
A Modular Architecture for Integrating
Normative Advisors in MAS

Mostafa Mohajeri Parizi1, L. Thomas van Binsbergen1,
Giovanni Sileno1, and Tom van Engers1,2

1 Informatics Institute, University of Amsterdam, The Netherlands
2 Leibniz Institute, University of Amsterdam/TNO, The Netherlands

{m.mohajeriparizi,g.sileno,vanengers}@uva.nl,ltvanbinsbergen@acm.org

This version of the contribution has been accepted for publication after peer review but is not the Version of

Record and does not reflect post-acceptance improvements or corrections. The version of record is available online at:

https://doi.org/10.1007/978-3-031-20614-6 18. Use of this Accepted Version is subject to the publisher’s Accepted

Manuscript terms of use https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

Abstract. This paper introduces a modular architecture for integrating
norms in autonomous agents and multi-agent systems. As the interac-
tions between norms and agents can be complex, this architecture utilizes
multiple programmable components to model concepts such as adoption
of personal and/or collective norms (possibly conflicting), interpretation
and qualification as mappings between social and normative contexts,
intentionally (non-)compliant behaviors, and resolution of conflicts be-
tween norms and desires (or other norms). The architecture revolves
around normative advisors, that act as the bridge between intentional
agents and the institutional reality. As a technical contribution, a run-
ning implementation of the architecture is presented based on the ASC2
(AgentScript) BDI framework and eFLINT normative reasoner.

1 Introduction

Norms are widely used to represent ethical, legal and social aspects of multi-agent
systems, and normative multi-agent systems are deemed to provide a powerful
model for norm-governed complex cyber-infrastructural systems that include
social agents (humans, organizations, or other bodies), infrastructural systems,
norms and their interactions [11]. At least, designing computational agents that
reason with norms—technical instances of normative agents—requires having a
suitable computational model for reasoning with norms. This is a challenging
task because norms are more than a set of formal rules extracted from a legisla-
tive text: they emerge from multiple sources with different degrees of priority,
require interpretation before being encoded, and qualification to be applied to
a social context. Furthermore, they continuously adapt, both in expression and
in application [3]. This entails that there are many challenges in modelling the
interactions between agents and norms. At content level, multiple normative
sources may be concurrently relevant, and/or multiple interpretations of the
same normative sources may be available (e.g. retrieved from previous cases),



2 M. Mohajeri Parizi et al.

and these may be possibly conflicting. Intuitively, enabling to maintain those in a
modular fashion is a suitable, and, even necessary precondition for update/adap-
tation actions, where norms can be changed on the fly, and agents may decide at
run-time e.g. to change the relative priority between normative components, re-
quiring some explicit meta-reasoning about those norms. At method level, there
is still an ongoing debate on what is the most adequate representation model
for norms, and on methods for normative reasoning (eg. synthesizing norms [24],
managing conflicts [16]). Allowing the recourse to external tools, and supporting
programmability of the coordination level, greatly empowers modelers/program-
mers/designers to test and compare different choices. Finally, at functional level,
most of the knowledge instilled in norms concerns a whole social system, but only
part of the system is contingently relevant to the agent. Enabling the system de-
sign so that it distributes and localizes the inferential load at best (and at need)
externally from the decision-making seems the most efficient option.

Contribution Based on these requirements, this work proposes an abstract archi-
tecture that encapsulates norms—encoded in terms of normative relationships
as in Hohfeld’s framework [20]—in a MAS. The architecture centers around nor-
mative advisors that can be utilized by (other) agents in the MAS as a sort of
council about the institutional state of affairs and normative relations between
agents, highlighting and enabling the mapping between the social and institu-
tional views of the environment. Agents may resort to personal or to collective
advisors, depending on the decentralization constraints set up by the designer. As
a technical contribution, we present a practical implementation of this architec-
ture that relies on the AgentScript BDI framework (ASC2) [23] for programming
agents, and norm specification framework eFLINT [2] for encoding norms.

Related Work The B-DOING framework [16] explores logical relations between
belief, desire, obligation, intention, norms and goals in agents and their interac-
tions like conflicts and possible approaches to balance them in agent’s behavior.
Similarly, the BOID architecture [9, 25] proposes a belief, obligation, intention
and desire architecture with a feedback loop to consider the effects of actions
before committing to them. These studies (and many others, e.g., [14, 32, 12])
propose extensions to the BDI architecture to add (regulative) norms as part
of the agents’ mind and to solve conflicts via pre-defined rules. The main issue
with these works is that putting all relevant normative sources (and logical con-
flict resolution rules) within the agent is typically not feasible in a real system
with complex interactions between norms, actions, and their possible effects on
different stakeholders. Consequently, in our approach we propose delegating the
normative reasoning to external components, here named normative advisors.

