
Reflections on the design and application of the
normative specification language eFLINT

L. Thomas van Binsbergen1[0000−0001−8113−2221]

ltvanbinsbergen@acm.org

Informatics Institute, University of Amsterdam, The Netherlands

Abstract. Checking the compliance of software against laws, regula-
tions and contracts is increasingly important and costly as the embed-
ding of software into societal practices is getting more pervasive. More-
over, the digitalised services provided by governmental organisations and
companies are governed by an increasing amount of laws and regulations,
requiring highly adaptable compliance practices. A potential solution is
provided by automating compliance using software. However, automating
compliance is difficult for various reasons. Legal practices involve sub-
jective processes such as interpretation and qualification. New laws and
regulations come into effect regularly and laws and regulations, as well
as their interpretations, are subjected to constant revision. In addition,
computational reasoning with laws requires a cross-disciplinary process
of formalising interpretations relying on legal and software expertise.
This paper reflects on the domain-specific language eFLINT developed to
experiment with potential solutions based on concepts as modularity and
inheritance. The language combines declarative and procedural elements
to reason about situations and scenarios respectively, explicates and for-
malises connections between legal concepts and computational concepts,
and is designed to automate compliance checks both before, during and
after a software system runs. The various goals and applications areas for
the language give rise to (possibly conflicting) requirements. This paper
reflects on the current design of the language by recalling various appli-
cations and sketches future developments. As such, this paper reports
on intermediate results and insights of an ongoing investigation that can
benefit language developers within the field of automated compliance.

1 Introduction

Laws, regulations, contracts, and other social policies serve to regulate social
systems by establishing norms that determine how actors within the system
are expected to behave. In distributed software systems, system policies are
widespread as means to regulate the behaviour of system components, separating
the description of the policy from the implementation of the system components
to enhance adaptability and transparency. For example, the XACML [48] and
ODRL [36] languages are designed to regulate access to resources in a unified
manner through access control policies that can easily be reconfigured when
relevant social policies change. Smart contracts [63, 27] are another example

of automating compliance with, in particular, legal contracts. However, both
examples are limited from a legal standpoint [66, 15, 41, 44].

A general solution to automating compliance requires, firstly, a formal repre-
sentation of norms that is sufficiently general to capture norms from a variety of
sources, at different levels of abstractions, and with connections between sources
made explicit. For example, the GDPR privacy regulation is more abstract than
an organisational policy or data sharing agreement affected by it. Secondly, the
representation should enable different kinds of reasoning such as conformance
checking to ensure the implemented (business) process can only behave in com-
pliance with norms, property checking to gain confidence in the correctness of
a norm specification, forward reasoning to determine the effects of actions and
the compliance of individual scenarios, and backward reasoning for policy-aware
planning. Thirdly, the solution should embrace the fact that legal processes are
inherently subjective, e.g., the process for the interpretation (of norms) and the
qualification of situations. This observation makes a fully ex-ante approach, such
as compliance by design, untenable from a legal perspective (although practical
in many situations). Instead, solutions are needed in which (potential) violations
within the system are embraced with ex-post enforcement mechanisms, such as
penalties and induced risk, as a backstop to respond to non-compliance. An
overview of the challenges related to compliance is given by Hashmi et al. [30]

This paper reports on intermediate findings of an investigation into a general
solution to automating compliance based on important software (language) engi-
neering concepts such as modularity and inheritance. This investigation involves
the design an implementation of eFLINT, a domain-specific language (DSL) for
developing executable specifications of norms [8]. The languages has been applied
in various experiments involving the assessment of concrete (historical) cases [8],
bounded model checking, run-time compliance with ex-post enforcement, nor-
mative multi-agent systems, and generating access control policies from social
policies [7], among others. Over time, the language has evolved to become more
flexible and suitable for use within these various application areas. In this paper,
we reflect on the design of the language using requirements extracted from the
goals and applications of the language. This paper reflects on the design choices
most relevant to other researchers of (declarative) norm specification languages,
normative reasoning, and automating compliance, and suggests future directions.

2 Related work

Norm representation Several software languages and logics exist to formalise
and reason with norms from various sources and within different application ar-
eas. Compared to other languages, eFLINT is most similar to languages based
on the Event Calculus [43, 56, 55, 14] such as Symboleo [62] and InstAL [50].
The Institutional Action Language (InstAL) is a DSL for specifying norms in
terms of duties and powers translating to Answer Set Programming for execu-
tion. Symboleo and eFLINT are both based on Hohfeld’s legal framework [32]
with Symboleo being designed specifically for contracts with embedded notions

2

of contract state. LegalRuleML extends RuleML and specifies norms in terms of
permissions and obligations through rules, and unlike eFLINT supports defeasi-
bility and negation of facts [3]. Other formal languages for expressing norms are
based on deontic logic [31], action logic [39] and defeasible logic [47, 28].

System policies and smart contracts A significant body of work exists concerning
the formalisation, analysis and enforcement of specific kinds of norms [37] such
as policies for access control [48, 36], network policies [2] (e.g. firewall configura-
tions) and (smart) contracts [62, 60, 27, 59, 68]. Instead, eFLINT is designed for
describing a wide variety of normative sources such as laws, regulations, (organ-
isational) policies and contracts. The Margrave Policy Analyzer tool1 supports
multiple formalisms to reason about access control policies and firewall config-
urations with different analyses such as Change-Impact Analysis [23]. A large
number of access control models exist [58, 49] of which the most common are
Role-Based Access Control (RBAC) [57] and Attribute-Based Access Control
(ABAC) [35]. XACML is a popular ABAC language and the XACML architec-
ture [48] is used as a model for systems applying ABAC. The knowledge rep-
resentation of eFLINT is sufficiently expressive to capture roles and attributes
and the eFLINT reasoner can be used as a policy decision and administration
point within the XACML architecture [7]. ODRL is an access control language
with policies controlling specific actions on (multi-media) assets [36, 54, 66]. The
Usage CONtrol (UCON) model introduces the ability to specify conditions that
should hold during access events [52].

First introduced by Szabo [63] for the exchange of digital assets, smart con-
tracts are now most popular for their usage as scripts executing ‘transactions’
recorded on a distributed ledger (the blockchain). Blockchain applications can
support compliance efforts by providing auditability and transparency [53, 61].
Solidity [22] is a popular imperative smart contract language for the Ethereum
platform [12, 67]. Marlowe is a declarative DSL for writing smart contracts at a
higher level of abstraction for the Cardano platform [60].

Multi-agent systems Multi-agent systems (MASs) are useful to experiment with
the integration of eFLINT in (running) systems organised according to different
architectures. We have used the Belief, Desire, and Intention (BDI) agents of [46,
45] to simulate applications, adding one or more eFLINT reasoners as so-called
normative advisors. Other approaches extend BDI agents by adding normative
concepts as reasoning capabilities to agents [18, 64, 17], such as the B-DOING
framework [19] and the BOID architecture [11, 51]. Most similar to our approach
is the use of ‘ethical governors’ in [13] that can be queried for advise. However, as
explained later in this paper, with our approach we can also support active noti-
fications sent by the eFLINT reasoner to support forms of ex-post enforcement.
A thorough discussion in integrating norms in MAS is provided by [5].

