
Managing Administrative Law Cases using an Adaptable
Model-driven Norm-enforcing Tool
Marten C. Steketee1,*,†, Nina M. Verheijen1,† and L. Thomas van Binsbergen1

1Informatics Institute, University of Amsterdam, Science Park 900, 1098 XH Amsterdam, The Netherlands

Abstract
Governmental organisations cope with many laws and policies when handling administrative law cases. Making
sure these norms are enforced in the handling of cases is for the most part done manually. However, enforcing
policies can get complicated and time consuming with ever-changing (interpretations of) laws and varying cases.
This introduces errors and delays in the decision-making process and therefore limits the access to justice for
citizens. A potential solution is offered by our tool in which norms are enforced using automated normative
reasoning. By ensuring the procedural norms are followed and transparency can be provided about the reasoning
behind a decision to citizens, the tool benefits the access to justice for citizens.

In this paper we report on the implementation of a model-driven case management tool for administrative
law cases, based on a set of requirements elicited during earlier research. Our tool achieves adaptability and norm
enforcement by interacting with an interpreter for eFLINT, a domain-specific language for norm specification.
We report on the current state of the case management tool and suggest directions for further development.

Keywords
Model-based reasoning, Government policies, Model-driven, Software tools, Compliance, Business processes

1. Introduction

Digitalisation of governmental services has increased in popularity in recent years, and aims to improve
the efficiency and effectiveness of public administration. However, there is not always a direct connection
between the digital systems used for these services and the relevant norms. This disconnection is clearly
illustrated by administrative law cases, for which large parts of the decision-making process is done
manually, while the communication and registration of cases is automated. Manually keeping track
of the different norms while working on a case is difficult and prone to errors. A potential solution is
provided by automated reasoning about compliance according to formalised representations of norms.

In this paper we present a case management tool for supporting civil servants with decision-making.
Although the focus in our research was governmental case management, the tool can also be used for
other business processes by changing the eFLINT model. The norm specification language eFLINT is
used to reason about the applicable norms [1]. The current version of the tool is presented in this paper,
along with suggestions for further development. The tool adapts to changes to the (process) model
and the norms encoded in the eFLINT specification by changing the user flows of the system. In our
work, we apply methods and concepts from business process modelling, model-driven engineering, and
normative reasoning. This paper contributes:

• an adaptable case management tool that reasons about applicable norms;
• an evaluation against elicited user requirements resulting in suggestions for further development.

Jurix’24: AI for Access to Justice Workshop, December 11, 2024, Brno, Czechia
*Corresponding author.
†
These authors contributed equally.
$ m.c.steketee@uva.nl (M. C. Steketee); nina.verheijen47@gmail.com (N. M. Verheijen); ltvanbinsbergen@acm.org
(L. T. v. Binsbergen)
� https://martensteketee.nl/ (M. C. Steketee); http://ltvanbinsbergen.nl/ (L. T. v. Binsbergen)
� 0009-0007-8297-1909 (M. C. Steketee); 0009-0005-2728-9064 (N. M. Verheijen); 0000-0001-8113-2221 (L. T. v. Binsbergen)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:m.c.steketee@uva.nl
mailto:nina.verheijen47@gmail.com
mailto:ltvanbinsbergen@acm.org
https://martensteketee.nl/
http://ltvanbinsbergen.nl/
https://orcid.org/0009-0007-8297-1909
https://orcid.org/0009-0005-2728-9064
https://orcid.org/0000-0001-8113-2221
https://creativecommons.org/licenses/by/4.0/deed.en


2. Background

2.1. Normative reasoning/eFLINT

eFLINT is a domain-specific language (DSL) for specifying and reasoning with norms [1]. The language
is developed as a DSL to simultaneously specify norms from various sources, as well as (models of)
computational processes that can be interconnected with the specified norms. Given a specification of
norms, the eFLINT reasoner can be integrated into systems to check compliance of actions taken in
the system. For the running example, we translated rules for the quittance of municipal taxes[2] into
eFLINT code. This involves adding powers and duties for the different steps in the application process.
To determine whether a client is entitled to quittance of their taxes, the client must provide the public
servant with information about their financial position: current income, age, and marital status. The
model uses eFLINT facts to capture the information of an application and setting thresholds for income.
In the fragment below, the Var and Bool keywords are used to ensure that at most one instance of these
types holds true at any given time.

