provide operational semantics, specifying what action to take
under what condition/event. They also proposed an implementation outline to illus-
trate a communication protocol for parties to publish and collect event information.
The work in [28] introduces a contract compliance checker that observed B2B interac-
tion events and inferred whether they are contract compliant based on its observation.
Clauses related to violations are converted into exceptions in their model. Similar ideas
were employed also in the field of multi-agent systems (MAS). For example, a formal
framework inspired by supervisory control theory (SCT) is presented in [10], proving
that regimentation-, sanction-, and repair-based enforcement can be modeled as special
supervisors from SCT. Although sharing the same concept of ex-post enforcement, this
paper focuses on compliance with high-level policies and considers not only violations
but also modifications of norms.

The connection between norms and multi-agent systems has been studied exten-
sively in the field of normative MAS (nMAS) [5]. In a complex system with hetero-
geneous agents that may have conflicting goals, norms can provide an efficient way of
coordination between agents typically in the form of agent organizations [25]. Most
of the studies in nMAS are concerned with the theoretical aspects like the interactions
between governing norms and individual agents’ desires and goals [8,11,29]. However,
there are also works that introduce practical approaches for embedding some degree of
control in a MAS by the enforcement of norms. An overview of these approaches can
be found in [9], analyzing norm enforcement architectures based on criteria like sup-
porting automatic enforcement, different levels of norms that describe actions and/or
state of affairs, dynamicity of the norms in the sense that they can be adopted, dropped
or changed. They also introduce practical criteria like execution efficiency and the cen-
tralized and decentralized nature of enforcement.

The authors of [9] also introduce the MaNEA, a norm-enforcing architecture aimed
at controlling norms in open MAS. This architecture utilizes a distributed model of
agent organizations that includes norm manager nodes with prescriptive norms in the
form of deontic notions (obligation, permission, and prohibitions) and norm enforcer
nodes that can observe the system, detect violations and respond to them with a pun-
ishment/reward method. Their approach differs from ours firstly because they focus on
controlling a MAS as a whole, they assume full information of every action and mes-
sage within the system from the perspective of enforcers nodes, while in our architecture
—and arguably in real life– this is not the case. Secondly, they only take into account
prescriptive norms in the form of deontic notions, while our approach goes above that
by also utilizing norms as a coordination mechanism between agents.

Another thread of research that is close to this work is Compliance Management
Frameworks (CMF). In any organization, there is always the concern to verify if the
business activities of the organization are compliant with the governing rules and poli-
cies. This typically includes encoding the relevant rules into some normative specifi-
cations and utilizing a reasoner for automated verification of normative specifications
over business process specifications. There are multiple CMFs introduced in the lit-
erature [12,19,20]. One example of a CMF is the COMPAS framework presented in



4 L. Liu et al.

[12] that is designed for service-oriented architecture-based systems. In COMPAS, Lin-
ear Temporal Logic (LTL) is used to specify compliance requirements of a system and
Business Process Management and Notation (BPMN) to identify the business process
model. Then, formal model-checkers are used for verification of the compliance speci-
fications over business process specifications. Like CMFs, we are also concerned with
the compliance of a business process (albeit implicit in this work) with relevant norms.
What makes COMPAS —and most other CMFs — different from our architecture is
that the focus in a CMF is on one organization and its business, however, by modeling
our system as a MAS, we are also concerned with possible interactions that may hap-
pen between multiple actors with possibly conflicting goals in the presence of multiple
normative sources.

Lastly, we would like to mention the relevance of run-time verification, particularly
run-time verification with reparations, to our work. Run-time verification is a mature
field that aims to ensure the dependability of software systems during execution. It ad-
dresses various approaches to monitor the behaviors of a running system and to check
whether the observed system behaviors satisfy certain properties. Other than some algo-
rithmic properties (e.g., race condition and deadlock freedom), this paper relates more
to formally specified properties (e.g., deontic logics and normative specifications). Sim-
ilar to our ex-ante and ex-post enforcement mechanisms, there are two families of tech-
niques taken in this field. The first one run-time enforcement targets the prevention of
misbehaviors and failures, while the second one healing concerns the reactions towards
observed undesired behaviors (e.g., reverting to a correct state). Run-time verification
could be applied to a great number of domains, for example to verify system and busi-
ness requirements in [14], contracts and behaviors of agents in [1], smart contracts
running on Ethereum [16], and more in [17,33]. While most of them focus on one of
the two families for specific applications, our work adopts a hybrid method, attempts to
provide a versatile model, and considers the amendment of norms.