In [10], an approach is proposed for ethical reasoning in MAS by program-
ming ethical governors. In this approach, when an agent needs ethical advise
about certain actions, it will ask dedicated agents named evidential reasoners,
providing evidence to an arbiter agent, that in turn picks a suggestion with a
predefined strategy, and send it to the requesting agent. The concept of external
advisor agents is similar to our proposal. However, while their approach focuses



A Modular Architecture for Integrating Normative Advisors in MAS 3

Fig. 1: A sale transaction as a Petri net workflow.

on agents only querying for suggestions when they require advise, in our approach
the normative advisors keep an explicit institutional state of the environment
and are able to notify the agent about different normative events (e.g. new duties
or violations). The work in [21] introduces Jiminy advisors that reflect the moral
stance of an agent; their approach leans towards using these advisors for coordi-
nation purposes specifically when there are multiple agents (stakeholders) that
follow different norms and moral dilemmas may arise. Formal argumentation
methods are then used to resolve these dilemmas. In the present work, we start
from a more neutral stance towards what specific methods/approach needs to be
taken to represent norms and resolve conflicts; our aim is to discuss the design of
a more general system architecture, whilst presenting a specific implementation
of the architecture based on certain implementation decisions.

Structure of the Document Section 2 gives background on the core components
that the proposal uses by providing some detail on the AgentScript/ASC2 and
eFLINT frameworks used for the implementation. Section 3 lays out the the-
oretical framework for the proposed architecture, whereas Section 4 describes
details of its implementation. Section 5 reflects on the capabilities of our imple-
mentation, suggests future directions, and draws connections with related work.

2 Core Components

To illustrate our approach, we will consider as a running example a marketplace
environment consisting of buyer and seller agents. This target domain can be seen
as an abstract model of many real-world domains, e.g. data market-places and
more in general data-sharing infrastructures, electronic trading infrastructures,
etc. The process model of a individual sale transaction—prototypical example of
bilateral contract—is represented as a workflow through a Petri-net in Figure 1.
A seller offers a buyer an item for a certain price. If the buyer accepts the offer,
then the seller is expected to deliver the aforementioned item to the buyer, and
the buyer is expected to pay the seller the price agreed upon (in any order). The
workflow is a simplified representation of the normative mechanisms in place
during an actual sale transaction (cf [29]). Furthermore, it does not consider the
intentional aspects on the agents during the transaction, e.g. based on which
desires or goals the agents may be willing to engage in the transaction, as these
concepts remain external to norms.



4 M. Mohajeri Parizi et al.

needed_item("Book1").
fair_price("Book1", 5).
have_money(10).

!init(#sale_advisor.getClass, "sale.eflint", "BuyerAdvisor").

+!init(AgentType,EFFile,Name) => #spawn_advisor(AgentType, EFFile, Name).

+offer(Item ,P) =>
#achieve("BuyerAdvisor", perform(offer(Source, Self, Item, Price)));
!consider_buying(Source, Item ,Price).

+!consider_buying(Seller, I, P) :
needed_item(I) && fair_price(I, FP) && P =< FP && have_money(M) && M >= P =>

#tell(Seller, accept(I, P));
+pending(accept(I, P)).

+acknowledge(accept(I, P)) : pending(accept(I, P)) =>
-pending(accept(I, P));
#achieve("BuyerAdvisor", perform(accept(Self, Buyer, I, P))).

+duty_to_deliver(Seller,Buyer,I) : Source == "BuyerAdvisor" && Buyer == Self =>
+expected_delivery(Seller,I).

+delivery(Sender, Item) : expected_delivery(Sender, Item) =>
-expected_delivery(Sender, Item);
#achieve("BuyerAdvisor", perform(deliver(Sender, Self, Item)).

+duty_to_pay(Buyer, Seller, P) : Source == "BuyerAdvisor" && Buyer == Self =>
!pay(Seller, P).

+!pay(Seller, P) : have_money(M) && M >= P =>
#pay(Seller, P);
#achieve("BuyerAdvisor", perform(pay(Self, Seller, P)).

+!pay(Seller, P) => ... ALTERNATE APPROACH TO PAYMENT ...

Listing 1: Buyer agent script as an ASC2 program

2.1 Intentional Agents

Intentional agents are generally approached in the computational realm via the
belief-desire-intention (BDI) model [27], to specify agents acting in dynamic
environments with rational behavior. The BDI model refers to three human
mental attitudes [8]: beliefs are the factual and inferential knowledge of the
agent about itself and its environment; intentions are the courses of action the
agent has committed to; desires, in their simplest form, are objectives the agent
wants to accomplish. In practice, BDI agents also include concepts of goals and
plans. Goals are concrete desires, plans are abstract specifications for achieving
a goal, and intentions then become commitments towards plans. Multiple pro-
gramming languages and frameworks have been introduced to operationalize the
BDI model, such as AgentSpeak(L)/Jason [26, 7], 3APL/2APL [13], Astra [15]
and AgentScript/ASC2 [23].

AgentScript/ASC2 Agent Framework ASC2 is an agent-based program-
ming framework and languge with a syntax very close to AgentSpeak(L), con-



A Modular Architecture for Integrating Normative Advisors in MAS 5

sisting of initial beliefs and goals, and plans. Initial beliefs are a set of Prolog-
like facts or rules that define the first beliefs the agent has, and, initial goals
designate the first intentions to which the agent commits. Plans are poten-
tially non-grounded reactive rules in the form of E : C => A, where E is the
head of the plan which consists of a trigger and a predicate, the trigger can
be one of +!,-!,+,-,+? respectively used for achievement goals, failure (of)
goals, belief-updates (assertion, retraction) and test goals. The expression C is
the context condition that can be any valid Prolog expression, and A is the body
of the plan that consists of a series of steps that can include belief-updates
(+belief,-belief), sub-goal adoption (!goal), primitive actions (#action)
which may be any arbitrary callable entity on the class path, variable assign-
ments, and control flow structures (loops and conditionals). It is said that a plan
is relevant for an event G iff the event-type of G matches with the trigger and
the content of G matches with the predicate of E. Furthermore, a relevant plan
is applicable, iff C is a logical consequence of agent’s belief-base. When an agent
receives an event, as a reaction, after finding the relevant, and then applicable
plans, it will use a selection function to choose a plan to execute as an intention.
This process is typically called planning in BDI agents.

