
Adaptive Structural Operational Semantics
Gwendal Jouneaux

gwendal.jouneaux@irisa.fr
Univ. Rennes, Inria, IRISA

Rennes, France

Damian Frölich
dfrolich@acm.org

University of Amsterdam
Amsterdam, The Netherlands

Olivier Barais
Benoit Combemale

firstname.lastname@irisa.fr
Univ. Rennes, Inria, IRISA

Rennes, France

Gurvan Le Guernic
gurvan.le_guernic@inria.fr

DGA Maîtrise de l’Information, Univ.
Rennes, Inria, IRISA

Rennes, France

Gunter Mussbacher
gunter.mussbacher@mcgill.ca

McGill University, Inria
Montreal, Canada

L. Thomas van Binsbergen
ltvanbinsbergen@acm.org
University of Amsterdam

Amsterdam, The Netherlands

Abstract
Software systems evolve more and more in complex and
changing environments, often requiring runtime adaptation
to best deliver their services. When self-adaptation is the
main concern of the system, a manual implementation of
the underlying feedback loop and trade-off analysis may be
desirable. However, the required expertise and substantial de-
velopment effort make such implementations prohibitively
difficult when it is only a secondary concern for the given
domain. In this paper, we present ASOS, a metalanguage ab-
stracting the runtime adaptation concern of a given domain
in the behavioral semantics of a domain-specific language
(DSL), freeing the language user from implementing it from
scratch for each system in the domain. We demonstrate our
approach on RobLANG, a procedural DSL for robotics, where
we abstract a recurrent energy-saving behavior depending
on the context. We provide formal semantics for ASOS and
pave the way for checking properties such as determinism,
completeness, and termination of the resulting self-adaptable
language. We provide first results on the performance of our
approach compared to a manual implementation of this self-
adaptable behavior. We demonstrate, for RobLANG, that our
approach provides suitable abstractions for specifying sound
adaptive operational semantics while being more efficient.

CCS Concepts: • Software and its engineering→ Speci-
fication languages; Semantics; Source code generation.

Keywords: DSL, Operational Semantics, Self-Adaptation

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
SLE ’23, October 23–24, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0396-6/23/10. . . $15.00
https://doi.org/10.1145/3623476.3623517

ACM Reference Format:
Gwendal Jouneaux, Damian Frölich, Olivier Barais, Benoit Combe-
male, Gurvan Le Guernic, Gunter Mussbacher, and L. Thomas
van Binsbergen. 2023. Adaptive Structural Operational Seman-
tics. In Proceedings of the 16th ACM SIGPLAN International Con-
ference on Software Language Engineering (SLE ’23), October 23–
24, 2023, Cascais, Portugal. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3623476.3623517

1 Introduction
In a constantly evolving world, the need to design programs
malleable to varying execution conditions (i.e., self-adaptive
programs) is an important issue that has been worked on for
many years by the adaptive systems community [16]. While
there exist many frameworks (e.g., [15, 37]) and architectural
approaches (e.g., [5, 21]), one of the difficulties in the field of
domain-specific languages is for the average domain experts
to be in a position to have to handle this concern, that is
naturally outside their expertise. Indeed, this goes against
the intuition that a domain-specific language (DSL) allows
a domain expert to focus on their domain and generally
leads to incorporating dedicated concepts for implementing
self-adaptation in domain-specific languages.

To solve this problem, we propose a metalanguage, named
ASOS (Adaptive Structural Operational Semantics), aimed
at freeing the domain expert from the task of implementing
self-adaptation. ASOS allows to define context-adaptable se-
mantics for domain-specific languages. Built as an extension
of MSOS [25], our approach aims to:

• Provide modular abstractions for defining and apply-
ing adaptations in the DSL’s operational semantics;

• Leverage a static introduction mechanism for compos-
ing the definition of an adaptation;

• Ensure that the adaptations introduced within the se-
mantics of a DSL do not break the fundamental prop-
erties of programs written in the DSL, such as deter-
minism, completeness, and termination.

The contributions of this paper encompass (1) the defini-
tion of the ASOS metalanguage, (2) ASOS formal semantics

29

https://orcid.org/0000-0003-1158-9335
https://orcid.org/0000-0003-1016-5303
https://orcid.org/0000-0002-4551-8562
https://orcid.org/0000-0002-7104-7848
https://orcid.org/0000-0003-0387-9738
https://orcid.org/0009-0006-8070-9184
https://orcid.org/0000-0001-8113-2221
https://doi.org/10.1145/3623476.3623517
https://doi.org/10.1145/3623476.3623517

SLE ’23, October 23–24, 2023, Cascais, Portugal G. Jouneaux, D. Frölich, O. Barais, B. Combemale, G. Le Guernic, G. Mussbacher, L.T. van Binsbergen

for reasoning over self-adaptable operational semantics, and
(3) a first implementation through a translational semantics
fromASOS to SEALS [17], a framework for self-adaptable lan-
guages. This paper illustrates the concepts of the approach in
the definition of a DSL for robot behavior (named RobLANG).

We then present the applicability of the approach on Rob-
LANG. Next, we define the formal semantics of the ASOS
metalanguage and discuss the alignment of the implementa-
tion with the formal semantics. Furthermore, we hint at the
capability of verifying properties such as determinism, termi-
nation, and completeness of a program bound to an adaptive
semantics. Lastly, we evaluate the performance overhead as-
sociated with the approach. We conclude that ASOS provides
the foundations for specifying sound adaptive operational
semantics while introducing little performance overhead
compared to a manual implementation.
The remainder of the paper is as follows. Section 2 pro-

vides background and motivation, and introduces RobLANG.
The following section gives an overview of our approach,
including the definition of the abstract syntax and semantics
of a self-adaptable language and the configuration of the
self-adaptation loop. Section 4 details the syntax and seman-
tics of ASOS. The last three sections present the evaluation,
related work, and our conclusion and future work.

2 Motivation and Illustrative Example
While a manual implementation of the self-adaptation con-
cern may be desirable when it is the main concern of the
system, the required expertise and substantial development
effort often does not justify a manual approach when it is
only a secondary concern for the given domain. A more
automated approach is needed. Hence, we first provide back-
ground information on self-adaptive system design and de-
scribe the limitations of the current approaches in the context
of domain-specific languages (DSLs). Finally, we present the
RobLANG DSL as an illustrative example that would benefit
from the abstraction of self-adaptation at the language level.

2.1 Design of Self-Adaptive Systems
Self-adaptive systems are designed to adjust their behavior
based on changes in the system or its environment. This
changement of behavior is called an adaptation. They use
sensors to gather data, analyze the current situation, decide
on a new behavior if necessary, and implement the changes
through effectors. This process is known as the feedback loop
scheme, which consists of four main functions: Monitoring,
Analysis, Planning, and Execution (MAPE-K) [19].

Previous work helps in the design of self-adaptive sys-
tems providing architectural solutions (e.g., three layer ar-
chitecture [21], MORPH [5], PLASMA [35]) and frameworks
(e.g., Executable Runtime Megamodels [37], DCL [27], Ac-
tivFORMS [15], Ponder2 [36]). While architectural solutions
give guidelines, they generally do not support designers dur-

ing the implementation. Meanwhile, frameworks provide
support to the designer. However, those frameworks are
restricted to the languages they were designed for, likely
requiring re-implementation for other languages.

Another way to design a self-adaptive system is to define
self-adaptation at the meta-level. SEALS [17], e.g., supports
language engineers in the implementation of self-adaptable
virtual machines, providing abstractions and avoiding to
re-implement a known framework for self-adaptation from
scratch. SEALS provides facilities to support the definition
of the language abstract syntax and operational semantics,
the feedback loop and associated trade-off reasoning, and
the adaptation semantics and the predictive model of their
impact on the trade-off (Impact Model). However, SEALS
does not readily enable formal verification of properties such
as determinism, completeness, and termination.

2.2 Limitations of Current DSL Approaches
In the context of DSLs, the re-implementation of frameworks
for self-adaptation can be tedious or impossible, depending
on the expressiveness of the language. E.g, the difficult task
of implementing a constraint solving algorithm for trade-off
analysis or monitoring the execution environment (e.g., CPU,
RAM) may not be supported. Moreover, this implementation
requires the language user to be an expert in the design of
self-adaptive systems, which is often not the case. However,
designing self-adaptation at the meta-level offers appropriate
tooling to language engineers for the implementation.