Model checking In the context of (bounded) model checking, properties expressed
in temporal logics are used to express norms or to reason with norms. For ex-
1 http://www.margrave-tool.org/

3

ample, Normative Temporal Logic (NTL) is a temporal logic that replaces the
path quantifiers of Computation-Tree Logic (CTL) to express obligations and
permissions [69]. Temporal Defeasible Logic (TDL) combines defeasibility and
temporal logic [29]. The FIEVeL specification language is used to model insti-
tutional policies [65] based on Ordered Many-Sorted First-Order Temporal Logic
(OMSFOTL) using SPIN [34] for model checking. In [4], the connection between
coordination problems and norm enforcement is formalised using Linear Tempo-
ral Logic (LTL). The norm specification language Revani [40] uses CTL for the
specification of properties concerning privacy in particular.

3 Running Example

This section introduces the eFLINT language through an example program re-
lated to auctioning. A reference interpreter for the language is available online [6].

An eFLINT program consists of type-declarations forming a specification,
statements describing a scenario, and queries. The type-declarations introduce
sets and relations, each with a domain whose instances receive a truth-assignment
in a knowledge base, indicating whether the instance is an element of the corre-
sponding set or relation. The following code fragment introduces the sets bidder,
object, price, and display and the relations bid and min-price-of. The set display is
declared with Var, indicating at most one instance can hold true for this type, i.e.
display acts as a variable to which a (single) object is assigned (if any). Similarly,
the relation min-price-of is ‘functional’, i.e. it maps every object to a unique price.
Fact bidder Identified by String // actor placing bids
Fact object Identified by String // objects for sale
Fact price Identified by Int // price to pay
Var display Identified by object // the item on display
Fact bid Identified by bidder * object * price * int
Function min -price -of Identified by object * price

The following statements define the function by asserting certain instances.
+min -price -of(Watch , 100).
+min -price -of(Clock , 200).
+min -price -of(Painting , 400).

Derivation rules infer truth assignments from knowledge about (other) facts:
Extend Fact object Derived from min -price -of.object
Extend Fact price Derived from min -price -of.price , bid.price

The Extend keyword adds clauses to an existing declaration. The last line above
states the price of every minimal price and of every bid is an element of price. The
results of multiple derivation rules accumulate through set union. A derivation
rule can also be written as a Boolean expression evaluated in a context in which
the fields of a type are bound as variables, e.g. bidder and price below.
Var highest -bid Identified by bidder * price Holds when (Exists bid:
bid.bidder == bidder && bid.price == price && bid.object == display.object

&& (Forall bid ’: bid ’. price <= price When bid ’. object == display.object))

This clause assumes that the fields (and also bid) can be enumerated to determine
the truth of the expression for each combination of instances of these types.

4

Act-types are fact-types with instances – referred to as actions – that can be
performed. Special clauses determine the effects of performing actions. The act-
type below has two fields, the implicit field actor and an object. An instance of the
type holds true when its actor is recognised as an auctioneer. A performed action
that does not hold true raises a violation, but still has its effects. The effect is
the assertion of the instance display(object), as well as the implicit termination of
any other elements of display owing to its status as a Var.
Act start -bidding Related to object Holds when auctioneer(actor)

Creates display(object)

State transitions occur through the execution of actions and assertions2. On the
contrary, derivation rules are declarative in that they do not trigger transitions.

The actor of an action can also be named explicitly:
Act place -bid Actor bidder Related to object , price Holds when bidder

Conditioned by display(object),
price >= Max(Foreach bid: bid.price When bid.object == object)

Creates bid(int = Count(Foreach bid: bid When bid.object == object))

This act-type declaration uses a form of constructor application with implicit
arguments to create an instance of bid (explained in section 5). The Conditioned by

clause establishes (extra) conditions3 for instances to be enabled. In this example,
bids are only allowed on displayed objects and must involve a price higher than
any previous bid. The int field of bid distinguishes bids from the same bidder.

A physical action, as opposed to the previous institutional actions, is always
enabled and only raises violations when it synchronises with an institutional
action raising a violation. The act-type declared below intuitively captures the
qualification of the action of raising one’s hand at an auction as placing a bid
on the item currently on display (with a price higher than the previous bid).
Physical raise -hand Syncs with place -bid(

bidder = actor , object = object , price =
min -price -of.price + 10* Count(Foreach bid: bid When bid.object == object)

) When bidder(actor) && display(object) && (min -price -of.object == object)

A duty-type declaration defines a fact-type with mandatory fields for a duty-
holder and a duty-claimant (and below, the additional field price) and zero or
more violation conditions. A duty raises a violation when it holds true and when
one or more violation conditions hold.
Bool undue -payment -delay
Duty payment -duty Holder bidder Claimant auctioneer Related to price

Violated when undue -payment -delay()

The treatment of different kinds of legal obligations with duties and open-texture
terms such as ‘undue delay’ are discussed in later sections. In the example, duties
to pay and to deliver are created when the bidding on a particular object ends.
Act end -bidding Holds when auctioneer(actor)

Creates payment -duty(bidder=highest -bid.bidder , price=highest -bid.price)
,delivery -duty(bidder=highest -bid.bidder , object=display.object)

Terminates display.object , bid When bid.object == display.object

2 And also events, differing from actions in that they are not performed by actors.
3 Holds when clauses are disjuntive, Conditioned by clauses are conjunctive.

5

The Terminates clauses refers to the variables display and bid. As they are not fields
of the act, the variables are implicitly bound by an occurrence of Foreach. As a
result, all instances of bid are terminated for which hold that the object referred
to in the bid is on display. This is realised by the application of When (infix).

At the end of the following scenario, Bob has a duty to pay 140 for the watch.
+bidder(Alice). +bidder(Bob). +bidder(Chloe). +auctioneer(David).
start -bidding(David , Watch). // statement executing an action
raise -hand(Alice). raise -hand(Bob). raise -hand(Alice). raise -hand(Chloe).
raise -hand(Bob). end -bidding(David).

4 Application

The design of eFLINT has been motivated to assess concrete scenarios for com-
pliance with norms specified in the FLINT language of Van Doesburg [21, 20]
(eFLINT abbreviates “executable FLINT”) and to achieve this by establishing
a connection between Hohfeld’s normative concepts [33, 32] and computational
concepts. The design and reference implementation of eFLINT were created as a
vehicle for experimenting with a language that can give computational meaning
to normative concepts and that can be applied in a diverse set of application
areas. These goals and application areas have resulted in various extensions and
modifications to the language. This section describes different application ar-
eas in which experiments with eFLINT have been performed and introduces
requirements (in bold) identified throughout these experiments.