The communications interface of the agents is based on speech act prefor-
matives and implemented with actions like #achieve which relays an achieve-
ment goal event, #tell and #untell which relay belief-update events, and
#ask/#respond which can be used between agents as synchronous communi-
cation with test goal events. As an example of an AgentScript program and
continuing with the example, Listing 1, presents the script of a buyer agent. The
initial beliefs (lines 1-3), initial goals (line 5), and plan rules (line 7 and onwards)
are the components of the script. The script is further explained in Section 4.2.

2.2 Norms and Normative (Multi-Agent) Systems

Following Gibbs, norms are “a collective evaluation of behavior in terms of what
it ought to be; a collective expectation as to what behavior will be; and/or par-
ticular reactions to behavior, including attempts to apply sanctions or otherwise
induce a particular kind of conduct” [19]. This definition is relevant to our pur-
poses as it gives primacy to action (rather than to situations). In the context of
multi-agent systems, and even more of in MAS, an action-centered approach is
intuitively more suitable, as actions are the only means agents have to intervene
in the environment, resulting in normative consequences.

Categories of Norms Norms are traditionally distinguished between regulative
and constitutive norms [28, 5, 30]. Regulative norms regulate behavior existing
independently of norms, and are generally expressed in terms of permissions,
obligations and, prohibitions (e.g. traffic regulations). Constitutive norms deter-
mine that some entity (e.g. an object, a situation, an agent, a behaviour) “counts
as” something else, creating a new institutional entity that does not exist inde-
pendently of these norms (for example, money as a legal means of payment).



6 M. Mohajeri Parizi et al.

The concept of institutional power is particularly relevant in the context of con-
stitutive norms, as it is used to ascribe institutional meaning to performances
(e.g. raising a hand counts as making a bid during an auction). A conceptual
framework that contains both deontic and potestative dimensions is the one pro-
posed by Hohfeld [20], whereas deontic logics, although much more studied in
normative multi-agent systems [18, 17], by definition focuses on regulative norms.

Normative Systems The term normative system can be used for a system of
norms, as well as for multi-agent system guided by norms. In our work we focus
on the latter. We apply the so-called normchange definition of normative MAS
system by Boella et al. [6]: “a multi-agent system together with normative sys-
tems in which agents on the one hand can decide whether to follow the explicitly
represented norms, and on the other the normative systems specify how and in
which extent the agents can modify the norms”. This definition does not assume
any particular inner workings of the agents except that they should be able to
somehow decide whether to follow the norms or not and they should be able to
modify them. Furthermore, there is no assumption about the representation of
the norms, except that they should be explicit (i.e. a ‘strong’ interpretation of
the norms [4]) and modifiable.

The eFLINT Norm Language The eFLINT language is a DSL designed to
support the specification of (interpretations of) norms from a variety of sources
(laws, regulations, contracts, system-level policies such as access control policies,
etc.) [2, 1]. The language is based on normative relations proposed by Hohfeld
[20]. The type declarations introduce types of facts, acts, duties and events, that
together define a transition system in which states—sets of facts—transition
according to the effects of the specified actions and events. The transitions may
output violations if triggered by an action with unfulfilled preconditions (e.g.
only sellers can make offers) or if any duties are violated in the resulting state.3

Listing 2 shows an eFLINT specification for our running example. The Actor
and Recipient clauses and Holder and Claimant clauses of act- and duty-type
definitions establish constructs mapping to Hohfeldian power-liability and duty-
claim relationships. The Creates and Terminates clauses describe the effects
of actions when performed, enabling reasoning over dynamically unfolding sce-
narios. An instance of offer can be performed without any pre-conditions and
it holds when there is a seller instance. The act accept is only available after
an offer: accepting a non-existing offer is considered a violation of the power
to accept offers. Acceptance of an offer creates the two act instances pay and
deliver which can be performed in any order. The duties express that the pay

and deliver actions are expected to be performed by their respective holder

3 In eFLINT, actions capture a permission dimension as well as a power dimension,
following from the design choice that a violation is raised when an action with
unfulfilled preconditions is performed. Other computational frameworks propose a
clear-cut separation between deontic and potestative categories [31].



A Modular Architecture for Integrating Normative Advisors in MAS 7

// fact definitions
Fact buyer
Fact seller
Fact item
Fact price Identified by Int

// act definitions
Act offer Actor seller Recipient buyer

Related to item, price
Holds when seller
Creates

accept(buyer, seller, item, price)

Act accept Actor buyer Recipient seller
Related to item, price
Creates

pay(buyer, seller, price),
duty_to_pay(buyer, seller, price),
deliver(seller, buyer, item),
duty_to_deliver(seller, buyer, item)

Act pay Actor buyer Recipient seller
Related to price
Terminates

duty_to_pay(buyer, seller, price)

Act deliver Actor seller Recipient buyer
Related to item
Terminates

duty_to_deliver(seller, buyer, item)

// duty definitions
Duty duty_to_pay

Holder buyer
Claimant seller
Related to price

Duty duty_to_deliver
Holder seller
Claimant buyer
Related to item

Listing 2: eFLINT Specification for Sale Transaction norms

after they are created as part of the accept action. As described in Listing 2,
no violation conditions are associated with the duties.