Open Var [Age] Identified by Int
Open Bool [Pension age reached]

The thresholds for capital and income are specified using Var and are immediately set to a certain
value using the following statement.

Var [income limit no retirement partner] Identified by Int.
+[income limit no retirement partner](1574).

The eFLINT reasoner can determine which duties are currently present, and which actions can be
taken once the applicant has provided enough information. This makes sure that the user is informed
about compliant actions but the user isn’t forced to act in a compliant manner. The reasoner is able to
cope with incompliant behaviour and will show violations of the norms to the user.

The Physical keyword marks actions which can be executed by users. These synchronise with their
institutional counterparts.

Act grant-request
Actor servant
Recipient applicant
Conditioned by [Income] <= [Income limit]
Creates [Quittance granted].

Physical send-approval-letter Syncs with grant-request (servant, applicant)

A duty to process the application is created as soon as a client applies for an allowance. Duties can
be associated with violation conditions (one or more Boolean expressions) to determine when a duty is
considered violated. In this example, no violation condition is associated with the duty.

A very important aspect of the eFLINT reasoner is the transparancy the system provides. The
reasoner is able to show the current state of the model and provide a step by step explanation of how
this state has been reached. This enables civil servants and citizens to get a better understanding of
the followed procedure and reasoning behind a decision, making it easier to judge wether filing an
objection is necessary.

2.2. User requirements

During earlier research, interviews were held with potential users to gain insight in their requirements
for a norm-enforcing case management tool [3]. This research was done following a user-centred design
method[4]. The seven participants, working at four different organisations, were either involved with
handling cases from civilians or organisations subjected to laws and policies, or were involved in the
process of turning laws and policies into actions, e.g., within a software application. The participants
that worked for the same organisation had different roles within their organisations. Requirements
were elicited from the interview results using a thematic analysis [5]. These were used as input for the



design of the tool. User tests were performed to test the user friendliness of the tool and ensure it was
fit for purpose. Following the user tests, the tool was further developed to demonstrate the ability to
reuse the system for different use cases and adapt to changes in norms. This section will discuss the
findings in terms of themes and requirements from the earlier research.

The user requirements were divided in six themes that are laid out and described below:

• Involved people: The people that are involved in a case, how many, what role they have, what
authorities they have, both on the user side and on the client side.

• Types of cases: The types of cases depending on the type of client (e.g., civilian or company),
the type of decision made (e.g., request or objection), and possible other factors.

• Ending of a case: The ways a case can end, if data from a completed case is stored and if so, for
how long.

• Gathered information: The types of information gathered during a case, methods, and timing.
• Actions and duties: The actions and duties relevant to a case and from what norms or policies

they are derived.
• Interface requirements: The features and elements expected in a norm-enforcing case manage-

ment tool.

The main findings will be described in terms of themes (in italic) and requirements (in bold).
The involved people are divided into three categories: clients, internal parties, and external parties.

Clients can be civilians, organisations or civil servants. Internal parties include all involved people
from the organisation that take on the case. Multiple people are often involved to satisfy the ‘four
eyes-principle’, stating that two individuals need to approve some action before it can be taken.
External parties include experts or authorities of different kinds. The different people involved do not all
have the same level of access, powers, and duties. This means that a form of role-based authorization
is required to assign users the correct roles and, as a consequence, the correct normative positions.

The different types of cases involve different workflows. A general workflow-pattern emerged that
can be broken down into: 1) a client asking for a decision on some matter, 2) making a decision based
on gathered information, and 3) reporting the decision back to the client. The specifics of a use case
determine the details of the three steps and is based on multiple factors, such as the type of client and
the type of information that needs to be gathered. For example, whether the client is a civilian or an
organisation can influence what information needs to be gathered.