Supporting Formal Interpretation The Calculemus-FLINT framework [21] pro-
vides a method for interpreting sources of norms to produce a structured, formal
interpretation and assessing a particular case for compliance against the for-
malised interpretation (assessment). The method prescribes to recognise acts,
duties, actors and facts based on sentence structure and to fill act-, duty-, and
fact-frames with text fragments extracted directly from the sentences. Case
assement has been a key motivation behind the development of eFLINT. Both
eFLINT and FLINT associate pre- and post-conditions with acts and violation-
conditions with duties. Together these conditions determine the outcome of a
case, i.e. the performed actions/events, their effects, and any violations. Deter-
mining the compliance of a scenario thus amounts to forward chaining.

The FLINT language is intended to be used by legal experts (domain-
users). A legal expert interpreting a source of norms can apply their trained, yet
subjective expertise to resolve possible ambiguities. From a legal perspective it
is important that subjectivity is part of the interpretation process as normative
texts are meant to be applied in varying contexts, circumstances and cases. In
particular, open-texture terms such as ‘undue delay’ are deliberately under-
specified [27]. The precise interpretation of an open-texture term is to be deter-
mined within the specific context in which the norms are applied. For this reason,
the norm specification language should be able to delay the interpretation of cer-
tain parts until the application context is known (specialisation). Analysing a
case based on a formal interpretation increases transparency and can aid the

6

process of resolving disputes caused by differences in interpretation. To improve
transparency further, FLINT source references between the frames of an inter-
pretation and the original source locations using the JuriConnect standard [10].
The ability to easily switch between alternative interpretations is needed when
assessing a case or resolving disputes. However, alternative interpretations may
only differ in small, subtle details about, for example, an individual article.
For this reason, interpretations should be developed modularly as a collection
of small fragments, with fragments being easy to replace (modularity, ver-
sioning). We conclude that specifications should reflect the level of abstraction
provided by the original source (abstraction level) and specifications should
be extensible so that further details can be specified later.

Another goal in the development of eFLINT has been to find a (computa-
tional) core language that can be used to give operational semantics to various
normative concepts. The design of FLINT is action-oriented in its focus on
acts and ‘obligations to act’ (duties). Deontic frameworks are obligation-oriented
and consider also ‘obligations of fact’, i.e. the obligation to achieve or preserve
a certain state in the world. Moreover, a prohibition to act is not necessarily
equivalent to the negation of a permission to act. This is the case when permis-
sions and prohibitions have different origins such as different sources of norms
or different actors invoking powers to modify the normative positions of (other)
actors. In these situations, priority mechanisms are required (norm priorities)
to determine whether a violation has indeed occurred or ex-post enforcement
mechanisms are needed to respond retroactively to violations.

Disputes also arise due to the subjectivity of qualification, the process by
which observations about the world get normative meaning. For this reason, it
is important automatic compliance is based on explicit qualification.

Assessing hypothetical cases is useful to experiment with the consequences of a
set of norms as part of, for example, the drafting of policy (experimentation).
By specifiying large sets of cases, confidence about the inner workings of the
policy is obtained, akin to running test-suites for testing software (testing).

Multi-Agent Systems We use multi-agent systems to experiment with compliance
in regulated systems, data markets in particular. So-called ‘normative advisors’
are added that reason with norms based on observations communicated to them
by their parent or by the environment (event-based). Conclusions, for exam-
ple about permitted actions or violations, are communicated to the parent. Our
approach makes it possible to experiment with different models for distributing
institutional facts and institutional reasoning and requires multiple eFLINT rea-
sonsers to co-exist (instantiation). One can define a system with a single agent
monitoring and assessing the behaviour of all market participants. Alternatively,
every market participant has its own normative advisor and uses normative rea-
soning for planning. Such planning activities by agents require the simulated
execution of hypothetical scenarios or backward chaining to reason towards a
goal, the latter of which our tools do not yet support.

We define ex-post enforcement agents that decide whether to respond
to observed violations. These agents may be fully autonomous services, or may

7

require a ‘human in the loop’. In both cases, the enforcement agent should receive
a detailed report about the nature of the violation and how the violation was
established containing, for example, which facts prevented an action from being
enabled (explainability). Similar reports are needed for ex-ante enforcement
in order for agents to determine what they can do to enable disabled actions.

Bounded Model-Checking The applications described in the previous subsection
are about concrete (hypothetical) scenarios and sometimes involve the enumer-
ation of a large set of alternative scenarios, e.g., when testing or running sim-
ulations. In other work we are applying bounded model-checking to attempt
verify safety and liveness properties of eFLINT specifications, effectively rea-
soning about abstract scenarios. To apply bounded model checking, eFLINT
specifications must have finite domains such that in every runtime state, only
a finite amount of transitions are possible. This applications also requires the
‘closed world assumption’ that establishes that what is not known to be true
is considered false. Furthermore, to make bounded model-checking feasible, we
concluded it must be possible to reduce the amount of possible transitions and
to reduce the set of possible runtime states (reducible domains). Future work
is to investigate the applicability of combinatorial, property-based testing [25].

Automating Legal Compliance The eFLINT language has been used in experi-
ments to investigate automating compliance in case management systems used
by governmental organisations. Prototypes are designed to adapt to changes in
norms, including dynamic updates, to formalise connections between organi-
sational policy and the laws they implement, and to enforce the rights and duties
of both civil servant and citizen. The eFLINT reasoner is instantiated as a run-
ning process for every on-going case, or responds to individual requests. As cases
develop over time, information about the case is recorded, either internally or
externally to the reasoner (persistence). This requires mechanisms to provide
facts about a case to the reasoner (case input), to record facts established by
the reasoner (case output) and to apply data migrations when norms change.

These experiments have also reveiled the important of specifying a service
interface between the application and the reasoner, for example to determine
which actions, events and facts of an eFLINT specification are triggerable by
the application and which are internal. For example, one can say that all phys-
ical actions (such as raise-hand and not place-bid) are triggerable by users of the
application. Another aspect of the service interface is to determine which facts
are provided solely by the application. We can therefore not (always) make the
closed world assumption (open world). Furthermore, the instances of a type
can not always be enumerated beforehand as, for example, new citizens register
and reasoning is needed with numerical values and dates (infinite domains).

In other projects, we are experimenting with the automatic enforcement of
(privacy) regulations, consortium agreements and data sharing conditions within
data exchange systems. In this context, transparency, explainability, mech-
anisms for dispute resolution and auditability are of high importance [53, 61].
Data exchange systems are inter-domain applications that require mechanisms

8

Table 1. The various requirements identified in section 4 laid out and categorised.

legal reasoning services usability
ex-ante enforcement forward chaining service interface domain-users
ex-post enforcement backward chaining case input source references
interpretation norm priorities case output explainability
explicit qualification closed world persistence versioning
normative concepts open world dynamic updates testing
assessment infinite domains event-based modularity
abstraction level finite domains instantiation extensible
auditability reducible domains specialisation experimentation
open-texture terms simulation data migrations transparency

for cross-domain authentication [26] and consensus. Consensus is needed on the
applied norms, relevant policy information, on the transpired events and on the
decisions made by the normative reasoner. A project to build an eFLINT to So-
lidity [22, 67] compiler is ongoing, producing smart contracts serving as reasoners
in a blockchain application. The interpretation is recorded as a smart contract
and the assessed scenario is recorded as transactions on the ledger.