3 Normative MAS via Normative Advisors

Our approach is based on the introduction of normative advisors that enable
intentional agents to communicate with external norm reasoners. We assume
the parent agent is a BDI agent, i.e. it has the capabilities to reason with be-
liefs, desires and intentions. The tasks of maintaining an institutional perspective
(state) and reasoning about specific sets of norms is delegated to the advisors.
The advisors are initialized with a particular norm specification and maintain
an institutional perspective on the environment, which is continuously updated
at run-time. A normative advisor is therefore viewed as maintaining (inferential
mechanisms necessary to operationalize) a norm instance. Both regulative and
constitutive norms are taken into account. The normative (institutional) state
of the world is stored in a way that can both be queried and updated at any
time. An update can generate normative events that the agent is to be notified
about. Through the normative advisors, a social agent acquires various capabil-
ities to interact with norms. As a consequence, norms interactions become pro-
grammable parts of the agent, realizing our goal of using norms for behavioural
coordination between agents and for specifying qualification processes between
social and normative contexts. With such an infrastructure, an agent becomes:

– able to adopt or drop any number of norm sources as norm instances;
– able to qualify observations about their environment as normatively relevant

updates, and conversely to respond to normative events by acting accordingly
in their environment;



8 M. Mohajeri Parizi et al.

– able to query, update, revert, reset a normative state of any norm instance;
– able to receive and process or ignore normative events (e.g. new claims)
– able to follow or violate normative conclusions (e.g. obligations) or query

responses (e.g. permissions and prohibitions)
– able to modify any of the above abilities at run-time.

Normative reasoning occurs based on these inputs—triggered by queries or
updates— with all conclusions made available as internal events to the advisor.
Note that an agent can have multiple advisors for different (instances of) sets
of norms. An agent is free to qualify observations about events in the environ-
ment, other agents’ actions, its own beliefs and actions—or any combinations of
these—and report the resulting observations to the relevant normative advisors.
In other words, this infrastructure makes possible a rich, recursive interaction be-
tween behavioral decision-making and normative reasoning. The proposed model
supports a number of programmable concepts applicable to different functions:

1. Perception: which internal/external events are received and processed or
otherwise ignored;

2. Reaction and planning : what are the relevant reactions to an event, which
reactions are applicable in the current context and which reaction is the most
preferred one to execute;

3. Norm adoption: when and how to adopt or drop a set of norms;
4. Qualification of social context : how an event or query is qualified, i.e. which

is its normative counterpart for each norm instance;
5. Querying : when and how the normative state of an instance needs to be

queried (e.g. for compliance checking);
6. Reporting : what events/updates are reported to which norm instances;
7. State change: how a normative event changes a norm instance’s state;
8. Event generation: what normative events are created as the result of an

instance’s state update;
9. Qualification of normative concepts: which events should be raised as the

result of what normative conclusions reported by a norm instance.

To concretize the proposed approach, we will discuss at higher-level why
it is feasible to implement a system meeting these requirements by utilizing
an AgentSpeak(L)-like BDI framework (AgentScript/ASC2, in particular) and
a norm reasoner that can store an updatable and queryable normative state,
generating events on updates (eFLINT, in particular). Perception, planning and
execution are basic core functions of reactive BDI agents as those specified via
AgentSpeak(L), i.e. when an event is received, the agent performs a sequence
of actions in reaction. Qualification can be encoded as part of planning: what
reaction is selected for an event (or a series of events) in any context signifies
how that event is qualified. Norm adoption, querying and reporting intuitively
become part of this reaction. Note however that querying can also be part of
planning, as a query response may affect what reactions are applicable. State
changes happen internally to the norm instance as the result of reporting, and
then normative events are generated, which are in turn qualified as events by



A Modular Architecture for Integrating Normative Advisors in MAS 9

Fig. 2: The architecture of normative advisors.

the agent, creating a full circle. Finally, if both the BDI framework and norm
framework allow for run-time changes, as is the case with ASC2 and eFLINT,
then all aspects are changeable and dynamic.

4 Implementation

This section describes an architecture for advisors and discusses how the ASC2
BDI framework and the eFLINT normative reasoning framework are used to
implement the proposed architecture. The eFLINT framework is used to imple-
ment the norm base. The advisors as well as the intentional agents that employ
them are defined in ASC2. Our implementation benefits from the modularity
provided by ASC2, allowing easy replacement of different parts of the agent [23]
and the Java API provided by eFLINT.