3 Modeling Norms, Software, and Social Agents

Motivated by the advent of computational systems, philosophers, legal theorists, and
logicians from various backgrounds have attempted to formalize norms and automate
normative reasoning. The problem with the existing formalizations is that they typi-
cally conflate the behavioral view on norms (concerning agents that act lawfully or
not) [11,29] with a principled view on norms (concerning what is right) [18]. The frame-
works in which norms are typically expressed consider primarily situations that can be
captured by propositions [6]. However, in legal jurisprudence, Hohfeld, inspired by ear-
lier work by Salmond [32], provided an alternative framework making relevant actors,
their normative positions, and their actions first-class [22].

To formalize norms in this work we use the domain-specific eFLINT language [3]
that implements the Salmond/Hohfeldian conceptualization. Hohfeld’s approach is much
more suitable for our work as we consider regulatory systems that involve social and
software actors, and their interactions (e.g., different types of enforcement). The eFLINT
language can be used to describe norms from various kinds of sources (e.g., GDPR, data
sharing agreements among healthcare sections, internal policies from companies, etc.).



Regulatory Services to Automate Compliance with Ex-post Enforcement 5

Fig. 1: High-level, schematic overview of regulated systems. The arrows describe rela-
tions between different types of actors, not necessarily lines of communication.

To increase robustness and persistence, eFLINT knowledge bases can be externalized
and backed up. Finally, the language provides mechanisms to formalize (modifications
of) norms modularly [2].

To model both the social actors and software components of a system, we utilize the
belief-desire-intention (BDI) model of agency.The BDI model, typically used for rep-
resenting humans’ reasoning processes, is utilized to create computational agents that
exhibit rational behavior. Furthermore, the BDI model has been investigated as the ba-
sis to create agents capable of reasoning with norms typically referred to as normative
agents [8,11,29]. In this work, we model the agents via ASC2 [26,27], a BDI frame-
work that utilizes an agent-programming language close to AgentSpeak(L) [30] which
meets our technical requirements and can interface with the eFLINT reasoner. Although
using ASC2, our approach is conceptually independent of how actors are implemented,
assuming that an interface for monitoring, notifications, and queries can be established.

4 Regulated Systems

In our approach, we distinguish three types of actors based on their role within the
regulated system and describe a minimal communication protocol between these actors.
The following explanation is visualized in Figure 1. This diagram is not exhaustive nor
prescriptive: other classifications of actors/components are possible, actors/components
can be of more than one class and additional lines of communication may be present.
A regulated system is composed of two main types of services: application services
and regulatory services. The application services realize the core functionality of the
system, i.e. the application. Some application services receive input from and send
output to users of the system (e.g. clients) while others do not (e.g. servers). There
could be multiple (different) instances of each service in a regulated system. These
services are implemented as ASC2 actors. Regulatory services consist of normative
and enforcement services. Each normative service administers a set of norms within
the system and represents a particular interpretation and instantiation of these norms.



6 L. Liu et al.

Fig. 2: This architecture for our case study demonstrates the proposed approach by
adopting application, normative, and enforcement services. Each component is imple-
mented as an ASC2 agent, furthermore, the normative and enforcement services also
include an eFLINT instance.

An application service may directly query a normative service to, for example, gain
insights into whether they hold specific duties or powers. Conversely, normative ser-
vices may query application services in order to confirm specific facts. For example, a
healthcare provider could be asked to verify a receipt in order to ensure that an individ-
ual has the power to demand a refund from their insurance company. The integration
of normative actors and enforcement actors with the eFLINT and ASC2 languages is
demonstrated in a case study in the next section.

5 Case Study

The case study involves a notary automating the process of maintaining the registra-
tion of real estate properties and mortgages with a policy around national insurance
on mortgages that is updated from time to time, making it difficult to ensure and pre-
serve compliance. This section is designed to represent a variety of issues that concern
a regulated system and architectural requirements to address those issues. The study is
divided into four subsections, each narrating a different architectural aspect.