Another factor is the type of decision being requested. For example, the decision on an objection
has a different process than a (permit) request. The amount of case types varies from only one type
of case to hundreds of different processes, where each process has slightly different steps. Therefore,
workflow models are required in order for the system to be able to adapt to different types of cases.

The ending of a case involves making a decision of some kind. A request can be either approved,
denied, or not taken under consideration. In most cases, an objection to the decision can be made. If
so, steps will be taken to handle the objection, resulting in a decision on the objection. An objection
can thus be seen as asking for a decision related to a previous case. Therefore, it should be possible to
recall the details of previous cases, including closed cases.

The gathered information for a case can come from normative sources, such as laws and policies, or
can be provided by clients and external parties. Information comes in all sorts of formats, being online
forms, e-mails, phone calls, paper or one-to-one conversations. The most important thing is that the
information should be stored. One participant mentioned they would rather use the zero-knowledge
protocol [6]. Although information from finished cases is often stored, most participants indicated
that they were not certain for how long or under which access conditions. From this we conclude that
recording of information about cases should itself be subject to policies.

The actions and duties associated with a case can be divided into those for internal parties and those
for the client or an external party. The client often has a duty to provide requested information. If this
duty is not fulfilled, a decision could be made with incomplete information, which may not favour the
client. The case manager, on the other hand, has the duty to make a decision, and sometimes within a



given period. Other actions and duties are specific to the type of case and are written down in relevant
laws and policies. An example of such an action is informing a client about the decision.

Regarding interface requirements, most participants indicated that there are pieces of information they
want immediate access to (on a landing page). Most important are the cases they are currently working
on, or depending on their role, certain norms they are working with. Moreover, the user should be
made aware of approaching deadlines. Participants mentioned being able to sort and filter is desirable
as they are working on a large amount of cases at the same time. They also indicated they want to see
the status of a case as well as their tasks related to the case.

Regarding the details of a specific case, most participants emphasised the need to have a link to
relevant sources of norms and (other) gathered information when working on a case. Reasons for
the requirement include transparency about and the soundness of the decision-making procedure. The
current state of the case should be made clear by showing actions that need to be taken, actions that
have been taken, gathered information about the client or case, how this information was provided (e.g.,
internally, externally or directly by the client), relevant source of norms, and whether any violations
of norms occurred. Most participants indicated that information often comes in batches rather than
all at once. From this we conclude that reasoning with partial information should be supported.
In addition, participants reported being interested in simulation, where the idea is to determine the
effects of a change in norms or the effects of an action of an ongoing case.

3. Related work

Investments in software systems for governmental services are mostly driven by the need to improve
efficiency and effectiveness. Transparency is essential to governmental processes in order for civilians
to trust the decisions being made [7]. There is a need for transparency both by civilians, who want
insight in the systems that are used by the government, and by civil servants, who want to ensure
systems are correct before they use them for their services. Moreover, there is a need for explainability
regarding the decisions made by governmental software, including compliance. As eFLINT applies a
form of symbolic artificial intelligence, the application, and effects of rules can be made insightful, for
example using argumentation [8].

This paper takes a model-driven approach to attain adaptability and reusability. An overview of DSL
technology and model-driven approaches is provided by Rodrigues da Silva [9]. Multiple other languages
have been designed to specify norms. Symboleo [10] and instAL [11] are examples of languages that are
closely related to eFLINT, as they are also based on the Event Calculus [12]. Their event-based nature
makes these languages candidates for automating compliance in the way of this paper. Symboleo and
eFLINT are both based on the normative concepts of Hohfeld [13]. A comprehensive survey on business
process compliance is provided by Hashmi et al. [14].

In order to keep up with frequently changing tax laws, the Dutch Tax Administration developed the
controlled natural language RegelSpraak [15], based on the standard Semantics for Business Vocabulary
and Rules (SBVR) [16] and the RuleSpeak language [17]. RegelSpraak is simultaneously machine-
readable and understandable to both legal experts and IT-developers, by using modeling patterns and
language conventions. Since RegelSpraak syntax is similar to the Dutch language, it is easy to understand
for users that are not experts in RegelSpraak semantics, increasing explainability. RegelSpraak has been
designed to describe computational rules and to handle complex arithmetic and conditional expressions
found in tax laws. Unlike eFLINT, Regelspraak is not used to describe powers, rights and duties.