5 Design

This section summarises the most important design choices, modifications and
extensions made in order to (better) meet the requirements identified in the
previous section and laid out and categorised in Table 1.

Knowledge Representation Following well-known declarative languages such as
Prolog [16] and Alloy [38], eFLINT allows users to define sets and relations in-
ductively over atomic strings and integers. The expressivity of the representation
can be demonstrated by showing how relational algebra or database operations
are supported. Relations associate names with fields as attributes in relational
algebra and databases. Relations thus represent database tables, predicates in
Prolog, or triples in RDF [42]. A projection operator <EXPR>.<NAME> is available
to refer to components of a tuple. Derivation rules can define unions and joins
by applying Exists, Forall and Foreach operators to enumerate over elements of
relations. A similar comparison can be made with algebraic datatypes.

Act-types and duty-types behave as (relational) fact-types in how instances
are represented, constructed, created and terminated. This design choice has
made it simple to represent the legal concept of power: to change the norma-
tive positions of (other) actors, an actor can perform one of its actions that
create/terminate actions or duties (normative concepts).

As described in the previous section, eFLINT is intended for reasoning about
both historical and dynamically evolving scenarios. The latter relies on types
with infinite domains whereas in the former the ‘domain of discourse’ is known
a priori and is inherently finite. The Foreach, Forall and Exists operators enumerate

9

instances of one or more types as part of their application. The Foreach opera-
tor is used in conjuction with aggregators such as Count and Sum. Operators Forall

and Exists effectively generalise binary conjunction and disjunction (respectively)
over lists of Booleans. A pragmatic design decision has been made to give seman-
tics to these operators depending on the domains of the types they enumerate:
the instances of a finite type are all enumerated, whereas of an infinite type, in-
stances that hold in the current knowledge base are enumerated. In the following
fragment, the value of count-all differs depending on whether the first or second
definition of numbers is used, whereas the value of count does not:
Fact number Identified by 1..5. Fact number Identified by Int.
+number (1). +number (3). +number (5).
Var count -all Identified by Int Derived from Count (Foreach number: number).
Var count Identified by Int Derived from Count

(Foreach number: number When Holds(number)).

In both cases, enumeration is finite as an eFLINT knowledge base is finite.
Knowledge in eFLINT is concrete rather than symbolic and unification is not
used. The statement +rich(person) in the following code fragment determines that
every currently known person is rich rather than every conceivable person. As a
consequece, Chloe is not considered rich at any moment in the execution of:
Fact person. +person(Alice). +person(Bob). +rich(person). +person(Chloe).

The statement +rich(person) is to be interpreted as the imperative “for each known
person, assert they are rich”, rather than the declarative “every person is rich”.
The decision to maintain concrete facts has been made to ensure knowledge
bases are easy to understand for legal experts (explainability, domain-users)
but has not been thoroughly evaluated.

The semantics of enumeration also effects derivation rules. Consider the ac-
tion start-bidding of the running example. In the following code fragment, the
three derivation rules associated with the action are equivalent:
Act start -bidding Related to object

Holds when auctioneer(actor)
Derived from start -bidding(actor ,object) When auctioneer(actor)
Derived from (Foreach actor , object:

start -bidding(actor ,object) When auctioneer(actor))

The query ?Holds(start-bidding(David, Vase)) fails in the running example as object(Vase)

is not an instance enumerated by the Foreach. That the definition of object affects
the first derivation rule is counter-intuitive, given that the rule does not men-
tion object. In an alternative semantics for derivation rules, the field names of
the type could be bound to the fields of a given instance of the type (e.g., actor

bound to David and object bound to Vase) when a derivation rule of a type is
evaluated (such that object is not enumerated). The alternative semantics vio-
lates the previous design choice that knowledge bases are concrete and finite as
start-bidding(David,object) would hold true for all conceivable objects.

Constructor application is written as the name of a type followed by zero or
more arguments that may also be left implicit. In a constructor application with
implicit arguments, any missing arguments are implicitly the name of the miss-
ing field. For example, the constructor application bid(int = ...) (Section 3), in
which arguments for the fields bidder, object and price of the type bid are missing, is

10

Act frame «assisting with the contract-
ing of a valid marriage»

Actor [ordinary or priest ...]
Object [marriage attempt]
Interested
Party

[spouses]

... ...
Creating post-
condition

[valid marriage]; ...

Terminates
postcondition

[marriage attempt]

Fact [ordinary or priest ...]
Fact [spouses]
Bool [marriage attempt]
Bool [valid marriage]
Act <<assisting with the contracting

of a valid marriage >>
Actor [ordinary of priest ...]
Recipient [spouses]
Related to [marriage attempt]
Creates [valid marriage]()
Terminates [marriage attempt]()

Fig. 1. FLINT and eFLINT specification of an act. Simplified example taken from [20].

interpreted as bid(int=..., bidder=bidder, object=object, price=price). The context de-
termines whether these variables are bound by an (implicit) Exists or Foreach.

Implicit arguments simplify the translation from FLINT to eFLINT
(interpretation). Consider the FLINT act-frame on the left-hand side of Fig-
ure 1 and the corresponding eFLINT code on the right-hand side. The FLINT
frame can be generated from a syntactical analysis of the original natural lan-
guage text, in this case the Code of Canon Law on Catholic marriage. The
eFLINT code can be automatically generated from the FLINT frame with facts
capturing which strings represent an ordinary or priest, which strings represent a
pair of spouses, and with Booleans4 capturing whether there is a valid marriage
or marriage attempt. The resulting code is internally consistent and executable.
However, there are some issues with the code. For example, multiple (pairs of)
spouses can be represented as instances of the type [spouses] but only one valid
marriage can be represented, and without a formal connection to the spouses.
This problem can be fixed in at least two ways by redefining some of the types
(specialisation). Firstly, [spouses] can be defined using the Var keyword, encod-
ing an assumption that reasoning involves at most one pair of spouses. Secondly,
the relation [valid marriage] (and similar for [marriage attempt]) can be given a field
[spouses] such that the fact can be used to determine which pair of spouses are
married: Fact [valid marriage] Identified by [spouses]. The original act-type definition
is still valid with either solution, owing to constructor application with implicit
arguments. In the second solution, the Creates expression is equivalent to [valid

marriage]([spouses]). When the expression is evaluated when an action is performed,
the variable [spouses] is bound to the recipient of the action.

The decision which of the two solutions to apply is argueably the decision for a
software expert to make (rather than a legal expert) as the decision is influenced
by the design of the software system in which the eFLINT code is applied. If
the code is applied to reason about individual, historical cases, then the first
solution is effective. If the code is integrated in a system in which multiple cases
are managed, then the second solution might be preferred. An advantage of the
design of eFLINT is that both solutions can co-exist: the original definition in

4 Keyword Bool defines a type with only one value: the empty tuple. The type behaves
like a Boolean variable as the value is either present or absent in the defined set.