2.3 Illustrative Example: Energy-Aware RobLANG
RobLANG1 is a representative of procedural DSLs used, in
this case, for specifying the actions of a robot. The domain
concepts manipulated in RobLANG include speed changes,
movement (forward and backward), orientation (turn left-
/right), and use of the sensors (e.g., battery, distance). To or-
chestrate these actions, RobLANG also has functions, control
structure (if and while), arithmetic and boolean expressions.
Often, the domain of robotics requires developers to im-

plement the behavior of the robot with energy efficiency
in mind to avoid battery depletion. One way to reduce the
energy consumption of a robot is to reduce the speed of
the motors. This is due to the exponential increase in motor
energy costs as a function of speed [2].
However, speed is often also an important factor in the

robot mission. Therefore, it is necessary to dynamically apply
this speed reduction, depending on the trade-off between
energy consumption and speed, taking into account various
potentially dynamic pieces of information (e.g., availability of
the power supply, current level of the battery, time estimation
to complete the current task, importance of the task).

In this context, RobLANG would benefit from the abstrac-
tion of this recurrent adaptive behavior in a metalanguage

1Implementation : https://www.gwendal-jouneaux.fr/SLE2023/RobLANG

30

https://www.gwendal-jouneaux.fr/SLE2023/RobLANG

Adaptive Structural Operational Semantics SLE ’23, October 23–24, 2023, Cascais, Portugal

to free the language user from the implementation of the
feedback loop and trade-off analysis.

3 Approach Overview
This section presents a general overview of our approach and
describes ASOS (Adaptive Structural Operational Semantics),
a metalanguage to specify and reason on self-adaptable oper-
ational semantics. Figure 1 depicts the design of a language
with adaptive operational semantics, i.e., a Self-Adaptable
Language (SAL), and the generation of an interpreter in
SEALS [17], an implementation framework for building self-
adaptable virtual machines (see Section 2.1). SEALS is used
as the target of the generation because of the suitable abstrac-
tion. The goal is to allow, through ASOS, to reason about
such semantics, rather than on SEALS Java code. The execu-
tion of the ASOS semantics rules of the SAL are presented
in Figure 2, starting from the Evaluate step, with first the
feedback loop and then the rule executions.
The definition of a self-adaptable language, as in other

languages, includes the definition of its abstract syntax and
semantics. The abstract syntax specifies the domain concepts
of the language and their relations, whereas the semantics
define the meaning of those concepts. In this paper, with
SEALS as the target implementation framework, we focus on
operational semantics as a way to define language semantics.

3.1 Abstract Syntax Definition
In the modeling community, the abstract syntax is often
expressed with a metamodel. Since SEALS relies on a Java-
based definition of abstract syntax, we choose to use Ecore [34]
as the metalanguage to express the metamodel. In addition,
a generator from Ecore to Java classes using EMF [34] exists
and can be modified to generate the SEALS-based interpreter.
This allows a language engineer to define the abstract syntax
as they would normally do for any Ecore-based DSL defini-
tion (e.g., EcoreTools [34]). Figure 1 represents this by the
language engineer defining the abstract syntax conforming
to the Ecore metamodel, and the SEALS-based interpreter
being generated for the language implementation.

Figure 1. Approach overview

Figure 2. Overview of ASOS semantics execution

3.2 Operational Semantics Definition
Operational semantics define the meaning of the language
concepts by expressing the computational steps (evolution
of the state of the execution at runtime). The operational se-
mantics of a language can be expressed using metalanguages
such as Structural Operational Semantics (SOS) [29], and is
typically implemented through an interpreter or a compiler.

In particular, SEALS defines operational semantics in the
form of an interpreter composed of three components: a de-
fault semantics for the language, a feedback loop performing
analyses, and modular adaptations modifying the default
semantics. SEALS, through this decomposition, ensures a de-
fault behavior and allows the delegation of the development
and/or configuration of adaptations to the language users,
or even the end-users. ASOS keeps this decomposition for
the same reasons. These three components are represented,
in Figure 2, through the stack of Default Rule at the bottom,
the Feedback Loop dashed box, and the stack of Adaptation
Module on the right, respectively.
To support a modular approach and the ability to rea-

son on operational semantics, we choose to base our defi-
nition of default and adaptation semantics on Modular SOS
(MSOS) [25] and its extension I-MSOS [26]. Among the po-
tential frameworks to formally specify semantics, such as
K [32] and its matching logic [31], we choose MSOS for its
focus on modular definition of operational semantics and the
implicit propagation of auxiliary components of its extension
I-MSOS, reducing redundancy in the rule writing and fitting
the propagation of models through programs execution.

31

SLE ’23, October 23–24, 2023, Cascais, Portugal G. Jouneaux, D. Frölich, O. Barais, B. Combemale, G. Le Guernic, G. Mussbacher, L.T. van Binsbergen

3.2.1 Default Semantics (Rules). The definition of the
default semantics is a set of transition rules for all the con-
cepts of the language. I-MSOS transition rules can be decom-
posed into several components, presented in Figure 3. First,
the conclusion of the rule represents the effect of the transi-
tion on the state. This transition from a pattern used to match
a particular term structure, i.e., the input pattern, results in a
new term to be evaluated or a computed value to return, i.e.,
the result of the rule. When a transition is performed, we say
that the term matching the input pattern progressed to the
result. In addition, this transition can affect auxiliary entities
such as the memory. In I-MSOS, these auxiliary entities are
implicitly propagated and only expressed when a rule makes
use of them. This conclusion is conditioned by two other
components of the rule: side-conditions and premises.
Side-conditions allow to limit the application of the rule

to a subset of the terms matching the structure defined in
the conclusion of the rule. For example, a rule performing a
division would only apply if the divisor is not zero. These
conditions are also used to describe computations over com-
puted values. For instance, a rule performing an addition
would define a condition 𝑛 = 𝑛1 + 𝑛2 such as 𝑛1 and 𝑛2 are
the computed values of the left and right expressions. In this
case, rather than evaluating the predicate, those conditions
require an instance of 𝑛 to make the predicate true, thus
computing the value for 𝑛.

On the other hand, premises define assertions on the abil-
ity of subterms (terms contained in themain term) to progress,
i.e., perform transitions. It differs from the side-condition
computations, as it represents computations of terms using
rules.For example, a rule in charge of evaluating the condi-
tion of an if statement progresses to a term representing the
same statement but replacing the original condition by the
result of its progression. However, this makes sense only if
the condition can progress. Hence, this rule is conditioned
by a premise on the ability of the condition to progress.
ASOS reuses these concepts in the definition of its rules,

which are detailed in Section 4.1. The key difference with
I-MSOS is the clear separation between side-conditions and
computations present in ASOS. In ASOS, computations are
explicit and grouped, with assignment of values to/from
the propagated auxiliary entities, in a dedicated section of
the rule. Hence, making the side-conditions, as for the pat-
tern matching, has no side effects. In the proposed imple-
mentation, these auxiliary entities are defined using a meta-

Figure 3. Structure of I-MSOS rule

model representing the structure of the semantic domain.
The merge of the abstract syntax metamodel and the meta-
model for the semantic domain forms the execution meta-
model. Instances of this execution metamodel (execution
models) represent the runtime state of the program, which
is implicitly propagated in the runtime in the same way as
the I-MSOS auxiliary entities.

3.2.2 Feedback Loop and Trade-Off Reasoning. At the
core of a self-adaptable language, there is a feedback loop
selecting the adaptations to perform depending on moni-
tored resources and the desired trade-off between the ad-
dressed properties of interest. The resources represent the
environment uponwhich the decision to adapt is taken, while
properties of interest denote the specific properties that we
seek to maximize through adaptations. To implement the
feedback loop, SEALS requires the implementation of the
Monitor, Analyze, Plan, and Execute phases (red boxes of the
feedback loop in Figure 2) and Knowledge base, providing
the resources to monitor, the properties of interest, and the
function reading the desired trade-off. ASOS provides an
implementation for the Analyze, Plan, and Execute phases of
the feedback loop based on the modeling approach provided
by the framework. However, the feedback loop still requires
configuration. The resources and properties of interest needs
to be configured in SEALS, andmonitoring hooks must be im-
plemented to update resources values. They are represented
in the Knowledge box of the Feedback Loop, and by the "read"
and "update" arrows in Figure 2 (see also the Feedback Loop
in Figure 1). In this first version of ASOS, we do not provide
abstractions for the configuration and monitoring hooks to
retain flexibility to implement various strategies.