4. Adaptable, Norm-Enforcing Case Management Tool

4.1. Adaptability and reusability

To ensure the adaptability and reusability of a norm enforcing application, it is important to make it
entirely model-driven. By not storing a structured local copy of the data needed to reason, the tool has



to query the reasoner to render the user interface. Therefore, the developer can both change the user
interface and modify the behaviour of the application by changing the model. The user interface can be
changed by modifying the relevant facts, which are shown to the user. The behaviour of the application
can be changed by modifying the condition of an act. The adaptability of the tool is demonstrated by
looking at the eFLINT model of the Municipal taxes use case. The maximum capital and income of
an applicant are defined as a Var ... Identified by Int. Changing the value of these variables will
affect the rights of the applicant and therefore changes the behaviour of the tool. These values can be
changed for existing cases without breaking the tool, as they are stored in the model itself and not in
the database. Another way the behaviour can be changed by altering the model, is by adding to, or
changing facts in the model. Adding physical acts will result in extra buttons being shown to the user.
For example, when adding the physical act of sending a letter to the quittance applicant, an extra button
will be presented to the public servant, representing this action. Changing the Holds when clause of an
act will change wether this act is allowed to executed or not. Both kinds of changes can be realised in a
modular fashion using the type extension mechanism of eFLINT [18]. The tool is reusable in the sense
that it can be (re-)used with altogether different model specifications.

4.2. Design decisions

The eFLINT language has two options to specify the way in which duties can be terminated by the
user. The first option is specifying the acts that terminate the duty in the Terminated by clause of
the duty itself. This approach follows the CALCULEMUS-FLINT method and can be seen in the code
fragment defining process-application in section 2 [19]. Specifying the duty this way makes it easy to
determine which actions need to be taken to terminate the end-users active duties, as they are given
by the duty itself. The other way to specify the termination of duties is using the Terminates clause
of the terminating act itself. To determine which acts terminate a given duty in this case, a form of
backward-chaining reasoning is required. The current implementation of the eFLINT reasoner does
not support this. Therefore, our tool assumes the first method of specifying the termination of duties.
The representation of a fact in the interface depends on the domain and fact-type given by the eFLINT
reasoner. When a fact is Identified by an Integer, the interface will adapt and show a number box
instead of a text box. For Boolean values, the tool presents a set of three radio buttons for the values
true, false, and unknown. Together, the actions, duties and facts in the eFLINT specification encode a
process model, in which actions by the case manager bring the case to a new state in which other facts
and duties hold true and other actions may be enabled or disabled.

Our system is model-driven, in the sense that the eFLINT specification determines which actions
are presented to the user (the case manager). This is implemented by constantly querying the running
eFLINT reasoner whether the displayed acts are enabled. For example, when a condition is added,
changed or removed, the system automatically reflects these changes by changing the status of the
button which represents the physical act accordingly. A dark blue button is presented when the action is
enabled and a red button when it is disabled. According to eFLINT semantics, an action that is disabled
can still be performed, resulting in a violation being raised. The user is prompted to confirm they intend
to perform a disabled action.

The tool keeps track of which case uses which version of the model, as changing the model for
already started cases can lead to unwanted behaviour. This is achieved by storing different version
of an eFLINT model in a separate file and storing a reference to this file in the application database.
When logging in to the tool, an eFLINT reasoner instance is started for every present case using the
corresponding eFLINT model. Newly started cases always use the model specified by the path in the
environment files of the tool. Because it is uncertain whether the initial eFLINT reasoner stays active,
the last state of the eFLINT reasoner is also stored in the database. When the tool detects a reasoner that
is not active anymore, it tries to start a new one using the stored state and model version. A reference
to this new reasoner is stored in the database to keep using the new instance.