11

Figure 1 can be extended (using the #require directive) by two separate files, each
implementing one of the solutions. In fact, both solutions can be applied for both
purposes, owing to the way eFLINT services are implemented (instantiation).

Exploratory Programming One of the most impactful decisions has been to adopt
the incremental programming style of languages such as Python in which a
program is a sequence of individually valid program fragments. In the original
eFLINT paper [8], a strict separation is maintained between type declarations,
domain refinements (reducible domains), initial state declaration and scenar-
ios. The strict separation was removed by introducing phrases, each of which is
either a sequence of type declarations and type extensions, a query, a statement,
or a sequence of phrases. This is a conservative extension in the sense that the old
separation can still be made, if desired. The incremental style of programming
makes specifications inherently extensible, enables dynamic updates and the
delayed specification of open-texture terms, greatly increases modularity,
and simplifies debugging and testing. The change was motivated by the desire
to assess dynamically evolving scenarios and interpretations and is a natural fit
with event-based applications. Events raised within the system (e.g. the “raise
hand” button has been pressed) can be converted to eFLINT phrases as case
input and the conclusions can cause new events being raised (e.g. that there is
a new highest bidder) as case output, enabling ex-post enforcement.

The language was redesigned according to the methodology presented in [9]
and implemented using the generic interpreter back-end of [24] that supports
exploratory programming by keeping track of execution history. This enables re-
visiting previous states for experimentation and simulation. The execution
history contains valuable information to retrace causes and effects, enhancing
explainability, transparency and auditability. As part of this redesign, sev-
eral other changes were made to the language. The Extend keyword was added
for writing type extensions, the Syncs with keyword was added for synchronising
actions and events, and instance queries were added. A Boolean query ?<EXPR>

evaluates an expression to true or false. An instance expression ?-<EXPR> evaluates
an expression to zero, one or more instances of a type. For example, the instance
query ?-bid When display(bid.object) evaluates to all bids on the object currently on
display. All unbound variables in an instance query (bid in the example) are
implicitly bound using Foreach. Queries are useful for testing and for ex-ante
enforcement. An eFLINT service can respond to Boolean queries to give or
deny access to resources, akin to a policy decision point in the XACML architec-
ture [48]. Alternatively, an instance query can be used to obtain permissions of
a certain kind for translation into, for example, user rights in a database server.

To support type extensions more naturally, a distinction has been introduced
between domain-related clauses of a type, such as Identified by and Related to, and
clauses referred to as accumulating clauses. These clauses are accumulating in
the sense that multiple occurrences of the same kind of clause can occur at a
type and in that their effects somehow accumulate. For example, an instance is
derived if one or more of the derivation rules of the type derives the instance.
A duty is violated if (it holds true and) one or more of its violation conditions

12

holds true. All pre-conditions of a type5 must hold true for an instance of the
type to be enabled. And all the instances computed for the expressions of all
Creates, Terminates, and Obfuscates (see below) are created/terminated/obfuscated.

Service Interactions In dynamically unfolding cases, e.g. when monitoring the
compliance of a running system, some process is required to automatically con-
vert observations (events) into the steps of a scenario. In initial experiments
with multi-agent systems, we relied on the host language to write such conver-
sion rules, or we hard-coded qualifications into applications. A strict separation
was maintained between physical processes (external to eFLINT) and institu-
tional processes (internal to eFLINT). The Syncs with keyword was introduced to
connect the institutional actions from various interrelated normative documents,
such as a sharing agreement and the GDPR regulation example in [7]. This way,
normative sources can be interpreted separately at their own abstraction level
with additional, separate code fragments making any connections explicit.

Experience demonstrated that it is also useful to use eFLINT actions and
events to model physical processes and to connect them to institutional processes
using Syncs with. This way, qualification rules can be written within eFLINT itself
and integrating eFLINT as a service becomes easier. A generic algorithm can
systematically convert the events of an arbitrary event stream to phrases without
making assumptions about the specification with which the reasoner is loaded.
Institutional meaning is then assigned to these events within eFLINT (when
relevant). Physical and synchronised actions motivated the change that actions
always manifest their effects when executed, even when disabled.

For security reasons and to separate concerns, it is beneficial to restrict an
eFLINT service to only respond to certain inputs and to make certain types
strictly internal. This way, for example, we can disallow any duties from being
created or terminated directly. For the running example we might like to say
that only the raise-hand, start-bidding and end-bidding actions can be triggered. In
future work we intend to add a module-system or service interface specification
mechanism that makes it possible to hide and expose elements of a specification.

At present, eFLINT does offer the Physical keyword as an alternative to Act to
distinguish between physical and institutional actions. Whether an instance of
a physical act holds true is determined only be pre-conditions expressed using
Conditioned by or inherited by synchronising with instances of (other) act-types.
The distinction between physical and institutional action strenghtens model
checking. By expressing LTL properties that only transition over physical actions
(synchronised with institutional actions), we can use model checking properties
to check the conformance [1] of a physical process with an institutional process.

Open Types In a type declaration, the Open and Closed modifiers are available to
indicate whether the closed world assumption holds for this type. The logic
for open types is three-valued: True, False or Unknown. The Obfuscates clause has
been added to set the truth value of an instance to Unknown. The treatment of
5 Conditioned by clauses can be associated with all types, not just act-types.

13

Unknown affects how applications interact with eFLINT services. The eFLINT
reasoner undoes the execution of a phrase when Unknown is encountered and
reports the Unknown instance as an exception. Such an exception can be un-
derstood as a request to the execution context to provide additional input. The
eFLINT implementation accepts additional input alongside a phrase to be ex-
ecuted. Additional input is only used for that particular execution request and
has the highest priority6 when establishing the truth of a fact.

In one of our multi-agent experiments, an agent responds to a missing infor-
mation exception by contacting another agent to obtain the information, e.g. to
confirm whether a certain certificate is valid. To this end, it may be beneficial to
offer a mechanism to pause and continue phrase execution after missing input
has been made available (in a continuation passing style). In another application,
open types are used to generate input forms for users to fill. This application
asks the eFLINT reasoner for all open types in the specification. The response
is used to generate an HTML form with various kinds of elements (e.g. check-
boxes and dropdowns) with any available information pre-filled. The additional
input component of an execution request can also be used to provide all input
relevant to requests. This way, the eFLINT reasoner can be used statelessly and
persistence can be realised with an external database.

6 Discussion

This section reflects on the current design of eFLINT compared to the goals and
requirements stated in Section 4.

The development of eFLINT went through various phases, starting with the
analyses of historical cases, followed by dynamically evolving cases and system
integration. Pragmatic design decisions have been made to ensure the language
is sufficiently flexible to be used for various kinds of applications. However, a
flexible solution is not always the most user-friendly solution. For example, in
some applications a strict separation between specification (type declarations)
and scenarios (statements) is useful. And the closed world assumption is needed
for model checking. In general, sometimes certain assumptions are needed that
in a more restrictive variant of the language could be enforced synactically or
using static analyses. At present, the language is not sufficiently friendly for legal
experts to use without software expertise. Experience with computer science
students does suggest that the language is relatively easy to learn for those with
programming experience, especially declarative programming experience.