3.2.3 Defining AdaptationsModules. Finally, to express
the adaptations of the operational semantics, ASOS requires
adaptation modules.An adaptation module can be defined
by the language engineer, or delegated to other stakeholders
(e.g., language users, end-users). However, while the inclu-
sion of external adaptation modules is facilitated by SEALS
and generated code from ASOS, the method used to manage
external adaptations (e.g., link in command line, dedicated
folder) is left to the language engineer to implement.
An adaptation module is defined by three components:

adaptation rules, matching clauses, and a model of expected
impacts of the adaptation on the properties of interests. Adap-
tation rules are defined similar to default rules but with an
additional description on how to introduce them in the oper-
ational semantics dynamically and under which conditions.
We propose three ways to introduce adaptation rules: (i) spe-
cialization, where the new rule replaces an existing rule,
(ii) before, where the new rule is executed before another
rule, and (iii) after, where the new rule is executed after an-
other rule. It means that before executing the default rule,
as depicted in the Rules execution box of Figure 2, the appli-
cable before adaptations are called, then either one of the

32

Adaptive Structural Operational Semantics SLE ’23, October 23–24, 2023, Cascais, Portugal

specialization rules or the default rule is applied, and finally
the applicable after adaptations are called.
Of course, an adaptation may not always apply. To spec-

ify when the conditions are met and the adaptation can be
introduced, we propose a matching system based on a struc-
tural matching on the Abstract Syntax Tree and conditions
on the runtime values in the execution model. As shown in
Figure 2, every adaptation module define Matches, that are
used during a Matching step verifying if the adaptation is
applicable on the current AST node.
In addition to this matching system, an adaptation also

needs to be activated by a feedback loop evaluating its rel-
evance to the current trade-off and environment. To do so,
the adaptation module must declare a predictive model of
its impact on the properties of interest, the Impact Model.
This model is used in the Plan phase of the Feedback Loop
(see Figure 2) to select the set of adaptations based on the
trade-off given the current context. The adaptations are then
enabled in the Execute phase.

The SEALS implementation for adaptation modules is de-
rived from the ASOS specification for this module. However,
the impactmodel for this module still needs to be defined. It is
left as future work to provide the appropriate abstractions for
the impact models in ASOS because there are multiple alter-
natives to implement the Analyze and Plan phases and define
the impact models (e.g., Goal Modeling, Machine Learning).
When using the base implementation of the feedback loop
provided by ASOS, the language engineer will have to define
a goal modeling-based impact model using the constructs
provided by the SEALS framework.

4 The ASOS Metalanguage
ASOS2 is a declarative language to specify operational seman-
tics based on MSOS [25]. ASOS extends MSOS by providing
abstractions to define runtime dynamic adaptation of the
operational semantics of the language. The definition of the
operational semantics is done through transition rules in the
same fashion as MSOS. The additional adaptation concern
is managed using adaptation rules, i.e., transition rules with
additional information on how and when to introduce them
in the set of applicable transition rules. This is defined us-
ing the ASOS matching system because it allows to express
structural patterns that are not possible to express using
typical MSOS rule format [9].

4.1 ASOS Syntax
This section describes the abstract syntax of the ASOS meta-
language. Figure 4 shows the main concepts of the ASOS
metamodel. Adaptive Operational Semantics is the top-
level concept representing the adaptive operational seman-
tics of the implemented DSL, and is composed of a set of rules
and a set of adaptation modules representing the default se-

2Implementation: https://www.gwendal-jouneaux.fr/SLE2023/ASOS

mantics and the adaptation semantics of the language. We
use RobLANG3 as an illustrative example with the concrete
syntax provided by the implementation (Section 4.2).

4.1.1 Structure of Transition Rules. The Rule concept
is at the core of ASOS, describing the computation to per-
form for a given concept. These computations are mainly
described using the Transitions components of the rule.
Two types of transitions exist, the conclusion of the rule and
the premises. Both represent the same concepts as the ones
from MSOS described in Section 3.2.
1 rule IfCond ,

2 RobLANG.If(cond , then , else)

3 ->
4 RobLANG.If(newcond , then , else)

5 resolve

6 cond -> newcond

7
8 rule IfTrue ,

9 RobLANG.If(sd.ValueBool(b), then , else) -> then

10 where

11 b == true

12
13 rule IfFalse ,

14 RobLANG.If(sd.ValueBool(b), then , else) -> else

15 where

16 b == false

Listing 1. Transition rules to compute an if condition

Listing 1 presents the definition of three Rules for the If
concept. Transitions are represented using an arrow (→),
with the conclusion defined as the first transition in the rule
(e.g., lines 2-4 for rule IfCond) and premises defined in the
resolve section (e.g., line 6). The LHS and RHS of transitions
are Terms except that the LHS of the conclusion transition
(e.g., line 2) must be a Configuration defined in the abstract
syntax of the DSL. Such a Configuration is prefixed with
RobLANG and defines the concept on which to execute the
rule. A concept prefixed with sd is also a Configuration but
defined in the semantic domain structure and represents the
computed values. The constructor notation4 is used to denote
a Configuration (e.g., RobLANG.If(...)), whereas Symbols
are represented as identifiers (e.g., cond, then, else).
The subterms in the parenthesis of the constructor nota-

tion correspond to the elements contained in this concept as
defined in the DSL’s abstract syntax. This could represent a
computed value constructor (e.g., sd.ValueBool(...) in line 9)
or it could bind a name to the subterm of a configuration for
further use in the premise (e.g., cond). The subterms allow us
to represent part of the state of the evaluation of the concept,
and update it. When defining a computed value construc-
tor (prefixed with sd) for a subterm (see line 9), this implies
that this subterm has been computed. Moreover, premises
assert that a subterm, via a transition, can change state. In
line 6 of IfCond, the state of evaluation of the if condition
changed, and the newcond Symbol is bound to this new state.
3Specification: https://www.gwendal-jouneaux.fr/SLE2023/ASOSRobLANG
4A constructor notation is the pattern : prefix.Concept(subterms...)

33

https://www.gwendal-jouneaux.fr/SLE2023/ASOS
https://www.gwendal-jouneaux.fr/SLE2023/ASOSRobLANG

SLE ’23, October 23–24, 2023, Cascais, Portugal G. Jouneaux, D. Frölich, O. Barais, B. Combemale, G. Le Guernic, G. Mussbacher, L.T. van Binsbergen

Figure 4. ASOS Metamodel (ConditionalExpression, Expression, and Location omitted to focus on main concepts)

The constructor notation akin to algebraic data allows us to
express the impact of this change in the evaluation state of
the If concept by changing cond to newcond in the output
term (RHS of transition) using the Symbol as a reference.
Just like in I-MSOS, memory and other auxiliary entities are
propagated implicitly and do not need to be represented.
In addition to the premises assertion, rules can be condi-

tional. The IfTrue rule includes a Condition (line 13) in the
where section of the rule. A condition could be used to de-
fine first-order logic predicates over values. For instance, the
choice of the branch of the if statement to execute depends
on the condition truth value.

1 rule Break ,

2 RobLANG.BreakLoop ()

3 ->
4 termination sd.BreakSignal ()

5
6 rule LoopTrueBreak ,

7 RobLANG.Loop(sd.ValueBool(b), body)

8 ->
9 sd.NilValue ()

10 where

11 b == true

12 resolve

13 body -> termination sd.BreakSignal ()

Listing 2. Abrupt termination using loop breaking

To ease handling abrupt termination (e.g., errors, breaks,
returns), transitions can emit and receive abrupt termina-
tion signals using the keyword termination. Conclusion
transitions using the termination keyword emit a signal
containing the usual output (e.g., line 4 in Listing 2). On
the other hand, premises with a termination nature (e.g.,
line 13) are the only premises matching a transition emitting
such signal. This allows the language engineer to receive
and handle this abrupt termination, while remaining obliv-
ious of the upward propagation of these signals when not
managed. Furthermore, support of termination allows for
default handling to be embedded in the ASOS metalanguage.

Transitions may require computations and/or storing ca-
pabilities to describe the arrival state (e.g., arithmetic ex-
pressions, assignments). In ASOS, both are managed using
the Binding construct. Bindings associate the result of an
expression to a location. This location can be either a new
Symbol (e.g., line 6 in Listing 4), allowing reuse of the expres-
sion result in the output of the transition, or a "dot" notation
allowing to set values in the execution model propagated
during the execution. Expressions support the "dot" notation
to access the execution model, symbol reference, the usual
arithmetic and boolean operators, and constants.
Finally, some concepts involve an external component

either for Input or Output. For example, print statements
require access to a communication interface, i.e., the console.
This access is managed through external functions conform-
ing to a predefined signature in the semantic domain struc-
ture definition. In addition, the on keyword can be used to
specify the object on which to call the function. An Input
is denoted through the assignment of a function result (e.g.,
lines 8-9 in Listing 4), while an Output is just a function call
(e.g., lines 10-12 in Listing 4).