5. Example Case Management Tool

Figure 1: The case overview screen showing the executable actions

Figure 2: The case editing screen providing inputs for case details.

To demonstrate the features of the tool, we created an eFLINT model describing the process of the
quittance of municipal taxes. This model uses several acts and duties to guide the civil servant through
the approval process. The user interface of the case management tool consists of a case selection screen
and two handling screens. After selecting a case or creating a new case, the public servant is presented
with the case details on the left and a set of buttons on the right (figure 1). The buttons correspond
to physical action in the eFLINT model, because these physical actions sync with their institutional
equivalent, the buttons symbolise certain decisions in the process. The case details can be changed
using a suitable input method.

The model-driven approach of our tool ensures that it works with different workflows. This requires
the workflows to be encoded as process models in the eFLINT specification to which the system is
applied. The actions of an eFLINT specification describe a model and normative concepts simultaneously,
with pre-conditions (Holds when and Conditioned by) determining when an action is compliant and
post-conditions (Creates and Terminates) determining the power of actors by enabling or disabling
actions and duties of (other) actors. The current design of the system is action-driven in the sense
that case managers are presented first and foremost with any actions related to cases. An alternative
duty-driven design is to present the duties and deadlines related to a case, making the actions that
terminate the duties secondary. In future work, we wish to compare and evaluate implementations of
both designs with user studies.

Our system has been designed to handle partial information by allowing information about clients
to be collected in a step-by-step fashion. This is best demonstrated by the ‘unknown’ radio button for
Boolean fact-types (figure 2). The implementation of our tool relies on eFLINT’s mechanisms supporting
open types for which the closed-world assumption does not apply. This means that the specification



includes types for which the reasoner doesn’t need instances to be able to reason with them.
Since the tool is still in development, not all the requirements have been met. The first user require-

ment which is not yet implemented is the need to see which legal articles are relevant for the running
cases and more specifically, on what legal articles the actions, duties, and violations are based (link to
relevant sources). We intend to realise this goal by embedding references to the relevant sources in
the eFLINT specification, rather than hardcoding them in the system. An eFLINT extension is needed,
similar to how references to sources are maintained by FLINT [19], the language on which eFLINT is
based. Keeping track of source references is slightly more complicated in eFLINT as type definitions
can be modularly extended [18]. Another implementation that is not yet implemented is the option to
give users different roles (role-based authorization). This enables different levels of authorisation
and also enables the option for the four eyes-principle. Although there is an option to add different
roles to the tool, the roles can not yet be used to express policies (such as a policy encoding the four
eyes-principle) within eFLINT.

An interaction between the tool and the eFLINT reasoner about user and role information is to
be designed in future work. The simulation system was not implemented in this version of the tool
(simulation). However, in other experiments, interfaces for interacting with eFLINT have been
designed that at least partially realise the simulation requirement [20]. The tool is able to keep track
of all information about a case, including after it has concluded (recall previous cases). However,
access to previous cases should be restricted by policies. More generally, policies are required to
regulate the behaviour of the system in ways that are not specific to an individual case. Access to cases
for supervisors of case managers is another example. In future work, we intend to demonstrate the
enforcement of such policies written in eFLINT within our system.

The forced use of the Terminated by clause limits the developer, as the developer can only specify
the termination of duties looking one step ahead. If the Terminates clause would have been used, the
developer would more easily be able to create a chain of events which terminates the duty, while
still being able to present that chain to the end-user. However, since the Terminates clause requires
back-chaining reasoning, which is not yet realised for eFLINT, it was not feasible for the tool. Another
limiting factor is the way the tool handles storing the state of the reasoner. Because assignments of facts
and execution of acts are stored in the database, the developer is limited to adding properties to the model
and is unable to change the names of existing facts, acts, and duties for existing cases. Removing these
attributes could lead to an invalid state being stored in the database and a malfunctioning application.
In general, a mechanism is required for migrating the knowledge base produced with one version of a
specification to a knowledge base suitable for a next version, similar to database migrations. Although
the reasoner is able to show the reasoning behind the decisions made that are made using the tool, the
format of this information isn’t always comprehensible.