4.1 Normative Advisor Architecture and Decision-Making Cycle

Figure 2 provides an overview of the architecture of a normative advisor, inspired
by the BDI architecture of Jason [7]. A normative advisor can be seen as a BDI
agent in which the (typically Prolog-like) belief-base is replaced by the norm
reasoner, thus, the reasoning of the agent is replaced with normative reasoning.
Apart from the differences between a general-purpose reasoner (e.g. Prolog) and
a norm reasoner (e.g. eFLINT), the main architectural differences of an advisor
with a typical BDI agents are: (1) the belief-base (in this case, the norm-base)
of the agent can generate more than just belief-update (or fact-update) events,
it may now also raise duty events, act (enabled/disabled) events, and violation
events upon which the agent can react according to its plan library; (2) from the



10 M. Mohajeri Parizi et al.

execution context of a plan alongside fact-update actions (+fact and -fact),
there can now be act-perform actions (#perform(act)). These differences arise
from the fact that unlike a general-purpose reasoner like Prolog that typically
uses backward-chaining to infer facts based on queries, the eFLINT framework
also produces information in a forward-chaining manner, thus generating more
events for the advisor to process. Despite these modifications, the core of the
AgentScript DSL, and the capabilities of the framework, like goal adoption,
communication, and performing arbitrary primitive actions, remain the same as
with ’traditional’ intentional agents.

Decision-Making Cycle When an advisor receives an external or internal event,
and if it is a fact-update, then it will be sent to the norm base. If the event is an
achievement or test event, it will be sent to the event queue. Events are taken
from the event queue by an event-selection function, at which moment the head
of the event is matched with the plan library to find all the relevant plans. The
context conditions of relevant plans are checked against the normative state of
the norm base in order to select only applicable plans. Then, a plan selection
function selects one applicable plan and turns the (execution of that) plan into an
intention, and, consequently, an intention selection function chooses intentions
for execution. If the body of the plan includes any fact-update actions (+fact
and -fact) or act performance (#perform(act)), then these are sent to the
norm base. Whenever there is any update committed to the norm base, there
could be multiple new events or new facts derived by the normative reasoner
that are sent back to the advisor as internal events.

These new capabilities are also the result of replacing the Prolog reasoning
engine with the eFLINT reasoner. Any Boolean expressions in the DSL can now
refer to pre-defined predicates corresponding to eFLINT keywords for querying
the norm base: holds is used to check if a fact (or act, duty, etc.) holds, enabled
whether the preconditions of an act hold, and violated checks if a duty was
violated. A comprehensive list of possible interactions with the eFLINT norm
reasoner is given in the next subsection.

4.2 eFLINT Norm Base Implementation

The eFLINT language is implemented in the form of a reference interpreter in
Haskell4. As discussed in [2], the interpreter can run in a ‘server mode’ in which
it listens to requests on a certain port and produces responses according to some
API. A layer has been developed on top of the server to maintain multiple server
instances as is need for supporting multiple advisors with a norm base each. An
eFLINT server instance can receive the following requests:

– Fact creation/termination/obfuscation. A created fact (instances of fact-
types, act-types, duty-types and event-types are referred to as facts) is set
to ‘true’ in the knowledge base, a terminated fact to ‘false’ and any existing
truth-assignment is removed when a fact is obfuscated.

4 Publicly available online https://gitlab.com/eflint/haskell-implementation.



A Modular Architecture for Integrating Normative Advisors in MAS 11

– Triggering an action or event. Instances of act-types and event-types can
be triggered, resulting in the effects of the action or event manifesting on
the knowledge base (#perform in Listing 3). These effects create, terminate,
and/or obfuscate certain facts, as listed in the corresponding (post-condition)
clauses of the type declaration of the triggered action/event. Multiple action-
s/events can be triggered at once because of the synchronization mechanism
discussion in Section 5.

– A query in the form of a Boolean expression. The expression is evaluated
in the context of the current knowledge base and can be used to establish
whether a certain fact holds true in the current knowledge base, whether an
action is enabled (holds in Listing 3) or whether a duty is violated, etc.

– The submission of a new type declaration or the extension of an existing type.
Both have the effect of modifying the norms in the sense that the underlying
transition system is modified.

Every request can be associated with additional context information in the form
of truth-assignment to facts that override any conflicting assignments in the cur-
rent knowledge base (e.g. the current UNIX time). This mechanism can also be
used to provide truth-assigments for ‘open types’—types for which the closed
world assumption does not hold. An eFLINT instance generally operates syn-
chronously, i.e. will only send out information in responses to requests5, up-
dating the sender upon the following:

– Any created, terminated, and/or obfuscated facts. Note that this includes
changes to facts that are (or were previously) derived from other facts and
in this sense were indirectly modified by the incoming request

– Any changes to normative positions regarding duties, i.e. whether a duty is
no longer held by an actor or whether a duty is now held by an actor (e.g.
-duty and +duty in Listing 3). Violated duties are also reported as such.

– Any changes to normative positions regarding powers, i.e. which actions
became (or are no longer) enabled. If the incoming request was triggering
one or more actions that were not enabled, the effects of the actions still
manifest, but the violations are reported.

– In response to a query, the reasoner responds with the result of the query
(state is unchanged).

– If the incoming request requires the evaluation of a fact for which no truth-
assignment is given and which is an instance of an open type, then an ex-
ception is raised and reported to the sender of the request. Evaluation is
interrupted and the state remains unchanged.6

All changes to facts’ truth-assignment, normative positions and violations reg-
ister as internal events in the normative advisor (as shown by Listing 3), which
will process and possibly report them according to its script.

5 A clock event can be used to receive synchronous updates periodically.
6 The exception can be used by the parent of the advisor to acquire the missing

information, e.g. from another agent in the MAS.



12 M. Mohajeri Parizi et al.

+?permitted(A) : enabled(A) => #respond(true).
+?permitted(A) => #respond(false).