4.1.2 Adaptation Modules Definition. Adaptations are
defined in modules. An Adaptation Module groups a set
of transition rules representing the adaptation of a concept.
These transition rules are defined like other transition rules
as explained earlier. However, an adaptation developer needs
to additionally define the conditions to apply the adaptation
at the module level, and how the adaptation rules are added
to the operational semantics at the rule level.
1 recursive match RobLANG.Loop(

2 RobLANG.GreaterEqual(

3 lhs ,

4 RobLANG.DoubleConstant(d)),

5 body)

6 where

7 d == 0.0

Listing 3. Match clause of an adaptation module

34

Adaptive Structural Operational Semantics SLE ’23, October 23–24, 2023, Cascais, Portugal

The conditions are defined using a Match clause. This
match clause is composed of a recursive (or not) nature, a
structural match, and conditions, the latter two being similar
to the input pattern (LHS of conclusion transition) and where
section of a rule, respectively. Listing 3 gives an example of
an adaptation module’s match clause. In this example, the
structural match targets a while loop of the form: while(lhs ≥
d){body}. Moreover, the where section condition ensures that
the constant d is equal to 0. The match describes a configura-
tion which leads to the dynamic introduction of the module
adaptation rules in the operational semantics when the cur-
rent term to evaluate is matched. The new rules introduced
can be used for the evaluation of this term and/or all of its
descendant in the AST. If a descendant of the matched term
happens to be of the same nature (here the Loop concept)
but is not valid with respect to the match clause, there are
two possibilities. If the match clause possesses the recursive
nature, nothing changes and the introduced rules remains.
However, if the match is not recursive, the introduced adap-
tation rules are removed from the operational semantics for
the descendant and the associated sub-tree of the AST.

To define how to introduce adaptation rules in operational
semantics, we propose three types of adaptation rules pre-
sented in Listing 4. A Specialization adaptation defines a
rule that will replace a target rule in the operational seman-
tics. For instance, the adaptation rule HalfSpeedForward is a
rule that replaces the ForwardAct rule to perform the mov-
ing forward action at half of the speed. Before and After
adaptation also target an existing rule, but the rule defined
is executed respectively before or after the target rule.
1 Specialize ForwardAct rule HalfSpeedForward ,

2 RobLANG.MoveForward(sd.ValueDouble(d))

3 -> sd.NilValue ()

4 bind

5 half = 0.5 * s

6 IO

7 ctx = RobLANG.WithContext.getContext ();

8 s = sd.Context.getNominalSpeed () on ctx;

9 sd.Context.setSpeed(half) on ctx;

10 sd.Context.moveRobot(d) on ctx;

11 sd.Context.setSpeed(s) on ctx

12
13 Before TargetRule rule BeforeTargetRule ,

14 ...

15 After TargetRule rule AfterTargetRule ,

16 ...

Listing 4. Three types of adaptation rules

4.1.3 Well-Formedness Rules. To specify a well-formed
ASOS semantics, additional constraints on the abstract syn-
tax need to be followed. First, all transitions in a rule are
not defined in the same way. The transition representing the
conclusion of the rule requires a Configuration defined in
the abstract syntax of the DSL as left Term (from), which is
not the case for premises. Second, List terms, representing
subterms with cardinality greater than 2, can only be used as
subterms to decompose, for instance, the list of statements

in a loop. Finally, adaptation rules require well-formedness
constraints to ensure their applicability. Thus, a Before adap-
tation requires, as result, a valid term that can be executed
by the adapted rule.

4.2 ASOS Translational Semantics
In this section, we detail the current implementation of the
ASOS language. This implementation takes the form of a
translational semantics to a Java implementation based on
Ecore [34] and the SEALS framework [17].

4.2.1 Derive Java Code from ASOS Transition Rules.
To derive a Java implementation of a transition rule, we
divide the rule into two parts: effects and guards. Effects
represent the effects of the rule on the state, such as the
resulting term of the rule, bindings, inputs, and outputs.
Guards represent the conditions to apply a rule, such as the
input pattern, premises, and conditions. The overview of the
rule guards and effect generation is presented in Figure 5.
Solid arrows represent the generation of one element of the
rule, while dashed arrows represent the generic generation
repeated for all instances in a section. Arrows pointing to
adaptations represent the call site of this type of adaptation.
To generate the effect of the rule, we first generate the

inputs, then the bindings, the computation of the resulting
term, and finally outputs. Input and Output are defined as
callable functions in ASOS. In the implementation, we use
Ecore EOperations tomodel these functions.We first generate
the processing of the function arguments, then create a call
to the appropriate EOperation for each input and each output.
This is presented in Figure 5 by the dashed arrows from the
Input and Output of the IO section. For Input, the result of
each function is stored either in a temporary variable if the
Location is a Symbol, or in the executionmodel by resolving
the associated "dot" notation. Each Binding generates, as
for Input, an assignment of the computed expression to a
temporary variable or a call to the appropriate setter of the
executionmodel. The expression of the Binding is translated
to its Java equivalent, with executionmodel accesses resolved
as calls to the appropriate getters.
Finally, we generate the computation of the output Term

depending on its form: a Configuration of the same concept
as the input, a Symbol, or a Configuration with a different
concept. In the case of a Configuration of the same concept,
the rule is an update of the state of evaluation of the current
concept. The update of the current state is generated from
the difference between the two configurations. For instance,
the Term resulting from a premise can be retained in the new
state of evaluation of the current concept, as is the case in the
IfCond rule (line 6 in Listing 1). If the transition resolves to a
Symbol, we do not know what it represents (term or value).
To manage this, we generate a conditional assignment to
a return variable, that will affect the value if computed, or
the term if not. At the end of the rule’s semantics, the con-

35

SLE ’23, October 23–24, 2023, Cascais, Portugal G. Jouneaux, D. Frölich, O. Barais, B. Combemale, G. Le Guernic, G. Mussbacher, L.T. van Binsbergen

Figure 5. Overview of rule generation (ASOS to Pseudo-code)

tents of this variable are returned or executed, depending
on whether it is a value or a term. Finally, if the output is
another Configuration, we generate the expected structure
using the object factory provided by the Ecore model. Sub-
terms represented with a Configuration generate a new
concept instance and subterms represented with a Symbol
are resolved and set in the correct concept instance. This
structure is assigned to the return variable, and is returned
or executed depending on whether it is a value or a term.
To generate the guards, we first generate the input pat-

tern matching condition, then check the conditions of the
where section, and finally the premises. The generation of
the input pattern condition is done by checking the type
of the subterms of the associated Configuration. Symbols
does not impose constraint, hence generating no condition.
For Configuration and List, we generate the condition on
the associated type, and recursively generate conditions for
their subterms. This guard is the first generated, ensuring
the structure required for valid symbol resolution in the re-
maining of the rule. The generation of a Condition is done
by translating its expression to its Java equivalent. If there
are multiple conditions, they are represented as nested in
the order of definition in the ASOS rule.

Finally, the Premise generation produces three statements:
a condition checking that the subterm has not been evaluated,
a call for the evaluation of the Symbol, and a verification of
abrupt termination signals. In Figure 5, the first statement is
implicitly shown in the evaluate method as values cannot be
evaluated. This condition is necessary as a premise is an as-
sertion on the transitions of subterms, whereas a computed
value can never transition. If it has not been computed, we
compute it and store its result for reuse in the effect of the
rule. If the right hand side of the premise is a Configuration,
we also check that the resulting term is matching its pattern
A final condition is generated to check the normal or abrupt
termination of the premise computation.
If the premise does not expect a termination signal, or if

this signal is different than the expected one, the rule is not
applied, and the termination signal is stored for potential
propagation if no other rules handle this termination. To

avoid re-executing a premise when its result is the only dif-
ference in rule guards (e.g., termination vs normal execution),
the result of premise evaluation is shared across those con-
flicting rules, as a failing guard does not apply a rule, hence
does not change the state of execution.

4.2.2 Generate Default Semantics and Feedback Loop.
In SEALS, the default semantics is defined through Operation
classes, providing the complete semantics for one concept in
an "execute" function. From those Operation classes, SEALS
provides a visitor who can evaluate the AST of the language.
Moreover, SEALS allows adaptations on those Operation
semantics by explicitly defining it as an AdaptableOperation
and providing its interface with adaptations, requiring ASOS
to generate one pair for each concept. Finally, SEALS requires
the specialization of its FeedbackLoop, AdaptationContext,
and SelfAdaptableLanguage concepts, generated by ASOS.