6. Conclusion

In this paper, we reported on the implementation of a model-driven case management system for
administrative law cases based on a set of elicited requirements. The underlying eFLINT model assists
civil servants in the decision-making process by presenting held duties and the availability of (compliant)
actions. As such, our system automates compliance and has the potential to deliver societal impact by
improving the transparency with which governmental services and the laws and policies that govern
them are implemented. This transparency can be found in the way the eFLINT reasoner is able to show
the reasoning behind certain actions being compliant and in extension the reasoning behind certain
decisions. The elicited requirements will be used to continue developing our system with additional
user tests to (re-)evaluate its design.



References

[1] L. T. van Binsbergen, L. C. Liu, R. van Doesburg, T. van Engers, eFLINT: A domain-specific
language for executable norm specifications, in: GPCE 2020 - Proceedings of the 19th ACM
SIGPLAN International Conference on Generative Programming: Concepts and Experiences,
Co-located with SPLASH 2020, Association for Computing Machinery, Inc, 2020, pp. 124–136.
doi:10.1145/3425898.3426958.

[2] Municipality. of Amsterdam, Kwijtschelding, 2024. URL: https://www.amsterdam.nl/
belastingen-heffingen/kwijtschelding-aanvragen/#h046f678a-df67-4478-8545-c63c5bb209e8, Last
accessed: 01/10/2024.

[3] N. M. Verheijen, Automating Compliance in Government Organisations using eFLINT, https:
//ltvanbinsbergen.nl/files/theses/nina-verheijen-2022.pdf, 2022. Last accessed: 6/12/2024.

[4] J. L. Martin, D. J. Clark, S. P. Morgan, J. A. Crowe, E. Murphy, A user-centred approach to
requirements elicitation in medical device development: A case study from an industry perspective,
Applied Ergonomics 43 (2012). doi:10.1016/j.apergo.2011.05.002.

[5] V. Braun, V. Clarke, Using thematic analysis in psychology, Qualitative Research in Psychology 3
(2006) 77–101. doi:10.1191/1478088706qp063oa.

[6] U. Feige, A. Fiat, A. Shamir, Zero-knowledge proofs of identity, Journal of Cryptology 1 (1988).
doi:10.1007/BF02351717.

[7] T. van Engers, D. M. de Vries, Governmental transparency in the era of artificial intelligence., in:
JURIX, 2019, pp. 33–42. doi:10.3233/FAIA190304.

[8] R. Calegari, A. Omicini, G. Sartor, Explainable and ethical ai: A perspective on argumentation
and logic programming, in: M. Baldoni, S. Bandini (Eds.), AIxIA 2020 – Advances in Artificial
Intelligence, Springer International Publishing, Cham, 2021, pp. 19–36.

[9] A. Rodrigues da Silva, Model-driven engineering: A survey supported by the unified conceptual
model, Computer Languages, Systems & Structures 43 (2015) 139–155. doi:https://doi.org/
10.1016/j.cl.2015.06.001.

[10] S. Sharifi, A. Parvizimosaed, D. Amyot, L. Logrippo, J. Mylopoulos, Symboleo: Towards a specifi-
cation language for legal contracts, in: 2020 IEEE 28th International Requirements Engineering
Conference (RE), 2020, pp. 364–369. doi:10.1109/RE48521.2020.00049.

[11] J. Padget, E. ElDeen Elakehal, T. Li, M. De Vos, InstAL: An Institutional Action Language, Springer
International Publishing, Cham, 2016, pp. 101–124. doi:10.1007/978-3-319-33570-4_6.

[12] R. Kowalski, M. Sergot, A logic-based calculus of events, in: Foundations of knowledge base
management, Springer, 1989, pp. 23–55.

[13] W. N. Hohfeld, Fundamental legal conceptions as applied in judicial reasoning, The Yale Law
Journal 26 (1917) 710–770.