+!perform(A) : enabled(A) => #perform(A).
+!perform(A) => #tell(Parent, failed(A)).

+duty(D) => #tell(Parent, D).
-duty(D) => #untell(Parent, D).

Listing 3: AgentScript specification of a normative advisor.

4.3 Spawning and Interacting with Advisors

Scripts of normative advisors (written in AgentScript, the ASC2 DSL) run on
top of the advisor architecture and give the programmer access to the norm rea-
soner, both providing its input in the form of queries and updates and reacting
to the normative events the reasoner generates. In such sense, advisors function-
ally act as “bridges” or chain of transmission between institutional and social
realms. Listing 3 shows a basic script for an advisor in our running example. The
advisor has four plans related to acts and two related to duties. The synchronous
query +?permitted receives an act and responds with true if the given act is
“permitted” according to the underlying norm reasoner—in the case of eFLINT
“enabled”—and false otherwise. The agent has similar plans to asynchronously
submit (or not) the performance of acts (+!perform) to the norm reasoner. The
last two plans are triggered when the internal norm reasoner creates (+duty) or
terminates (-duty) a duty. The advisor informs their parent of these changes.
The fragment demonstrates that observations about created and terminated du-
ties are communicated to the intentional actor (Parent, the agent that spawned
the advisor) and that an action A can only be performed when it is enabled
according to the norm reasoner (or fails otherwise); however this script does not
demonstrate all the features possibly delivered by the architecture such as in-
ternal events for violations, enabled/disabled acts, and asserted/retracted facts.
Absence of power is mapped here to a prohibitions as, for example, is common in
access-control systems. Other solutions may be more suitable in other contexts.

Running Example To demonstrate spawning and interacting with a norma-
tive advisor, consider again Listing 1 in which a script for a buyer agent is
given. Together, Listings 1, 2, and 3 show the DSL code for buyer agent in the
market-place as presented on the right side of the Figure 3. The buyer agent
spawns a normative advisor, which in turn spawns an eFLINT server (norm
reasoner). The buyer has its own beliefs and desires: there is a specific item

Fig. 3: Market-place model



A Modular Architecture for Integrating Normative Advisors in MAS 13

that it needs (needed_item), it has a belief about the fair price (valuation) for
that item (fair_price) and it has a belief about how much money it possesses
(have_money). When this agent receives a +offer message about an item and
its price, first it interprets it as an offer act and sends it to its advisor. Next,
it adopts a goal of consider_buying that item for the price. This goal has one
plan associated to it, which checks if the agent actually needs that item, if the
price is considered a fair price and finally if the agent has enough money to
buy that item. If this is all true, it sends a accept message to the agent that
made the initial offer. Unlike before, this alone does not constitute performing
the normative accept act. Instead, it waits until it receives a +acknowledge

message from the seller before communicating acceptance to the advisor. This
extra-institutional step for the buyer to qualify the act of accept, is an example
of context-based qualifications in intentional agents.

When the accept act is submitted to the norm reasoner, the two previously
mentioned duties of duty_to_pay and duty_to_deliver are generated and sent
by the advisor to the intentional part of the Buyer. For the duty_to_deliver

the agent is the claimant (it holds the expectation of performance); it could be
that the agent asks the seller agent at this point to deliver the item, but instead,
with the implicit assumption that the Seller agent is also compliant to the same
set of norms, this agent simply adds this expectation to its belief-base and only
when it has an observation of delivery, it will remove this expectation and send
the deliver act to the advisor.

For the duty_to_pay the agent is the duty-holder (it has the obligation to
perform) and reacts to this duty by adopting the goal pay (i.e. the agent desires
to be compliant). There are two plans for this goal, the first one is straightfor-
ward and is applicable if the agent has the required amount of money; it will
simply pay the Seller and submit this act to the advisor. However, the second
plan (not implemented) is applicable if the agent does not have enough money,
which means it needs to find alternative paths to relieve this duty, e.g. by bor-
rowing from another agent or even asking another agent to pay the seller instead.
Specifying these alternatives requires to further encode the models of either the
agents, or the norms, or both. Although relevant in practical applications, this
level of detail can be overlooked in the present context. Instead, in the next
section we will elaborate on various interesting opportunities of extending this
straightforward example and reflect on the design of advisors.

5 Discussion

This paper presents an approach to embed (constitutive and regulative) norms
into a MAS in a modular and versatile manner, enabling autonomous agents to
reason with norms.

Inline with MAS, and distributed computing in general, we consider consis-
tency as a consequence of how a system is set up rather than it being ensured
by the framework through which the system is built. This allows for a kind of
partial consistency that enables freedom for local deviations that are not harmful



14 M. Mohajeri Parizi et al.

to the overall system behavior. In our approach, norm adoption and qualification
is done by each individual agent, such that their view on the normative state
of the world is dependent on both their script and their (bounded) perception.
Particularly desirable for social simulations, we can define agents that adopt and
follow the same norms but have different conclusions on the normative state of
affairs because they have had different observations. Alternatively, agents do not
have to follow the same norms but might still be able to behave in a coordinated
fashion. An example of the latter in our sales example is a buyer that believes, on
top of the existing norms of our example, that deliveries should be done before
payments. The buyer can behave according to their own norms without violating
the norms adopted by sellers, even though their norms are different.