To generate the content of the execute function, presented
by Figure 6, all the ASOS rules defined for the concept are
retained from the set of rules defining the default semantics.
Since we consider the provided semantics definition as

deterministic, the generated rules, presented in the yellow
box in Figure 6, preserve the ASOS definition order. To store
the computed value during the execution of the concept, we
automatically generate a data class that contains one field for
each subterm and the associated getters and setters. We have
two instances of this data class, one for the data kept across
rules, and one to store the result of computed premises.

Figure 6. AdaptableOperation execute function overview

36

Adaptive Structural Operational Semantics SLE ’23, October 23–24, 2023, Cascais, Portugal

At the end of a rule execution, there are three cases: the
rule returns a value, the rule reduces to a term to evaluate, or
the current concept state is updated and needs to be executed
further. All of these cases are shown in the green box on
the right of Figure 6. In the first case, the computed value is
simply returned as a result of the execution of the concept. In
the second case, the visitor is called on this term to execute it,
then the resulting computed value is returned. Finally, if the
current concept requires more rule applications to complete,
we jump back to the top of the rules list. In the case that no
rule can be applied and because the semantics is considered
complete, we know that a termination signal was not handled
at this concept level and should be propagated to the calling
concept. This is represented by "Propagate termination" at
the end of the last rule in Figure 6.

Because adaptations are based on the introduction of new
rules in semantics, we generate a language-wide interface
defining three adaptationrule fields for each rule of the
default semantics, corresponding to the Before, After, and
Specialization adaptations. These AdaptationRules rep-
resent a callable adaptation rule, and therefore, will be de-
tailed in the next section. The arrows on the right part of
Figure 5 denote the call to these AdaptationRules if they
exist for this rule in the current context. This is done inside
the guards to ensure that we call adaptation only if the rule is
effectively called. The effect of the original rule is generated
in a way that either the specialization or the effect will be
executed but not both. Finally, the After adaptations are
called on the output of the current rule.
In addition, generic implementations of the three main

classes of a SEALS language (AdaptationContext, Feedback-
Loop, and SelfAdaptableLanguage) are generated. The Feed-
backLoop implementation make use of SEALS proposed mod-
eling approach for impact and trade-off analysis. However,
the AdaptationContext still requires the definition of the re-
sources and properties of interests, and implementation of
the trade-off monitoring function.

4.2.3 Generate SEALS Adaptation Modules. In ASOS,
adaptation rules achieving part of the same adaptation logic
are grouped in modules. These modules contain, in addition
to the set of adaptation rules, a matching expression enabling
the adaptation to occur on the term and its subterm. On the
other hand, the concept of adaptation module of SEALS
provides the adapt and trigger method. The trigger method
verifies if the adapt method should be called on the current
term, while the adapt method performs the adaptation.

To map the behavior specified in ASOS, we chose to gen-
erate a set of AdaptationRule classes representing each
adaptation rule, implementing an adapt function with the
code for the adaptation rule. To evaluate the adaptation rule,
the implementation requires an access to the subterms, and
a way to evaluate premises of the adaptation rule. The first
point is managed by passing the node and the current state of

execution of the node. The second is achieved by providing
the store of computed premises and the visitor, giving access
to computed premises and a way to evaluate the others.
These rules are the ones used in the pattern managing

adaptation, at the right on Figure 5. When a match occurs,
an instance of these classes will be created and added to
the pool of executable rules by adding it to the interface
for adaptations. However, SEALS recreates an interface at
each step of the evaluation, hence this new set of rules is
not propagated. This issue can be resolved by adding some
information at the AdaptationModule level. Rather than per-
forming the matching for the current node like SEALS, we
save the state of the matching at the module level. When eval-
uating a term that matches the Match clause of the module,
we save this information in a boolean in the module. Then
for every node, if an ancestor node matched the clause, we
add the AdaptationRule instance to the interface. Depend-
ing on the Match recursive nature, we potentially invalidate
this match when going deeper in the structure. In the end,
only the impact model of the adaptation remains for the
adaptation designer to specify.

4.3 ASOS Formal Semantics
In this section, we introduce a formalization for the ASOS
meta-language and its alignment with the implementation
(Section 4.3.1). The formalization allows us to reason about
certain properties, in particular, how the adaptation pro-
cess affects determinism (Section 4.3.2), termination (Sec-
tion 4.3.3), and completeness (Section 4.3.4). To formalize
ASOS we build upon earlier work of generalized transition
systems (GTSs) as defined for MSOS by Mosses [25].

Definition 4.1. A GTS is a tuple ⟨Γ,A,−→,𝑇 ⟩, where A is a
categorywithmorphisms𝐴,−→⊆ (Γ×𝐴×Γ) is the transition
relation, and𝑇 ⊆ Γ are terminal configurations. ⟨Γ, 𝐴,−→,𝑇 ⟩
is a labeled terminal transition system5 (LTTS) [30].

The category is referred to as a label category and is an
(indexed) product category of component categories

∏
𝑖∈𝐼 A𝑖 .

For a full account of the different types of component cate-
gories we refer the reader to [25].
With the category, it is ensured that the labels of subse-

quent transitions compose. So when we have 𝛾
𝛼1−−→ 𝛾1

𝛼2−−→ 𝛾2
for some 𝛾,𝛾1, 𝛾2 ∈ Γ and 𝛼1, 𝛼2 ∈ 𝐴, we have that 𝛼1;𝛼2
holds in the category A. Using the theory of MSOS, we de-
fine our formalization as follows.

Definition 4.2. Let 𝐵 = ⟨Γ,A,−→,𝑇 ⟩ be a GTS, then we
define our formalization as a tuple ⟨𝐵,∆, 𝜋, 𝜅, 𝜁 ,⇝⟩ such
that the discrete category with P(Δ) as its objects is one of
the component categories of A; ∆ = (Δ, lab : Δ → {0, 1})
is a structured set of symbols that we call adaptation sig-
nals, and 𝑙𝑎𝑏 is a labeling function which maps adaptation
5An LTTS is simply an LTS with an extra component representing the termi-
nal configurations, i.e. the configurations for which there are no transition.

37

SLE ’23, October 23–24, 2023, Cascais, Portugal G. Jouneaux, D. Frölich, O. Barais, B. Combemale, G. Le Guernic, G. Mussbacher, L.T. van Binsbergen

signals to either 1 or 0, denoting to apply or not apply re-
cursive activation, respectively; 𝜋 : Γ → (P(Δ) → P(Δ))
is an adaptation projection function; 𝜅 : 𝑂 → P(Δ) is an
adaptation activation function with 𝑂 being the set of ob-
jects; 𝜁 : P(Δ) → 𝛿 is an adaptation selection function;
and⇝ ∈ (Γ,Δ) ×𝐴 × Γ is an adaptable transition relation.
Furthermore, we define the ↠ relation inductively as fol-
lows, where 𝐷 ⋄ 𝐷 ′ = {𝛿 | 𝛿 ∈ 𝐷 ∪ 𝐷 ′ ∧ lab(𝛿) = 1} with
𝐷,𝐷 ′ ∈ P(Δ), and 𝑋 denotes the label of the↠ transition,
so 𝑋 is a morphism of the category A.

adaptation

𝜋 (𝛾) (𝜅 (𝑠𝑜𝑢𝑟𝑐𝑒 (𝑋))) = 𝐷 ′

𝜁 (𝐷 ∪ 𝐷 ′) = 𝛿 ′

𝐷 ⋄𝐷 ′ ⊢ (𝛾, 𝛿 ′) ⇝ 𝛾 ′

𝐷 ⊢ 𝛾 ↠ 𝛾 ′

default

𝜋 (𝛾) (𝜅 (𝑠𝑜𝑢𝑟𝑐𝑒 (𝑋))) = 𝐷 ′

𝜁 (𝐷 ∪ 𝐷 ′) = 𝛿 ′

𝐷 ⋄𝐷 ′ ⊢ (𝛾, 𝛿 ′) ⇝̸
𝐷 ⋄𝐷 ′ ⊢ 𝛾 −→ 𝛾 ′

𝐷 ⊢ 𝛾 ↠ 𝛾 ′

These rules state that when there is an active adaptation
for the current configuration and the current adaptation
signal, then that rule is picked. Otherwise, the transition
in the base GTS is used. In addition, we require that the⇝
relation respects the terminal configurations of the base GTS.
I.e., for all 𝛾 ∈ 𝑇 and for all 𝛿 ′ ∈ Δ we have (𝛾, 𝛿 ′) ⇝̸.