An open question still being investigated is how the interpretation process
can best be supported. Our current best effort involves a pipeline in which:
natural language processing produces FLINT frames from a normative source, a
legal/domain expert completes and refines the FLINT frames, the FLINT frames
are automatically translated to eFLINT, and a software expert completes and
refines the eFLINT code. Automation is needed to deal with the large amount
6 Additional input facts have a higher priority than facts created and terminated by

actions/events which in turn have a higher priority than derived facts.

14

of normative sources and the pace with which they are produced. Intervention
by legal experts is needed as interpretation is inherently subjective. Software ex-
perts are needed to add computational details (such as relations between fields)
not commonly contained in the natural language sources. Provenance, version-
ing and retaining source references are important qualities of an interpreta-
tion pipeline. For these purposes, meta-data about eFLINT fragments should be
maintained by the pipeline as is currently being done for FLINT frames.

In the extended version of this paper, we intend to present a new design of
a norm specification language which comprises a computational core language
and a legal surface-level language. The goal of this (re-)design is twofold. One
motivation is improving usability for legal and domain experts by offering a more
tailored experience. For example, a keyword such as Syncs with should be hidden
as we should not require legal experts to think about transition system seman-
tics. A rule-based syntax (left-hand side) can be used to express the relation
between raise-hand and place-bid without Extend and Syncs with (right-hand side):
raise-hand(bidder) QualifiesAs

place-bid(bidder, display.object, price)
Where price = ...

Extend raise -hand Syncs with place -bid
(bidder=actor ,object=display.object ,

price = ...)

Another motivation is to experiment with the computational meaning of alter-
native normative concepts such as obligations and prohibitions. The notion of
violation will be removed from the core language and replaced by monitors that
flag properties satisfied by triggered transitions or reached states. The connec-
tion between the legal surface-language and the core language can then establish
whether flagged properties are interpreted as violations or, perhaps, as desirable
events based on additional, normative information. For example, if a prohibited
action is performed, this event may not constitute a violation of the action is
explicitly permitted by a (higher) authority.

7 Conclusion

This paper has reflected on the design of eFLINT based on requirements ex-
tracted from experiments in various application areas. The presented discussion
serves to benefit researchers working on computational representations of legal
concepts, attempting to bridge the gap between legal artefacts and software,
automating compliance, and policy-driven systems. The main advantage of the
language is the flexibility that permits it to be used in multiple application areas
simultaneously such as model checking, checking the compliance of historical,
hypothetical and dynamically evolving scenarios, as part of an access control
system and to formalise norms from a variety of sources at their own level of
abstraction. The flexibility is achieved through certain pragmatic design deci-
sions and by designing the language to be modular and specifications extensible.
The main future developments are to increase the usability of the language, in
particular for domain experts, by experimenting with new ways of interacting
with the language, including alternative surface-level languages, static analyses,
user interfaces and development environments in general.

15

Acknowledgments This work has been executed as part of the SSPDDP
project supported by NWO in the Big Data: Real Time ICT for Logistics pro-
gram (628.009.014) and the AMdEX Fieldlab project supported by Kansen Voor
West EFRO (KVW00309) and the province of Noord-Holland.

References

1. van der Aalst, W.M.P.: Conformance Checking, pp. 191–213. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3_7

2. Al-Shaer, E.S., Hamed, H.H.: Modeling and management of firewall policies.
IEEE Transactions on Network and Service Management 1(1), 2–10 (2004).
https://doi.org/10.1109/TNSM.2004.4623689

3. Athan, T., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: LegalRuleML:
Design Principles and Foundations, pp. 151–188. Springer International Publishing,
Cham (2015). https://doi.org/10.1007/978-3-319-21768-0_6

4. Aştefănoaei, L., de Boer, F., Dastani, M., Meyer, J.J.: On the Seman-
tics and Verification of Normative Multi-Agent Systems 15(13), 2629–2652.
https://doi.org/10.3217/jucs-015-13-2629

5. Balke, T., da Costa Pereira, C., Dignum, F., Lorini, E., Rotolo, A., Vasconcelos, W.,
Villata, S.: Norms in MAS: Definitions and Related Concepts. In: Andrighetto, G.,
Governatori, G., Noriega, P., van der Torre, L.W.N. (eds.) Normative Multi-Agent
Systems, vol. 4, pp. 1–31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.
https://doi.org/10.4230/DFU.VOL4.12111.1

6. van Binsbergen, L.T.: The eFLINT project on GitLab. https://gitlab.com/eflint
(2020), [Online, accessed 12 October 2022]

7. van Binsbergen, L.T., Kebede, M.G., Baugh, J., van Engers, T., van
Vuurden, D.G.: Dynamic generation of access control policies from so-
cial policies. Procedia Computer Science 198, 140–147 (January 2022).
https://doi.org/10.1016/j.procs.2021.12.221

8. van Binsbergen, L.T., Liu, L., van Doesburg, R., van Engers, T.: eFLINT:
A Domain-Specific Language for Executable Norm Specifications. In: Proceed-
ings of the 19th ACM SIGPLAN International Conference on Generative Pro-
gramming: Concepts and Experiences. pp. 124––136. GPCE 2020, ACM (2020).
https://doi.org/10.1145/3425898.3426958

9. van Binsbergen, L.T., Verano Merino, M., Jeanjean, P., van der Storm, T., Combe-
male, B., Barais, O.: A Principled Approach to REPL Interpreters, pp. 84–100.
ACM (2020). https://doi.org/10.1145/3426428.3426917

10. Breebaart, M.: Juriconnect standaard BWB versie 1.3.1 (Oct 2014)
11. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID

Architecture - Conflicts Between Beliefs, Obligations, Intentions and Desires. In:
In Proceedings of the Fifth International Conference on Autonomous Agents. pp.
9–16. ACM Press (2001). https://doi.org/10.1145/375735.375766

12. Buterin, V.: Ethereum white paper (2018)
13. Cardoso, R.C., Ferrando, A., Dennis, L.A., Fisher, M.: Implementing Ethical

Governors in BDI. In: Alechina, N., Baldoni, M., Logan, B. (eds.) Engineering
Multi-Agent Systems. pp. 22–41. Springer International Publishing, Cham (2022).
https://doi.org/10.1007/978-3-030-97457-2_2

16

14. Charalambides, M., Flegkas, P., Pavlou, G., Bandara, A.K., Lupu, E., Russo, A.,
Dulay, N., Sloman, M., Rubio-Loyola, J.: Policy conflict analysis for quality of ser-
vice management. In: 6th IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY 2005), 6-8 June 2005, Stockholm, Sweden. pp.
99–108. IEEE (2005). https://doi.org/10.1109/POLICY.2005.23

15. Chowdhury, O., Chen, H., Niu, J., Li, N., Bertino, E.: On XACML’s Adequacy
to Specify and to Enforce HIPAA. In: Gunter, C.A., Peterson, Z.N.J. (eds.) 3rd
USENIX Workshop on Health Security and Privacy. HealthSec ’12, USENIX As-
sociation (2012). https://doi.org/10.5555/2372366.2372381