As presented in the previous sections, our running example shows how coor-
dination between agents is achieved by adopting norms and deciding whether
to comply with norms. The example relies on the agents wanting to comply, and
therefore exhibiting coordinated behavior. In more adversarial environments,
additional enforcer agents can be added to provide (positive and negative) in-
centives to comply. For example, our marketplace can be extended with an agent
that acts like a market authority. By responding to violations raised by their ad-
visor(s), the market authority can apply ex-post enforcement of norms on the
market participants. For example, a buyer refusing to pay can receive a warn-
ing or, in the case of continued non-compliance, be banned from the market
altogether. This further demonstrates the versatility of our approach: it does
not impose a priori centralized/decentralized governance or ex-ante/ex-post en-
forcement. Instead, this approach gives the system designer the flexibility to
choose, design and test what their system requires.

Referring to the requirements in Section 3, the notion of adopting was
illustrated in the simplest form with the buyer agent in Listing 1 with the
#spawn_advisor to adopt a norm as an initial goal. The agents also have the
#despawn action to and drop an advisor. However, by adding extra mechanisms
in the agent’s script, more complex archetypes can be modelled, e.g. the agent
may be programmed to keep a score for a certain norm’s (and advisor’s) “utility”
to decide if it is an effective norm to keep adopted.

The notion of qualification—necessary to fill the gap between computa-
tional forms of law and software [3]— can be performed at various stages, thanks
to the multitude of programmable layers in our approach. An example of quali-
fication in the sale transaction is how a seller agent perceives a pay act from a
buyer agent. While represented as an act in the norms, in the social reality many
different actions can be perceived as a payment e.g., cash payment or 3rd-party
bank transaction (bank transaction) can be qualified as the act of paying. This
qualification rule could have been encoded in the script of an agent. For example,
a bank agent can update a seller that they have received new funds as part of a
completed transaction. The seller can then determine whether these funds con-
stitute a payment by a buyer for a particular item, and inform the corresponding
advisor. The same qualification can also be performed purely within norms. In
eFLINT, actions and events are synchronized such that preconditions and effects



A Modular Architecture for Integrating Normative Advisors in MAS 15

Fact account
Placeholder sender For account
Placeholder receiver For account
Event transaction-completed Related to sender, receiver, price

Syncs with pay(sender, receiver, price) When buyer(sender) && seller(receiver)

Listing 4: An eFLINT fragment connecting a bank transaction to the pay action.

of transitions are effectively ‘inherited’. In this way, explicit ‘counts as’ relations
between performed actions (transitions) can be specified. This is useful to a)
connect actions from various normative sources which are simultaneously appli-
cable to a system and b) connect agent-behavior to institutional counterparts
with possible normative consequences. For example, through (b) it is possible to
connect the concrete actions by (human or software) actors in a system to the
rights and obligations laid out in a contract and through (a) to connect actions
within the contract to relevant (inter)national law. Listing 4 shows for instance
how a transaction event in a banking system is connected with (qualified as) a
payment action in our running example. This means the intentional agent only
needs to indicate to the advisor that the original event transaction_completed
was triggered which will automatically be inferred as performance of a pay act.

The notions of query, update, revert and reset are already afforded by
the norm reasoner where query and update are typically provided by most norm
frameworks. However, eFLINT can be used to reason about the compliance of
historical, hypothetical, and—most relevant here—dynamically developing sce-
narios: it relies upon a declarative component that lays out the norms in the
form of a labelled transition system and an imperative component that describes
traces in this system. Similarly to belief queries and revision, the agent is able to
query and revise (assert/retract) institutional facts. But, unlike physical state,
institutional state is revertible as for example, an agent may notice that its ob-
servation about performance of an act was not correct, or even, it wants to infer
hypothetical effects of performance of an act before reverting them.

Another important legal/normative requirement is adaptability to new (in-
terpretations of) norms. In our approach, such adaptation can be achieved in
multiple ways. Apart from spawning new (and despawning old) advisors to start
using the new interpretation or encoding of a set of norms, ASC2 agents are able
to modify their script at run-time to change the interactions between institu-
tional and social reality, and this is true for both intentional agents and advisors.
This type of modifications are also present in other BDI frameworks such as Ja-
son. Secondly, an existing advisor can be instructed to update the norm source
of an instance by adding new type declarations or extending existing types. For
example, a violation condition can be dynamically added to the payment duty
by submitting the fragment Extend Duty duty_to_pay Violated when <EXPR> for
some Boolean expression, like a parameterized timeout event. These types of
modifications are particularly interesting as a future work to explore a princi-
pled approach for studying changes in the norms such as issues about consistency
between variations of norms and impact of norm changes in social simulations.



16 M. Mohajeri Parizi et al.

The notions of receive and process/ignore and follow/violate for nor-
mative conclusions connect directly to the concept of autonomy in the agent.
All of these are are already afforded by ASC2 on the language level (or AgentS-
peak(L) in a broader sense) as receive and process/ignore, and, follow/violate
are simply a matter of implementing the plans in the agent’s script that define
the reactions to such conclusions. Then, as the intentional agents’ language and
execution cycle are not modified in this architecture, intuitively, autonomy of
the agents is also not demoted by integration of norms, particularly in compari-
son with any BDI agent that does not integrate norms. As a future work, these
concepts—especially follow/violate—should be encoded in a more expressive and
transparent manner. This can be done, for example, by utilizing declarative con-
structs such as preferences on the language level (see [22]) to have an explicit,
yet programmable way of ordering between intentional (e.g. desires, goals) and
normative (e.g. obligations) dimensions of the agent.