4.3.1 Alignment with the Implementation. To explain
our formalization in a bit more detail, we discuss the align-
ment of the ASOS model and our formalization.

Γ and 𝑇 represent the terms to evaluate and is reflected
in the implementation by a metaclass in the language meta-
model. While Γ ranges over configuration with an arbitrary
metaclass representing the term, the terminal configurations
𝑇 are the subset that use metaclasses from the semantic
domain structure definition. Adaptation signals(Δ), repre-
sent all the combinations of activated adaptation modules.
Moreover, before and after adaptations obtain an annotated
adaptation signal to differentiate between them within the
⇝ relation. An adaptation signal is reflected in the imple-
mentation by an adaptation interface instance that contains
adaptation rules. The addition of two module rules to the
interface makes it contain the union of the two sets of rules,
hence representing the same set of rules as the adaptation
signal of the merge of the signals of the two modules. Thus,
the composition in the interface is similar to the adaptation
signal merge for composition in formal semantics.

The three functions 𝜅, 𝜋, 𝜁 model the feedback loop, adap-
tation activation, and adaptation selection. The matching on
terms in the meta-language to activate an adaptation corre-
sponds to the 𝜋 function. To ensure that only one signal is
active at a time, the 𝜁 function selects one signal based on
the current active adaptation signals.

The −→ relation makes up the original semantics of the
programming language and corresponds to the rules outside
of adaptation modules. The⇝ corresponds to the specializa-
tion adaptations as defined in the adaptation modules. The
syntax of⇝ is similar to −→ with the addition of the adap-
tation component, corresponding to the adaptation module
that captures the ASOS rule. The Δ component of the⇝
ensures that the specialization activates iff the module is
activated. For both relations, the arrows in the premises cor-
respond to the↠ relation. For the⇝ relation, premises can
also contain before and after steps that model the before
and after adaptations. The final semantics of the language is
defined by the↠ relation, which combines the −→ and⇝
relations. The↠ relation thus corresponds to the Adaptive
Operational Semantics component in Figure 4.

Finally, the category A models the auxiliary entities avail-
able to rules. This corresponds to the Binding, Input, and
Output components in Figure 4. In the implementation, we
implicitly propagate these entities represented by the execu-
tion model, the feedback loop state, and the modules state.
Therefore, successive modification of these elements forms
a trace similarly to label composition in the category.

4.3.2 On Determinism in an ATS. In our model, deter-
minism is controlled by the designer and not introduced by
the adaptation process. In other words, iff the three relations
⇒,⇝ and −→ are deterministic, then↠ is deterministic.
To demonstrate this, we give a proof sketch that shows

that for every configuration and for all 𝛼 ∈ 𝐴 we have either
𝛾 g and 𝛾 ∈ 𝑇 or ∃!𝛾 ′ ∈ Γ such that 𝛾 ↠ 𝛾 ′. This is only
true whenever we have no derivation tree or we have a
unique derivation tree. The first case holds by definition. For
the second case, we show that under the assumption, the
adaptation and default rules are deterministic. Let us assume
they are not deterministic, then we can construct multiple
derivations trees for some 𝛾 ∈ Γ and some 𝛼 ∈ 𝐴. For the
adaptation rule we can construct multiple derivation trees
whenever one of premises 𝜋 (𝛾)◦𝜅 (𝑠𝑜𝑢𝑟𝑐𝑒 (𝑋)), 𝜁 (𝐷∪𝐷 ′), or
𝐷⋄𝐷 ′ ⊢ (𝛾, 𝛿 ′) ⇝ 𝛾 ′ has multiple solutions and the resulting
conclusion configurations are distinct. By definition, both
the first and second component have exactly one solution.
So, for some 𝛿 ′ ∈ Δwe have ∃𝛾1, 𝛾2 ∈ Γ and𝛾1 ≠ 𝛾2 such that
𝐷 ⋄𝐷 ′ ⊢ (𝛾, 𝛿 ′) ⇝ 𝛾1 and 𝐷 ⋄𝐷 ′ ⊢ (𝛾, 𝛿 ′) ⇝ 𝛾2. However,
this contradicts our assumption that⇝ is deterministic. The
same process can be used for the default rule. Finally, the
adaptation and default rule are non-overlapping by definition
due to the conflicting premise of the ⇝ relation. Hence,
under the assumption, the↠ is deterministic.

4.3.3 On Non-Termination in an ATS. Non-termination
in an ATS can arise due to the interplay between the ⇝
and −→ relations. For example, we might have 𝛾 → 𝛾 ′ and
then (𝛾 ′, 𝛿) ⇝ 𝛾 for some 𝛿 ∈ Δ, which can result in non-
termination. It might not, because the outside environment,
e.g., sensors, can change resulting in a different adaptation or

38

Adaptive Structural Operational Semantics SLE ’23, October 23–24, 2023, Cascais, Portugal

no adaptation being performed. In addition, such occurrences
might be intentional. For example, when a while term is
adapted but a term in the body of the while is not adapted.

So far, we have not yet identified a reasonable restriction
on the adaptations that prevents this from occurring. Never-
theless, using our formal model, we can reason about such
occurrences, and we aim to utilize model checking to identify
adaptations that introduce such sequences.

4.3.4 On Completeness of the Original GTS. With our
model, we wanted to retain the completeness of the original
GTS This means that for all 𝛾 ∈ Γ we either have ∃𝛾 ′ such
that𝛾 ↠ 𝛾 ′ or𝛾 ∈ 𝑇 . This holds trivially in our formalization
due to the↠ relation definition and by our requirement that
the⇝ relation respects the terminal configurations.

5 Evaluation
To evaluate the proposed implementation, we discuss: the
applicability of the approach on RobLANG, and the perfor-
mance overhead.To discuss the applicability , we compare
the number of actions performed by the robot with and with-
out adaptations. Finally, we assess the performance of our
approach, i.e., self-adaptation at language level, to the perfor-
mance of the same adaptive behavior written in the program,
i.e., self-adaptation at program level.

5.1 ASOS Applicability to RobLANG
To assess the applicability of ASOS to RobLANG, we compare
the number of actions performed by the robot until battery
depletion with and without adaptations, to show that we
can express meaningful adaptations despite the fact that we
abstracted the adaptation at language level. In addition, we
also evaluate the ability to react to change in the environ-
ment by dynamically changing the trade-off at run-time. The
adaptation used in this case is the reduction in motor speed
discussed in Section 2.3, with themotor running at 75% speed.
The action performed by the robot is a movement in square
pattern, repeated until the battery depletion. The number of
squares completed is 49898 without adaptation and 87475
with adaptation always active. In addition we also manually
verified the change of semantic used when changing the
trade-off from energy focused to performance focused, later
refered as "Switch" configuration. The results shows that the
application of the adaptation allowed the robot to perform
1.75 times the number of actions and that the language-level
adaptations correctly change based on the context.

5.2 Assessing ASOS Performance
For this experiment, we choose RobLANG, presented in Sec-
tion 2.3, as object of study. We use two implementations of
this language, a self-adaptive one using ASOS, and a classic
one using well known tools for DSLs implementation. For
both implementations, the abstract syntax of the language
was defined using an Ecore [34] metamodel and the concrete

syntax using an Xtext [13] grammar. Since these are imple-
mentations of the same language, only small changes were
made in the syntax, due to the operational semantics imple-
mentation method. Both metamodels define concepts that
include: (1) Functions definition and calls, (2) Simple arith-
metic and boolean predicates, (3) Access to the robot sensors,
(4) Effectors to move the robot. The grammars for these con-
cepts are the same for both implementations. However, in
the case of ASOS, the structure of the semantic domain (e.g.,
metaclasses of runtime values, attribute storing dynamic
information) needs to be defined in the form of an Ecore
metamodel, that is merged with the abstract syntax to define
the execution metamodel. In addition, the abstract syntax of
the ASOS RobLANG also defines a new statement allowing
a language user to define their trade-off and change it at
run-time. For the definition of operational semantics, ASOS
is used to specify the adaptive version of RobLANG, while
the classic version uses Xtend [4] dispatch to define a visitor.