16. Colmerauer, A., Roussel, P.: The Birth of Prolog, p. 331–367. As-
sociation for Computing Machinery, New York, NY, USA (1996).
https://doi.org/10.1145/234286.1057820

17. Criado, N., Argente, E., Noriega, P., Botti, V.: Towards a normative BDI archi-
tecture for norm compliance. CEUR Workshop Proceedings 627, 65–81 (2010)

18. Deljoo, A., van Engers, T., van Doesburg, R., Gommans, L., de Laat, C.: A Nor-
mative Agent-based Model for Sharing Data in Secure Trustworthy Digital Market
Places. Proceedings of the 10th International Conference on Agents and Artificial
Intelligence (April), 290–296 (2018)

19. Dignum, F., Kinny, D., Sonenberg, L.: Motivational attitudes of agents: On desires,
obligations, and norms. Lecture Notes in Computer Science 2296(Section 2), 83
(2002). https://doi.org/10.1007/3-540-45941-3_9

20. van Doesburg, R., van Engers, T.: The false, the former, and the parish
priest. In: Proceedings of the Seventeenth International Conference on Ar-
tificial Intelligence and Law. pp. 194–198. ICAIL 2019, ACM (2019).
https://doi.org/10.1145/3322640.3326718

21. van Doesburg, R., van der Storm, T., van Engers, T.: CALCULEMUS: Towards a
formal language for the interpretation of normative systems. In: AI4J Workshop
at ECAI 2016. pp. 73–77. AI4J 2016 (2016)

22. Ethereum: Solidity documentation online. https://solidity.readthedocs.io (2016),
[Online, accessed 8 October 2022]

23. Fisler, K., Krishnamurthi, S., Meyerovich, L., Tschantz, M.: Verification and
Change-Impact Analysis of Access-Control Policies. In: Proceedings of the
27th International Conference on Software Engineering. pp. 196–205. ICSE
2005, Association for Computing Machinery, New York, NY, USA (2005).
https://doi.org/10.1145/1062455.1062502

24. Frölich, D., van Binsbergen, L.T.: A Generic Back-End for Exploratory Program-
ming. In: The 22nd International Symposium on Trends in Functional Program-
ming (TFP 2021). LNCS, vol. 12834. Springer (2021). https://doi.org/10.1007/978-
3-030-83978-9_2

25. Goldstein, H., Hughes, J., Lampropoulos, L., Pierce, B.C.: Do Judge a Test by
its Cover. In: Yoshida, N. (ed.) Programming Languages and Systems. pp. 264–
291. Springer International Publishing (2021). https://doi.org/10.1007/978-3-030-
72019-3_10

26. Gommans, L., Xu, L., Demchenko, Y., Wan, A., Cristea, M., Meijer, R., de Laat, C.:
Multi-domain lightpath authorization, using tokens. Future Generation Computer
Systems 25(2), 153–160 (2009). https://doi.org/10.1016/j.future.2008.07.013

27. Governatori, G., Idelberger, F., Milosevic, Z., Riveret, R., Sartor, G., Xu,
X.: On legal contracts, imperative and declarative smart contracts, and
blockchain systems. Artificial Intelligence and Law 26(4), 377–409 (2018).
https://doi.org/10.1007/s10506-018-9223-3

17

28. Governatori, G., Maher, M., Antoniou, G., Billington, D.: Argumentation Seman-
tics for Defeasible Logic. Journal of Logic and Computation 14(5), 675–702 (10
2004). https://doi.org/10.1093/logcom/14.5.675

29. Governatori, G., Rotolo, A.: Changing legal systems: Legal abrogations and annul-
ments in Defeasible Logic 18(1), 157–194. https://doi.org/10.1093/jigpal/jzp075

30. Hashmi, M., Governatori, G., Lam, H., Wynn, M.T.: Are we done with business
process compliance: state of the art and challenges ahead. Knowl. Inf. Syst. 57(1),
79–133 (2018). https://doi.org/10.1007/s10115-017-1142-1

31. Herrestad, H.: Norms and formalization. In: Proceedings of the 3th International
Conference on Artificial Intelligence and Law. pp. 175–184. ICAIL 1993, ACM
(1993). https://doi.org/10.1145/112646.112667

32. Hohfeld, W.N.: Fundamental legal conceptions as applied in judicial reasoning. The
Yale Law Journal 26(8), 710–770 (1917). https://doi.org/10.2307/786270

33. Hohfeld, W.: Some fundamental legal conceptions as applied in judicial reasoning.
Yale Law Journal 23(1), 59–64 (1913)

34. Holzmann, G.J.: The SPIN Model Checker - primer and reference manual. Addison-
Wesley (2004)

35. Hu, V.C., Kuhn, D.R., Ferraiolo, D.F.: Attribute-based access control. Computer
48(2), 85–88 (2015). https://doi.org/10.1109/MC.2015.33

36. Iannella, R., Villata, S.: ODRL information model 2.2. W3C Recommendation
(2018)

37. Jabal, A., Davari, M., Bertino, E., Makaya, C., Calo, S., Verma, D., Russo, A.,
Williams, C.: Methods and tools for policy analysis. ACM Computing Surveys
51(6) (2019). https://doi.org/10.1145/3295749, https://doi.org/10.1145/3295749

38. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press
(2006)

39. Jones, A., Sergot, M.: A Formal Characterisation of Institution-
alised Power. Logic Journal of the IGPL 4(3), 427–443 (06 1996).
https://doi.org/10.1093/jigpal/4.3.427

40. Kafalý, O., Ajmeri, N., Singh, M.P.: Revani: Revising and Verifying Normative
Specifications for Privacy 31(5), 8–15. https://doi.org/10.1109/MIS.2016.89

41. Kebede, M.G., Sileno, G., Van Engers, T.: A Critical Reflection on ODRL. In:
Rodríguez-Doncel, V., Palmirani, M., Araszkiewicz, M., Casanovas, P., Pagallo, U.,
Sartor, G. (eds.) AI Approaches to the Complexity of Legal Systems XI-XII. pp. 48–
61. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-
3-030-89811-3_4

42. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Recommendation (2004),
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

43. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen-
eration Computing 4(1), 67–95 (1986). https://doi.org/10.1007/BF03037383,
https://doi.org/10.1007/BF03037383

44. Liu, L., Ho, M., Su, B., Wang, S., Hsu, M., Tseng, Y.J.: PanGPCR: predictions for
multiple targets, repurposing and side effects. Bioinform. 37(8), 1184–1186 (2021).
https://doi.org/10.1093/bioinformatics/btaa766

45. Mohajeri Parizi, M., Sileno, G., van Engers, T.: Seamless integration and testing
for mas engineering. In: Alechina, N., Baldoni, M., Logan, B. (eds.) Engineer-
ing Multi-Agent Systems. pp. 254–272. Springer International Publishing, Cham
(2022). https://doi.org/10.1007/978-3-030-97457-2_15