Figure 2 shows the overall architecture of the system. The notary application is used
by the notary to process property data in a certain city which includes a database of in-
formation about clients, properties, mortgages, etc. To make sure that all processes are
in compliance with relevant regulations, the notary has implemented an automated nor-
mative service which includes a normative reasoner (an eFLINT instance) that main-
tains the institutional state of the system. Listing 1 shows an excerpt of the eFLINT
norms specifications of the notary service.

At a technical level – through ASC2 – the normative service exposes endpoints that
the application can utilize to update and/or query the institutional state. In our example
this includes +fact(Fact) to report relevant data, +performed(Act) to report the



Regulatory Services to Automate Compliance with Ex-post Enforcement 7

Fact article-one
Identified by citizen * property
Holds when first-property(citizen, property)

Fact article-two
Identified by property
Holds when property.value <= property-mean-value

Act issue-nim
Actor notary
Recipient citizen
Related to mortgage, property

When mortgage.citizen == citizen && mortgage.property == property
Conditioned by article-one(), article-two()
Creates nim-covered(mortgage)
Holds When !nim-covered(mortgage)

Act register_occupant
Actor municipality
Recipient citizen
Related to property
Conditioned by owned_property(property) && !occupant()
Creates occupant()
Terminates (Foreach occupant : occupant

When occupant.citizen == citizen && occupant.property != property)
Holds when property

Listing 1: Snippet of notary’s normative service eFLINT specification

performance of acts, and ?fact(Fact)/?enabled(Act) to respectively query if a cer-
tain fact (or any sub-types such as acts and duties) holds and if a certain act is enabled
according to the institutional state of the service. As the internal state of the normative
service is updated, there may be inferred knowledge that will be sent to the application
service as events; this includes assertion and retraction of facts, (violated) duties, and
(violated) actions. The full code is publicly available online5.

5.1 Querying the Normative Service

The first and most intuitive requirement for a regulatory service is the ability to re-
spond to normative queries from the rest of the system. This means the service should
implement an interface to provide normative information when queried, e.g., if an ac-
tion is permitted in the current state or not. As specified in Listing 1, the act of issuing
collective insurance on mortgages (NIM) is encoded as the act issue-nim and is pre-
conditioned by: (Article 1) the mortgage pays for the first property of the receiver of
the mortgage and (Article 2) the value of the property is less than the mean value of all
properties in the city the property is located.

To see how the notary can use this service, assume a citizen Alice and a property
with the address A1 and a value of 500k which is more than the current average property
value. Also assume that this is Alice’s first property (information provided by City DB
in Figure 2) and that there is already a mortgage on this property not covered by NIM.
Alice believes that because this is her first property, without being aware of Article 2,

5 https://github.com/mostafamohajeri/jurix-notary

 https://github.com/mostafamohajeri/jurix-notary


8 L. Liu et al.

she can get covered by NIM. After she sends a request to the notary service, the service
agent (automatically) queries the normative service as:

?enabled(issue-nim(Notary,Alice,

mortgage(Alice,property(A1,500k)),property(A1,500k))).

to which the service will reply with false. Then, the application service can reply to
Alice that issuing a NIM is not possible, with any extra argumentation that it is config-
ured to provide. However, if the service agent decides to accept a NIM request with-
out consulting the normative service, a message +performed(issue-nim(...)) is
sent to the normative service. In the case of Alice, this results in a +violation(...)
message sent in response, indicating the performance of an illegal act. This example
illustrated how the regulatory service can be queried to provide normative information
about the current institutional state of the system. An important aspect of this architec-
ture is the stateful nature of eFLINT’s instances that allows the service to keep track of
the institutional state of the system instead of just hosting static regulations or policies.