5.2.1 Experimental Setup. To evaluate the overhead of
our approach, we compare execution time of a program
requesting adaptations. We compare the RobLANG ASOS
implementation (ASOS) to a manual implementation of the
self-adaptation concern at the program level (Program) us-
ing the classic implementation. The adaptation used is a
reduction in motor speed in robot movement. This adapta-
tion applies depending on the trade-off selected. If Energy is
more important, the adaptation is applied. If Time is more
important, it is not applied. We use a program that iteratively
moves the robot in a square pattern, andwemeasure the over-
head for three configurations: (i) the adaptation never applies
(Without), (ii) the adaptation always applies (With), and (iii)
the adaptation is activated and deactivated periodically at
runtime (Switch). For each configuration, we measure 30 ex-
ecutions in a row, repeated three times with reboot between
each repetition to mitigate the effect of the initial state [18].
Measurements were performed on a computer with 31Gb of
RAM and an Intel(R) Core(TM) i7-10850H CPU (12 cores at
2.70GHz) with Manjaro 22.0.5. The language runtimes are
executed using the OpenJDK Runtime Environment 11.0.18,
and run alone on the computer.

Table 1.Mean time(ms) and 95% confidence intervals, rela-
tive speedups, and speedups geometrical mean

Implementation Speed-
upConf. Program ASOS

Without 1245.72 ms
[1239.12, 1252.32]

1120.92 ms
[1109.65, 1132.20] x0.90

With 2075.72 ms
[2065.50, 2085.95]

1979.91 ms
[1968.42, 1991.40] x0.95

Switch 1817.19 ms
[1807.57, 1826.81]

1445.49 ms
[1429.55, 1461.42] x0.80

Speedups Geometrical Mean x0.88

39

SLE ’23, October 23–24, 2023, Cascais, Portugal G. Jouneaux, D. Frölich, O. Barais, B. Combemale, G. Le Guernic, G. Mussbacher, L.T. van Binsbergen

5.2.2 Results. Table 1 summarizes the performance of
both the ASOS implementation and the manual adaptation
implementation for each configuration. We compute the
mean execution time, the speedup for each configuration,
and provide the geometrical mean of these speedups when
comparing the two implementations.With an overall speedup
of 0.88, the implementation of the self-adaptation concern is
more efficient with ASOS. The biggest speedup comes from
the Switch configuration with a factor of 0.80, followed by
theWithout configuration (x0.90) and finally theWith con-
figuration (x0.95). These results shows that ASOS does not
introduce problematic performances pitfalls, and can even
surpass a manual implementation for non-optimized DSLs.

5.2.3 Discussion. First, we can observe the speedup of
ASOS compared to the handcrafted adaptation. With the
biggest speed-up coming from the Switch configuration, we
deduce that the implementation of the feedback loop is more
efficient using ASOS. This is probably because the usual Rob-
LANG interpreter running the feedback loop is not optimized,
whereas the JVM optimizes the feedback loop when using
ASOS. The second observation is that theWith configuration
speedup is less important than the Without configuration.
These two configurations make the same use of the feedback
loop, as their trade-off does not change. In both cases, the
handcrafted version performs a call to the speed-setter state-
ment. Hence, this difference in the speedups comes from the
difference in performance to call an adaptation compared to
the original rule. To conclude that these hypotheses are true,
further experimentation needs to be done.

6 Related Work
Adaptable Systems. In this paper, we have introduced

the idea of adaptable structural operational semantics to cap-
ture the essence of adaptable languages. Earlier work on
describing adaptable systems exists. Adaptable interface au-
tomata [6] are an extension of interface automata [11] with
atomic propositions that model state observations. Adapta-
tions are then transitions where the two states of the tran-
sition give different results for some (or all) proposition(s).
Self-Adaptive Abstract State Machines [3] use multi-agent
abstract state machines to formalize self-adaptable systems.
Compared to our approach, the adaptive system is not cen-
tralized but is distributed among several agents. There are
two types of agents: managing and managed. Synchronous
Adaptive Systems [1] is another approach to the formaliza-
tion of adaptive systems. In this approach, a system is divided
into several modules which can be in different configurations
— each representing a different behavior. Configurations are
activated and deactivated via guards — somewhat resembling
the matching in our approach. A rewriting approach [7] is
used by modeling self-adaptive systems in Maude [10] re-
lying on computational reflection [22]. The approach takes
an unbounded layered approach in which (partial) knowl-

edge flows downwards and effects flow upwards. A layer can
modify the rules of the layer below it, modeling adaptation
in the approach. Recurring in these different approaches is a
separation of an adaptable system in two or more layers. This
idea is also present in our approach, exemplified by the two
transition relations in our approach. The idea behind ASOS
clearly falls within the line of adaptable interpreters [8] that
enable the creation of dynamic systems. The ASOS approach,
by proposing semantics based on MSOS, additionally enables
the construction of verification tools for language engineers.

Abstraction at Language Level. The quest to abstract
non-functional properties (e.g., adaptability, security) and
incorporate their effects in the behavior of an existing appli-
cation has been a longstanding endeavor. This approach is
rooted in Model-Driven Engineering methodologies that aim
to provide a software creation process through a series of
transformations, enabling the specialization of such proper-
ties [33]. It is also rooted in modern programming languages
where annotations/attributes may be used to abstract non-
functional features as first level entities [28]. Additionally,
this is also observed in the community of dynamic software
product lines [12, 14] and their implementation based on
Aspect-Oriented Programming (AOP) [20], thereby allowing
the weaving of non-functional concerns based on software
design decision. In these approaches, we recognize the quest
to abstract non-functional concerns from the design phase
carried out by a domain expert. While certain approaches
have focused on investigating the correctness of system be-
havior for various configurations [24], the ability to reason
compositionally about this correctness remains limited [23].
Abstracting the adaptation concern at the language level,
while providing a clear semantics for the composition of
adaptation modules with a base program, allows the lan-
guage designer to reason about the impact of an adaptation
module on a set of behavioral properties of a base program
written using an ASOS-defined DSL.

7 Conclusion and Future Work
This paper proposes the ASOS framework to define modular
and adaptable semantics of a DSL. ASOS paves the way
for checking determinism, completeness, and termination
properties based on the proposed formal semantics. ASOS
also provides the possibility of generating an implementation
of a modular and adaptable interpreter based on SEALS, an
implementation framework for adaptable interpreters.
Perspectives of this work are (1) evaluating the complex-

ity for a language designer to use ASOS , (2) allowing the
definition of correctness envelopes at the rule level, (3) al-
lowing the configuration of the feedback loop in ASOS, and
(4) showing that the declarative nature of ASOS rules allows
language composition, facilitating the construction of self-
adaptable language fragments, enabling the scenarios where
a DSL is built by assembling existing language fragments.

40

Adaptive Structural Operational Semantics SLE ’23, October 23–24, 2023, Cascais, Portugal

References
[1] RasmusAdler, Ina Schaefer, Tobias Schüle, and Eric Vecchié. 2007. From

Model-Based Design to Formal Verification of Adaptive Embedded
Systems. In Formal Methods and Software Engineering, 9th International
Conference on Formal Engineering Methods, ICFEM 2007, Boca Raton,
FL, USA, November 14-15, 2007, Proceedings (Lecture Notes in Computer
Science, Vol. 4789), Michael J. Butler, Michael G. Hinchey, and María M.
Larrondo-Petrie (Eds.). Springer, 76–95. https://doi.org/10.1007/978-3-
540-76650-6_6

[2] Anwar Al-Mofleh, Soib Taib, Wael Salah, and Mokhzaini Azizan. 2008.
Importance of Energy Efficiency: From the Perspective of Electrical
Equipments. In Proceedings of the 2nd International Conference on Sci-
ence and Technology (ICSTIE).

[3] Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. 2015. Mod-
eling and Analyzing MAPE-K Feedback Loops for Self-Adaptation.
In 10th IEEE/ACM International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 2015, Florence, Italy,
May 18-19, 2015, Paola Inverardi and Bradley R. Schmerl (Eds.). IEEE
Computer Society, 13–23. https://doi.org/10.1109/SEAMS.2015.10

[4] Lorenzo Bettini. 2011. A DSL for writing type systems for Xtext
languages. In Proceedings of the 9th International Conference on Princi-
ples and Practice of Programming in Java, PPPJ 2011, Kongens Lyngby,
Denmark, August 24-26, 2011. 31–40. https://doi.org/10.1145/2093157.
2093163

[5] Victor Braberman, Nicolas D’Ippolito, Jeff Kramer, Daniel Sykes, and
Sebastian Uchitel. 2015. Morph: A reference architecture for con-
figuration and behaviour self-adaptation. In Proceedings of the 1st
International Workshop on Control Theory for Software Engineering.
9–16.