18

46. Mohajeri Parizi, M., Sileno, G., van Engers, T., Klous, S.: Run, agent, run! archi-
tecture and benchmarking of actor-based agents. In: Proceedings of the 10th ACM
SIGPLAN International Workshop on Programming Based on Actors, Agents, and
Decentralized Control. p. 11–20. AGERE 2020, Association for Computing Machin-
ery, New York, NY, USA (2020). https://doi.org/10.1145/3427760.3428339

47. Nute, D.: Defeasible logic. In: Bartenstein, O., Geske, U., Hannebauer, M.,
Yoshie, O. (eds.) Web Knowledge Management and Decision Support. pp. 151–169.
Springer Berlin Heidelberg, Berlin, Heidelberg (2003). https://doi.org/10.1007/3-
540-36524-9

48. OASIS eXtensible Access Control Markup Language (XACML) Technical Com-
mittee: eXtensible Access Control Markup Language (XACML) Version 3.0 Plus
Errata 01 (July 2017)

49. Osborn, S.L.: Mandatory access control and role-based access control revisited. In:
Youman, C.E., Coyne, E.J., Jaeger, T. (eds.) Proceedings of the Second Workshop
on Role-Based Access Control, RBAC 1997,November 6-7, 1997. pp. 31–40. ACM
(1997). https://doi.org/10.1145/266741.266751

50. Padget, J., Elakehal, E., Li, T., De Vos, M.: InstAL: An Institutional Action Lan-
guage, Law, Governance and Technology Series, vol. 30, p. 101. Springer Verlag
(2016). https://doi.org/10.1007/978-3-319-33570-4_6

51. Pandžić, S., Broersen, J., Aarts, H.: BOID*: Autonomous goal deliberation through
abduction. p. 1019–1027. AAMAS ’22, International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC (2022)

52. Park, J., Sandhu, R.: Towards usage control models: beyond traditional access
control. In: Proceedings of the Seventh ACM Symposium on Access Control Models
and Technologies. p. 57–64. SACMAT ’02, Association for Computing Machinery
(2002). https://doi.org/10.1145/507711.507722

53. Prinz, W., Rose, T., Urbach, N.: Blockchain Technology and International
Data Spaces, pp. 165–180. Springer International Publishing, Cham (2022).
https://doi.org/10.1007/978-3-030-93975-5_10

54. Rodríguez-Doncel, V., Villata, S., Gómez-Pérez, A.: A dataset of RDF licenses.
In: Hoekstra, R. (ed.) Legal Knowledge and Information Systems - JURIX 2014:
The Twenty-Seventh Annual Conference, Jagiellonian University, Krakow, Poland,
10-12 December 2014. Frontiers in Artificial Intelligence and Applications, vol. 271,
pp. 187–188. IOS Press (2014). https://doi.org/10.3233/978-1-61499-468-8-187

55. Russo, A., Miller, R., Nuseibeh, B., Kramer, J.: An abductive approach for
analysing event-based requirements specifications. In: Stuckey, P. (ed.) Logic Pro-
gramming, 18th International Conference, ICLP 2002, Copenhagen, Denmark, July
29 - August 1, 2002, Proceedings. LNCS, vol. 2401, pp. 22–37. Springer (2002).
https://doi.org/10.1007/3-540-45619-8_3

56. Sadri, F., Kowalski, R.: Variants of the event calculus. In: Sterling, L. (ed.) Logic
Programming, Proceedings of the Twelfth International Conference on Logic Pro-
gramming, Tokyo, Japan, June 13-16, 1995. pp. 67–81. MIT Press (1995)

57. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. Computer 29(2), 38–47 (1996). https://doi.org/10.1109/2.485845

58. Sandhu, R.S., Munawer, Q.: How to do discretionary access control using roles. In:
Youman, C.E., Jaeger, T. (eds.) Proceedings of the Third ACM Workshop on Role-
Based Access Control, RBAC 1998,October 22-23, 1998. pp. 47–54. ACM (1998).
https://doi.org/10.1145/286884.286893

59. Schrans, F., Hails, D., Harkness, A., Drossopoulou, S., Eisenbach, S.: Flint for safer
smart contracts. https://arxiv.org/pdf/1904.06534.pdf (2019)

19

60. Seijas, P., Nemish, A., Smith, D., Thompson, S.: Marlowe: implementing and
analysing financial contracts on blockchain. In: Workshop on Trusted Smart Con-
tracts (Financial Cryptography 2020) (2 2020). https://doi.org/10.1007/978-3-030-
54455-3_35

61. Shakeri, S., Maccatrozzo, V., Veen, L., Bakhshi, R., Gommans, L., de Laat,
C., Grosso, P.: Modeling and matching digital data marketplace policies. In:
2019 15th International Conference on eScience (eScience). pp. 570–577 (2019).
https://doi.org/10.1109/eScience.2019.00078

62. Sharifi, S., Parvizimosaed, A., Amyot, D., Logrippo, L., Mylopoulos, J.: Symboleo:
Towards a Specification Language for Legal Contracts. In: Breaux, T.D., Zisman,
A., Fricker, S., Glinz, M. (eds.) 28th IEEE International Requirements Engineering
Conference, RE 2020, August 31 - September 4, 2020. pp. 364–369. IEEE (2020).
https://doi.org/10.1109/RE48521.2020.00049

63. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997). https://doi.org/10.5210/fm.v2i9.548

64. Tufis, M., Ganascia, J.G.: Grafting norms onto the BDI agent model. A Construc-
tion Manual for Robots’ Ethical Systems. Cognitive Technologies (2015)

65. Viganò, F., Colombetti, M.: Symbolic model checking of institutions. pp. 35–44.
ACM Press. https://doi.org/10.1145/1282100.1282109

66. Vos, M.D., Kirrane, S., Padget, J.A., Satoh, K.: ODRL Policy Modelling and Com-
pliance Checking. In: Fodor, P., Montali, M., Calvanese, D., Roman, D. (eds.)
Rules and Reasoning - Third International Joint Conference, RuleML+RR 2019,
Bolzano, Italy, September 16-19, 2019, Proceedings. Lecture Notes in Computer
Science, vol. 11784, pp. 36–51. Springer (2019). https://doi.org/10.1007/978-3-030-
31095-0_3

67. Wood, D.: Ethereum: a secure decentralised generalised transaction ledger (2014)
68. Wöhrer, M., Zdun, U.: Domain specific language for smart contract develop-

ment. In: 2020 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC). pp. 1–9. IEEE (2020). https://doi.org/10.1109/ICBC48266.2020.9169399

69. Ågotnes, T., van der Hoek, W., Rodríguez-Aguilar, J.A., Sierra, C., Wooldridge,
M.: A Temporal Logic of Normative Systems. In: Makinson, D., Malinowski,
J., Wansing, H. (eds.) Towards Mathematical Philosophy: Papers from the Stu-
dia Logica Conference Trends in Logic IV, pp. 69–106. Springer Netherlands.
https://doi.org/10.1007/978-1-4020-9084-4_5

20