5.2 Normative Event Notifications

Alongside the ability to respond to queries, another requirement for a regulatory ser-
vice is its ability to proactively notify other services about normative events that may
occur within the institutional state of the system. Continuing with the case study, in
the current situation, Alice cannot get NIM coverage. Fortunately, the notary provides a
pre-registration service –external to the regulations– that notifies citizens about changes
to their eligibility. As time goes on and the city develops, more expensive properties
are registered, until eventually Alice’s property falls under Article 2. At this moment,
the instance of article-two involving Alice is automatically created and the event
+enabled(issue-nim(...)) relating to Alice is generated. The normative service
agent includes the following abstract plan in its ASC2 script:

+enabled(issue-nim(N,C,Mortgage,Property)) :

preregister(C) => #inform("Application",

enabled(issue-nim(N,C,Mortage,Property))).

that informs the application service about this newly enabled act, which in turn can then
automatically (or manually by a human operator) issue the NIM. This action is reported
to the normative service as +performed(issue-nim(...)) to update the institutional
state of the normative service and possibly affect the normative positions of other cit-
izens. Note that although the pre-registration service is not part of the regulations, its
execution is based on the institutional state, i.e. on updates to normative positions. This
example illustrates how a regulatory service can not only respond to normative queries,
but also be programmed to proactively push normative notifications to the system.

5.3 Adapting to Changes

Norms are subject to change and it is pivotal for a regulatory service to take adaption to
future changes into account. Consider the new situation in which the regulations around



Regulatory Services to Automate Compliance with Ex-post Enforcement 9

national insurance on mortgages have been amended by the national government with
an extra requirement that NIM insurance can only be issued on properties of which
the owner is a registered occupant. If a citizen relocates, but still owns the property
at their old address, they are obliged to cancel the NIM coverage of the mortgage on
that property within a certain time window. The following specifications are added (at
run-time) to represent the amendment:

Fact article-three

Identified by citizen * property

Holds When occupant(citizen, property)

&& mortgage(citizen, property)

Extend Act issue-nim

Conditioned by article-three()

Duty duty-to-cancel-nim

Holder citizen

Claimant notary

Related to mortgage, occupant

When citizen == mortgage.citizen

&& citizen == occupant.citizen

Violated When undue-cancel-nim()

Holds When nim-covered(mortgage)

&& mortgage.property.address != occupant.property.address

With the new specification, new normative concepts and modified norms are introduced,
and the normative service generates a new state in which the amendment is now also
considered. The Act issue-nim now has not only the original two articles as its pre-
conditions but also article-three by applying the keyword Extend in eFLINT. The
previous state (although originating from a different specification) is then used to pro-
duce the new state reflecting the amended norms. If Alice registers at another address,
the municipality (represented as City DB in Figure 2) will provide this information to
the normative service with the following ASC2 plan:

+!register_occupant(Citizen,Property) =>

#coms.achieve("NotaryService",perform_normative(

register_occupant(Self,Citizen,Property),true)).

Reasoning from the new state and this information, a duty to cancel Alice’s NIM cover-
age as +duty(duty-to-cancel-nim(...)) is created. The normative service could
then notify the notary application about this duty, and also start a timer to track the
window in which this duty ought to be fulfilled. Then, the service will generate an
+undue-cancel-nim() event when that time is over, possibly resulting in an auto-
mated +violated(...) event being raised in case the duty is not terminated in time
by canceling the insurance. The following ASC2 plan notifies the enforcement service:

+violated(duty-to-cancel-nim(C,N,Mortgage,Occupant)) =>

#inform("Enforcer",cancellation-violation(C,N,Mortgage)).

This example represents a simple case of laws changing and the regulatory service
adapting to such changes. However, modification of laws is a complex matter; in Sec-
tion 7 we provide a brief discussion of the adaptation/modification process.



10 L. Liu et al.

5.4 Automatic Enforcement

The final part of our case study illustrates two concepts (1) distribution of control, and
(2) ex-post enforcement. In our regulatory services architecture, there could be multiple
normative service points, as illustrated in Figure 2, the enforcement service which is in
charge of handling violations is a separate service that includes its own internal norma-
tive reasoner. Also, unlike the notary normative service that mainly implements ex-ante
rules to govern other processes, the enforcement service takes action only after a vio-
lation has occurred, making it an ex-post enforcement service. The normative reasoner
within the enforcement service is instantiated with the following (partial) specification
to handle the cancellation of NIM:

Act enforce-cancel-nim

Actor enforcement-service

Recipient notary

Related to citizen, mortgage

Creates processing-fee()

Holds When cancellation-violation()

When the enforcement service receives a NIM cancellation violation event, according
to its institutional state, it will have the power to cancel the NIM (e.g., by instructing
the application service), and to generate a processing fee to be billed to the client (e.g.,
again through the application service), as is implemented by the following ASC2 plan:

+enabled(enforce-cancel-nim(Self, C, N, Mortgage)) =>

#achieve("Application",cancel-nim(N,C,Mortgage));

#achieve("Application",issue-cancellation-bill(N,C,Mortgage)).

This example also shows another interaction between institutional notions (regulations)
and extra-institutional notions (desires, goals). While the enforcement service has the
power to enforce cancellation, it has no duty to do so. Instead, the behavioral specifica-
tion determines that when given the power, the service desires to invoke cancellation.

6 Evaluation

This section gives a self-evaluation of the proposed solution based on a set of cri-
teria/requirements that we consider important and applicable to this study. To deter-
mine the evaluation criteria for this work, we surveyed a number of papers (including
[15,19,23,13,20]) and picked out the criteria that we consider relevant to our approach.

6.1 Evaluation Criteria

Compliance Strategy This criterion refers to various compliance checking strategies,
where compliance is evaluated either during the initial stages of process design (i.e.,
design-time/pre-execution time), when processes are in operation (i.e., run-time/execution-
time), or after the fact through audits that review process logs (i.e., auditing/post-execution) [20].
As argued before, we need a combination of these strategies to have full coverage and
we will use this criterion as an initial classification to distinguish different approaches.



Regulatory Services to Automate Compliance with Ex-post Enforcement 11

Norms Modeling The literature has emphasized the significance of norms modeling [15,19,20,23].
This modeling methodology extracts and represents requirements from legal texts and
models them into a certain form of representation. The purpose of norms modeling is
to ensure that the activities performed during the execution of a business process are
aligned with these normative specifications and to facilitate automated verification of
compliance.

Multiple Sources of Norms Organizations may need to comply with norms from a va-
riety of sources in a single process. For example in a data-sharing scenario, the systems
may need to adhere not only to GDPR but also to some internal policies and data-
sharing agreements between other parties.

Adaptation to Changes of Norms Since both norms and business processes will change
from time to time, regulatory services should take the evolution of norms into account
and support mechanisms to reflect and adapt to these changes.

Human Intervention Software may perform actions that legal experts find incorrect
or hard to comprehend. This lack of involvement by legal practitioners can make the
resulting systems challenging for them to use as evidence in compliance disputes, and
therefore, difficult to be accepted by users in the legal community. Despite the benefits
of automation in terms of efficiency and convenience, it is crucial to permit human
intervention when required.

Violation Handling and Reparation In Section 6.1, we mention that compliance can be
assessed before, during, or after process execution. Similarly, violations can be handled
by mechanisms that vary in multiple design dimensions [13,24].

Explanation As stated in previous subsections, modeling norms is a complicated task
because the meaning of legal inputs may not be captured accurately enough, not to
mention that those inputs could arise from various sources that may have different in-
terpretations and may be updated occasionally. Hence, it is desirable for software to
provide explanations for their behaviors and decisions (e.g., to explain what violation
was detected and what caused the violation).

6.2 Evaluation Results

In the subsequent paragraphs, we will examine the extent to which our approach aligns
and meets each criterion. A summarized version can be seen in Table 1.

Compliance Strategy The approach we present in this paper emphasizes the run-time
aspects of compliance using queries to determine the compliance of actions before com-
mitting to them and notifications of violating actions to enable ex-post enforcement. We
argue that our approach can also be combined with a design-time compliance strategy
as well as with methods for reporting compliance as part of auditing. However, we
argue that ex-post enforcement at run-time and as part of auditing processes are still
required for several reasons. We view our approach as a hybrid approach that covers
the full spectrum of compliance strategies. The offline compliance strategies are to be
discussed in further detail in future work.