[14] M. Hashmi, G. Governatori, H. Lam, M. T. Wynn, Are we done with business process compli-
ance: state of the art and challenges ahead, Knowl. Inf. Syst. 57 (2018) 79–133. doi:10.1007/
s10115-017-1142-1.

[15] M. Lokin, A. Ausems, C. Wolferink, D. Dulfer, B. Bouwmeester, Regelspraak: een brug tussen
wetgeving en ict, RegelMaat 35 (2020) 28–47. doi:10.5553/rm/0920055x2020035001003.

[16] O. M. Group, Semantics for Business Vocabulary and Rules V1.5, https://www.omg.org/spec/SBVR/
About-SBVR/, 2019. Accessed on: 14/10/2022.

[17] R. G. Ross, RuleSpeak, https://www.rulespeak.com/en/, 1996. Accessed on: 15/11/2024.
[18] L. T. van Binsbergen, M. G. Kebede, J. Baugh, T. van Engers, D. G. van Vuurden, Dynamic

generation of access control policies from social policies, Procedia Computer Science 198 (2022)
140–147. doi:10.1016/j.procs.2021.12.221.

[19] R. van Doesburg, T. van Der Storm, T. van Engers, Calculemus: towards a formal language for the
interpretation of normative systems, AI4J Artif Intell Justice 1 (2016) 73.

[20] D. Frolich, L. T. van Binsbergen, A generic back-end for exploratory programming, in: V. Zsók,
J. Hughes (Eds.), Trends in Functional Programming, Springer International Publishing, Cham,
2021, pp. 24–43. doi:https://doi.org/10.1007/978-3-030-83978-9_2.

http://dx.doi.org/10.1145/3425898.3426958
https://www.amsterdam.nl/belastingen-heffingen/kwijtschelding-aanvragen/#h046f678a-df67-4478-8545-c63c5bb209e8
https://www.amsterdam.nl/belastingen-heffingen/kwijtschelding-aanvragen/#h046f678a-df67-4478-8545-c63c5bb209e8
https://ltvanbinsbergen.nl/files/theses/nina-verheijen-2022.pdf
https://ltvanbinsbergen.nl/files/theses/nina-verheijen-2022.pdf
http://dx.doi.org/10.1016/j.apergo.2011.05.002
http://dx.doi.org/10.1191/1478088706qp063oa
http://dx.doi.org/10.1007/BF02351717
http://dx.doi.org/10.3233/FAIA190304
http://dx.doi.org/https://doi.org/10.1016/j.cl.2015.06.001
http://dx.doi.org/https://doi.org/10.1016/j.cl.2015.06.001
http://dx.doi.org/10.1109/RE48521.2020.00049
http://dx.doi.org/10.1007/978-3-319-33570-4_6
http://dx.doi.org/10.1007/s10115-017-1142-1
http://dx.doi.org/10.1007/s10115-017-1142-1
http://dx.doi.org/10.5553/rm/0920055x2020035001003
https://www.omg.org/spec/SBVR/About-SBVR/
https://www.omg.org/spec/SBVR/About-SBVR/
https://www.rulespeak.com/en/
http://dx.doi.org/10.1016/j.procs.2021.12.221
http://dx.doi.org/https://doi.org/10.1007/978-3-030-83978-9_2


A. Overview of the Case Management Tool

Figure A1: Case selection: After logging in the user can select a case to work on.

Figure A2: Case overview: When a case is opened the user can view and execute the actions tied to the case.
The color of the button represents the normative status. The information which is used to reason about actions
is also displayed.

Figure A3: Case editing: To process the information provided by an applicant the user can use the case editing
screen. The presentation of the fields is generated using the datatype specified in the eFLINT model. The
different types of input are represented by the radio buttons and number fields.


	1 Introduction
	2 Background
	2.1 Normative reasoning/eFLINT
	2.2 User requirements

	3 Related work
	4 Adaptable, Norm-Enforcing Case Management Tool
	4.1 Adaptability and reusability
	4.2 Design decisions

	5 Example Case Management Tool
	6 Conclusion
	A Overview of the Case Management Tool