[6] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch La-
fuente, and Andrea Vandin. 2013. Adaptable transition systems. In
Recent Trends in Algebraic Development Techniques: 21st International
Workshop, WADT 2012, Salamanca, Spain, June 7-10, 2012, Revised Se-
lected Papers 21. Springer, 95–110.

[7] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch-
Lafuente, and Andrea Vandin. 2015. Modelling and analyzing adaptive
self-assembly strategies with Maude. Sci. Comput. Program. 99 (2015),
75–94. https://doi.org/10.1016/j.scico.2013.11.043

[8] Walter Cazzola and Albert Shaqiri. 2016. Dynamic software evolution
through interpreter adaptation. In Companion Proceedings of the 15th
International Conference on Modularity. 16–19.

[9] Martin Churchill and Peter D Mosses. 2013. Modular bisimulation
theory for computations and values. In Foundations of Software Science
and Computation Structures: 16th International Conference, FOSSACS
2013, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings
16. Springer, 97–112.

[10] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Martí-Oliet, José Meseguer, and Carolyn L. Talcott (Eds.). 2007. All
About Maude - A High-Performance Logical Framework, How to Specify,
Program and Verify Systems in Rewriting Logic. Lecture Notes in Com-
puter Science, Vol. 4350. Springer. https://doi.org/10.1007/978-3-540-
71999-1

[11] Luca de Alfaro and Thomas A. Henzinger. 2001. Interface automata. In
Proceedings of the 8th European Software Engineering Conference held
jointly with 9th ACM SIGSOFT International Symposium on Foundations
of Software Engineering 2001, Vienna, Austria, September 10-14, 2001,
A Min Tjoa and Volker Gruhn (Eds.). ACM, 109–120. https://doi.org/
10.1145/503209.503226

[12] Tom Dinkelaker, Ralf Mitschke, Karin Fetzer, and Mira Mezini. 2010.
A dynamic software product line approach using aspect models at
runtime. In 5th Domain-Specific Aspect Languages Workshop. Citeseer.

[13] Moritz Eysholdt and Heiko Behrens. 2010. Xtext: implement your
language faster than the quick and dirty way. In Companion to the 25th

Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, SPLASH/OOPSLA 2010, October
17-21, 2010, Reno/Tahoe, Nevada, USA. 307–309. https://doi.org/10.
1145/1869542.1869625

[14] Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid.
2008. Dynamic software product lines. Computer 41, 4 (2008), 93–95.

[15] M Usman Iftikhar and Danny Weyns. 2014. Activforms: Active for-
mal models for self-adaptation. In Proceedings of the 9th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems. 125–134.

[16] Paola Inverardi and Massimo Tivoli. 2009. The future of software:
Adaptation and dependability. Software Engineering: International
Summer Schools, ISSSE 2006-2008, Salerno, Italy, Revised Tutorial Lectures
(2009), 1–31.

[17] Gwendal Jouneaux, Olivier Barais, Benoit Combemale, and Gunter
Mussbacher. 2021. SEALS: a framework for building self-adaptive
virtual machines. In Proceedings of the 14th ACM SIGPLAN International
Conference on Software Language Engineering. 150–163.

[18] Tomas Kalibera, Lubomir Bulej, and Petr Tuma. 2005. Benchmark pre-
cision and random initial state. In Proceedings of the 2005 International
Symposium on Performance Evaluation of Computer and Telecommuni-
cation Systems (SPECTS 2005). 484–490.

[19] J. O. Kephart and D. M. Chess. 2003. The vision of autonomic comput-
ing. Computer 36, 1 (Jan 2003), 41–50.

[20] Gregor Kiczales. 1996. Aspect-oriented programming. ACMComputing
Surveys (CSUR) 28, 4es (1996), 154–es.

[21] Jeff Kramer and Jeff Magee. 2007. Self-managed systems: an archi-
tectural challenge. In Future of Software Engineering (FOSE’07). IEEE,
259–268.

[22] Pattie Maes. 1988. Computational reflection. Knowl. Eng. Rev. 3, 1
(1988), 1–19. https://doi.org/10.1017/S0269888900004355

[23] Andreas Metzger and Klaus Pohl. 2014. Software Product Line Engi-
neering and Variability Management: Achievements and Challenges.
In Future of Software Engineering Proceedings (Hyderabad, India) (FOSE
2014). Association for Computing Machinery, New York, NY, USA,
70–84. https://doi.org/10.1145/2593882.2593888

[24] Brice Morin, Olivier Barais, Gregory Nain, and Jean-Marc Jézéquel.
2009. Taming dynamically adaptive systems using models and aspects.
In 2009 IEEE 31st International Conference on Software Engineering.
IEEE, 122–132.

[25] Peter D Mosses. 2004. Modular structural operational semantics. The
Journal of Logic and Algebraic Programming 60 (2004), 195–228.

[26] Peter D Mosses and Mark J New. 2009. Implicit propagation in struc-
tural operational semantics. Electronic Notes in Theoretical Computer
Science 229, 4 (2009), 49–66.

[27] Hiroyuki Nakagawa, Akihiko Ohsuga, and Shinichi Honiden. 2012.
Towards dynamic evolution of self-adaptive systems based on dynamic
updating of control loops. In 2012 IEEE Sixth International Conference
on Self-Adaptive and Self-Organizing Systems. IEEE, 59–68.

[28] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera,
and Lionel Seinturier. 2016. Spoon: A library for implementing anal-
yses and transformations of java source code. Software: Practice and
Experience 46, 9 (2016), 1155–1179.

[29] Gordon D Plotkin. 1981. A structural approach to operational semantics.
Aarhus university.

[30] Gordon D. Plotkin. 2004. A structural approach to operational seman-
tics. J. Log. Algebraic Methods Program. 60-61 (2004), 17–139.

[31] Grigore Roşu, Chucky Ellison, and Wolfram Schulte. 2010. Matching
logic: An alternative to Hoare/Floyd logic. In International Conference
on Algebraic Methodology and Software Technology. Springer, 142–162.

[32] Grigore Ros,u and Traian Florin S, erbănută. 2010. An overview of the K
semantic framework. The Journal of Logic and Algebraic Programming
79, 6 (2010), 397–434.

41

https://doi.org/10.1007/978-3-540-76650-6_6
https://doi.org/10.1007/978-3-540-76650-6_6
https://doi.org/10.1109/SEAMS.2015.10
https://doi.org/10.1145/2093157.2093163
https://doi.org/10.1145/2093157.2093163
https://doi.org/10.1016/j.scico.2013.11.043
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1145/503209.503226
https://doi.org/10.1145/503209.503226
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1017/S0269888900004355
https://doi.org/10.1145/2593882.2593888

SLE ’23, October 23–24, 2023, Cascais, Portugal G. Jouneaux, D. Frölich, O. Barais, B. Combemale, G. Le Guernic, G. Mussbacher, L.T. van Binsbergen

[33] Douglas C Schmidt et al. 2006. Model-driven engineering. Computer-
IEEE Computer Society- 39, 2 (2006), 25.

[34] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
2008. EMF: Eclipse Modeling Framework. Pearson Education.

[35] Hossein Tajalli, Joshua Garcia, George Edwards, and Nenad Medvi-
dovic. 2010. PLASMA: a plan-based layered architecture for software
model-driven adaptation. In Proceedings of the IEEE/ACM international
conference on Automated software engineering. 467–476.

[36] Kevin Twidle, Naranker Dulay, Emil Lupu, and Morris Sloman. 2009.
Ponder2: A policy system for autonomous pervasive environments.

In 2009 Fifth International Conference on Autonomic and Autonomous
Systems. IEEE, 330–335.

[37] Thomas Vogel and Holger Giese. 2012. A language for feedback loops
in self-adaptive systems: Executable runtime megamodels. In 2012
7th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). IEEE, 129–138.

Received 2023-07-07; accepted 2023-09-01

42

	Abstract
	1 Introduction
	2 Motivation and Illustrative Example
	2.1 Design of Self-Adaptive Systems
	2.2 Limitations of Current DSL Approaches
	2.3 Illustrative Example: Energy-Aware RobLANG

	3 Approach Overview
	3.1 Abstract Syntax Definition
	3.2 Operational Semantics Definition

	4 The ASOS Metalanguage
	4.1 ASOS Syntax
	4.2 ASOS Translational Semantics
	4.3 ASOS Formal Semantics

	5 Evaluation
	5.1 ASOS Applicability to RobLANG
	5.2 Assessing ASOS Performance

	6 Related Work
	7 Conclusion and Future Work
	References