12 L. Liu et al.

Table 1: Summary of the self-evaluation
Criterion Summarized Evaluation Results
Compliance Strategy Run-time strategy, but broadly speaking can be a hybrid approach
Norms Modeling eFLINT supports the Hohfeldian concepts of powers and duties
Multiple Sources Our implementation provides ways to support this feature, yet manually
Adaptation to Changes Norms can be amended by adding new types/modifying existing ones
Human Intervention Human involvement is allowed; the autonomy of human is guaranteed
Violation Handling The architecture holds ex-ante and ex-post enforcement strategies
Explanation Basic explanations are available

Norms Modeling We have used eFLINT to successfully express permission, duty,
power, and prohibition in our case study, and check the correctness with the involved
experts. More research is planned to evaluate the capability of this language in compar-
ison with alternatives, e.g., by formally comparing the underlying logics.

Multiple Sources of Norms In Section 5.4, we demonstrate the possibility to distribute
control by applying different sets of norms to different actors. Even though the two sets
of norms reside in two different actors, the connection of these norms can be found in
the related ASC2 plan. This ASC2 plan not only expresses the link between the two sets
of norms but also how they interact (e.g., given a power when a duty is unfulfilled). In
addition to ASC2 plans, eFLINT itself can also be used to express the cross-reference
idea between different sets of norms. Multiple sources of norms can be integrated into
systems following our architecture by instantiating multiple normative services and by
interconnecting multiple normative sources before applying them.

Adaptation to Changes of Norms As exemplified in Section 5.3, we support making
amendments to the interpretation of norms applied within our systems by submitting
code extensions. The extensions can contain new types to add powers, duties, events and
facts. Moreover, existing types can be extended to add pre-conditions, post-conditions,
violation conditions and derivation rules.

Human Intervention In Figure 1, the Users actor indicates where human actors could be
involved in a regulated system. According to the proposed architecture, human users can
take part in both ex-ante and ex-post enforcement. For example, when an ex-ante check
determines that a particular action within the application is considered non-compliant,
the application can still give the user the freedom the execute the action (possibly sub-
jected to a warning). For ex-post enforcement, an enforcement service can propagate
the notification of a violation to a user to let them determine how to respond to the
violation. Our architecture reflects that agents, whether they are software or human,
possess their own set of beliefs and have the autonomy to make their own decisions.

Violation Handling and Reparation While most approaches adopt only one type of
enforcement, we include both ex-ante and ex-post mechanisms. Having both of them
involved increases the coverage in run-time compliance strategies. For ex-ante compli-
ance, the architecture provides query-based permission checking and normative notifi-



Regulatory Services to Automate Compliance with Ex-post Enforcement 13

cations to help prevent non-compliant behaviors; for ex-post enforcement, compliance
is achieved through monitoring, automatic enforcement, and human intervention.

Explanation By making use of ASC2 and eFLINT, we can provide some explanation
about the normative results generated by the reasoner. For example, when observing a
violation, the normative service not only sends the name of the violation but also the
pre-condition (can be interpreted as the causes of this violation) and post-condition (can
be interpreted as the effects of this violation) to the receiver.

7 Discussion

We have presented a foundational architecture of regulated systems, a prototype in-
stantiating the proposed architecture for a case study, and an evaluation examining the
benefits and limitations of our approach. As a proof of concept, we conducted some
case studies to demonstrate the different components and their interactions focusing on
the different requirements of a regulatory service. Particularly noteworthy is how we
can amend norms dynamically, for example by adding (pre-)conditions to an existing
specification. In our implementation this is realized by adopting an extended set of rules
on an existing knowledge base capturing the institutional state. The architectural model
we propose is adaptable in that it can be implemented in a variety of ways, with our
prototype giving one example. The model is flexible in that design choices could be
made differently.

8 Conclusions

This paper presented a regulatory-compliant architecture for regulated systems to help
automate compliance with (for example) regulations and policies through normative
services and enforcement services. A novelty of our approach is that, besides ex-ante
enforcement, we include ex-post enforcement mechanisms in our design for increased
flexibility and adaptability, and to attempt to bridge the legal-technological gap. We
demonstrated the advantage of our approach in a case study. In particular, we have
shown the ability to amend norms and bring software systems closer to legal practice
by introducing (human or automated) responses to violations in (ex-post) enforcement
services. We also listed extensive relevant literature, hoping to draw a clearer picture of
this broad topic. In future work we intend to demonstrate and evaluate the benefits of
our approach further.

Acknowledgments This research is funded by the Dutch Organisation for Scientific
Research (NWO) under contracts 628.009.014 (SSPDDP project) and 628.001.001
(DL4LD project) and the AMdEX Fieldlab project supported by Kansen Voor West
EFRO (KVW00309) and the province of Noord-Holland.

Disclosure of Interests The authors have no competing interests to declare that are
relevant to the contents of this article.



14 L. Liu et al.

References

1. Aranda Garcı́a, A., Cambronero, M.E., Colombo, C., Llana, L., Pace, G.J.: Runtime verifi-
cation of contracts with themulus. In: de Boer, F., Cerone, A. (eds.) Software Engineering
and Formal Methods. pp. 231–246. Springer International Publishing (2020)

2. van Binsbergen, L.T., Kebede, M.G., Baugh, J., van Engers, T., van Vuurden, D.G.: Dynamic
generation of access control policies from social policies. Procedia Computer Science 198,
140–147 (1 2022)

3. van Binsbergen, L.T., Liu, L.C., van Doesburg, R., van Engers, T.: eFLINT: A Domain-
Specific Language for Executable Norm Specifications. In: Proceedings of the 19th ACM
SIGPLAN International Conference on Generative Programming: Concepts and Experi-
ences. p. 124–136. GPCE 2020, Association for Computing Machinery (2020)

4. Boella, G., Humphreys, L., Muthuri, R., Rossi, P., van der Torre, L.: A critical analysis of
legal requirements engineering from the perspective of legal practice. In: 2014 IEEE 7th
International Workshop on Requirements Engineering and Law (RELAW). pp. 14–21. IEEE
Computer Society (2014)

5. Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multiagent systems.
Computational and Mathematical Organization Theory 12(2-3 SPEC. ISS.), 71–79 (2006)

6. Broersen, J., van der Torre, L.: Ten Problems of Deontic Logic and Normative Reasoning in
Computer Science, pp. 55–88. Springer Berlin Heidelberg (2012)

7. Chiu, D.K., Cheung, S.C., Till, S.: A three-layer architecture for e-contract enforcement in an
e-service environment. In: Proceedings of the 36th Annual Hawaii International Conference
on System Sciences - Track 3 - Volume 3. p. 74.1. IEEE Computer Society (2003)

8. Criado, N., Argente, E., Noriega, P., Botti, V.: Towards a normative BDI architecture for
norm compliance. CEUR Workshop Proceedings 627, 65–81 (2010)

9. Criado, N., Argente, E., Noriega, P., Botti, V.: Manea: A distributed architecture for enforcing
norms in open mas. Engineering Applications of Artificial Intelligence 26(1), 76–95 (2013)

10. Dastani, M., Sardina, S., Yazdanpanah, V.: Norm enforcement as supervisory control. In: An,
B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds.) PRIMA 2017: Principles and
Practice of Multi-Agent Systems. pp. 330–348. Springer International Publishing (2017)

11. Dignum, F., Kinny, D., Sonenberg, L.: Motivational attitudes of agents: On desires, obliga-
tions, and norms. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 2296(Section 2), 83 (2002)

12. El Gammal, A.: Towards a comprehensive framework for business process compliance.
Ph.D. thesis, Tilburg University, School of Economics and Management (2012)

13. El Kharbili, M.: Business process regulatory compliance management solution frameworks:
A comparative evaluation. In: Proceedings of the Eighth Asia-Pacific Conference on Con-
ceptual Modelling - Volume 130. p. 23–32. APCCM ’12, Australian Computer Society, Inc.
(2012)

14. Elakehal, E.E., Montali, M., Padget, J.: Run-time verification of msmas norms using event
calculus. In: Proceedings of the 2014 IEEE Eighth International Conference on Self-
Adaptive and Self-Organizing Systems Workshops. p. 110–115. SASOW ’14, IEEE Com-
puter Society (2014)

15. Elgammal, A., Turetken, O., van den Heuvel, W.J., Papazoglou, M.: On the formal specifi-
cation of regulatory compliance: a comparative analysis. In: Service-Oriented Computing:
ICSOC 2010 International Workshops, PAASC, WESOA, SEE, and SOC-LOG, San Fran-
cisco, CA, USA, December 7-10, 2010, Revised Selected Papers 8. pp. 27–38. Springer
(2011)

16. Ellul, J., Pace, G.J.: Runtime verification of ethereum smart contracts. In: 14th European
Dependable Computing Conference (EDCC). pp. 158–163. IEEE Computer Society (2018)



Regulatory Services to Automate Compliance with Ex-post Enforcement 15

17. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reaction. In:
Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification: Introductory and Advanced
Topics, pp. 103–134. Springer International Publishing (2018)

18. Gibbs, J.P.: Norms: The problem of definition and classification. American Journal of Soci-
ology 70(5), 586–594 (1965)

19. Hashmi, M., Governatori, G.: Norms modeling constructs of business process compliance
management frameworks: a conceptual evaluation. Artificial Intelligence and Law 26(3),
251–305 (2018)

20. Hashmi, M., Governatori, G., Lam, H.P., Wynn, M.T.: Are we done with business process
compliance: state of the art and challenges ahead. Knowledge and Information Systems
57(1), 79–133 (2018)

21. Heutelbeck, D.: Demo: Attribute-Stream-Based Access Control (ASBAC) with the Stream-
ing Attribute Policy Language (SAPL). In: Proceedings of the 26th ACM Symposium on
Access Control Models and Technologies. p. 95–97. SACMAT ’21, Association for Com-
puting Machinery (2021)

22. Hohfeld, W.N.: Fundamental legal conceptions as applied in judicial reasoning: and other
legal essays. Yale University Press (1923)

23. Lam, H.P., Hashmi, M.: A comparative study of compliance management frameworks: Pene-
lope vs. pcl. Knowledge 2(4), 618–651 (2022)

24. Liu, L.C., Sileno, G., Van Engers, T.: Digital Enforceable Contracts (DEC): Making Smart
Contracts Smarter. In: Legal Knowledge and Information Systems, pp. 235–238. IOS Press
(2020)

25. Luck, M., d’Inverno, M., et al.: A normative framework for agent-based systems. Computa-
tional & Mathematical Organization Theory 12(2), 227–250 (2006)

26. Mohajeri Parizi, M., Sileno, G., van Engers, T.: Seamless Integration and Testing for MAS
Engineering. In: Engineering Multi-Agent Systems. pp. 254–272. Springer International
Publishing (2022)

27. Mohajeri Parizi, M., Sileno, G., van Engers, T., Klous, S.: Run, Agent, Run! Architecture
and Benchmarking of Actor-Based Agents, p. 11–20. Association for Computing Machinery
(2020)

28. Molina-Jimenez, C., Shrivastava, S., Strano, M.: A model for checking contractual com-
pliance of business interactions. IEEE Transactions on Services Computing 5(2), 276–289
(2012)

29. Pandžić, S., Broersen, J., Aarts, H.: Boid*: Autonomous goal deliberation through abduction.
In: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent
Systems. p. 1019–1027. AAMAS ’22, International Foundation for Autonomous Agents and
Multiagent Systems (2022)

30. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In:
de Velde, W., Perram, J.W. (eds.) Agents Breaking Away. pp. 42–55. Springer Berlin Heidel-
berg (1996)

31. Rissanen, E.: eXtensible Access Control Markup Language (XACML) Version 3.0 (Jan
2013)

32. Salmond, J.W.: Jurisprudence: Or, The Theory of the Law. Stevens and Haynes (1902)
33. Sánchez, C., Schneider, G., Ahrendt, W., Bartocci, E., Bianculli, D., Colombo, C., Falcone,

Y., Francalanza, A., Krstić, S., Lourenço, J.M., Nickovic, D., Pace, G.J., Rufino, J., Signoles,
J., Traytel, D., Weiss, A.: A survey of challenges for runtime verification from advanced
application domains (beyond software). Formal Methods in System Design 54(3), 279–335
(2019)


	Regulatory Services to Automate Compliance with Ex-post Enforcement