6 Conclusion

In this paper we present a framework for embedding norms in a MAS. It is gen-
erally acknowledged that agents in a MAS vastly benefit from utilizing norms
for more effective/efficient coordination. Here it was further argued that norms,
embodied as institutional views of the state of the environment, need normative
advisors to facilitate the bridging between institutional and extra-institutional
realms. The proposed architecture included using a BDI framework and a norm
reasoning framework for creating normative advisors and was shown to ad-
dress the main requirements of normative (multi-agent) systems as identified
by the community. A practical running implementation of this architecture7 us-
ing mostly off-the-shelf tools was presented via a market example to further
illustrate the applicability of the approach.

As autonomous agents, norms, and their interactions deal with notions and
constructs that are hard to concretize and on which it may be hard to reach
an agreement, they may have different definitions and usages in different sci-
entific communities. Alongside the proposal of the architecture and tools in
themselves, this work assumed a high priority for flexibility as a requirement in
frameworks utilized in designing normative (multi-agent) systems by proposing
multiple programmable components varying from pure context-free and abstract
norm specifications to perception/action layer of intentional agents. These com-
ponents aimed at satisfying the higher level requirements of normative agents
and (multi-agent) systems without putting any constraint on the language or
logic used in components. In principle, the proposed infrastructure can offer a
computational ground to comparing agent embeddings of alternative solutions
for normative representation and reasoning.

Acknowledgements This paper has been partially funded by the Data Logis-
tics for Logistics Data (DL4LD) project, supported by the Dutch Organisation

7 Publicly available at: https://github.com/mostafamohajeri/eumas2022-poc



A Modular Architecture for Integrating Normative Advisors in MAS 17

for Scientific Research (NWO), the Dutch Institute for Advanced Logistics TKI
Dinalog and the Dutch Commit-to-Data initiative (grant no: 628.009.001) and
partially funded by the AMdEX Fieldlab project supported by Kansen Voor
West EFRO (KVW00309) and the province of Noord-Holland.

References

1. van Binsbergen, L.T., Kebede, M.G., Baugh, J., van Engers, T., van
Vuurden, D.G.: Dynamic generation of access control policies from so-
cial policies. Procedia Computer Science 198, 140–147 (January 2022).
https://doi.org/10.1016/j.procs.2021.12.221

2. van Binsbergen, L.T., Liu, L.C., van Doesburg, R., van Engers, T.: eFLINT: A
domain-specific language for executable norm specifications. GPCE 2020 - Pro-
ceedings of the 19th ACM SIGPLAN International Conference on Generative Pro-
gramming: Concepts and Experiences, Co-located with SPLASH 2020 pp. 124–136
(2020). https://doi.org/10.1145/3425898.3426958

3. Boella, G., Humphreys, L., Muthuri, R., Rossi, P., van der Torre, L.:
A critical analysis of legal requirements engineering from the perspec-
tive of legal practice. 2014 IEEE 7th International Workshop on Require-
ments Engineering and Law, RELAW 2014 - Proceedings pp. 14–21 (2014).
https://doi.org/10.1109/RELAW.2014.6893476

4. Boella, G., Pigozzi, G., van der Torre, L.: Normative systems in computer science-
ten guidelines for normative multiagent systems. Dagstuhl Seminar (March), 1–21
(2009)

5. Boella, G., van der Torre, L.: Regulative and constitutive norms in normative mul-
tiagent systems. In: Proceedings of the Ninth International Conference on Princi-
ples of Knowledge Representation and Reasoning. p. 255265. KR’04, AAAI Press
(2004)

6. Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multiagent
systems. Computational and Mathematical Organization Theory 12(2-3 SPEC.
ISS.), 71–79 (2006). https://doi.org/10.1007/s10588-006-9537-7

7. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the Golden Fleece of Agent-
Oriented Programming. No. January (2005). https://doi.org/10.1007/0-387-26350-
0“˙1

8. Bratman, M.: Intention, plans, and practical reason (1987)
9. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID

Architecture - Conflicts Between Beliefs, Obligations, Intentions and Desires. In:
In Proceedings of the Fifth International Conference on Autonomous Agents. pp.
9–16. ACM Press (2001)

10. Cardoso, R.C., Ferrando, A., Dennis, L.A., Fisher, M.: Implementing Ethical Gov-
ernors in BDI. In: Alechina, N., Baldoni, M., Logan, B. (eds.) Engineering Multi-
Agent Systems. pp. 22–41. Springer International Publishing, Cham (2022)

11. Chopra, A., van der Torre, L., Verhagen, H.: Handbook of Normative Multiagent
Systems. College Publications (2018)

12. Criado, N., Argente, E., Noriega, P., Botti, V.: Towards a normative BDI archi-
tecture for norm compliance. CEUR Workshop Proceedings 627, 65–81 (2010)

13. Dastani, M., Mol, C., Tinnemeier, N.A.M., Meyer, J.J.C.: 2APL: A practical
agent programming language. Belgian/Netherlands Artificial Intelligence Confer-
ence (March), 427–428 (2007). https://doi.org/10.1007/s10458-008-9036-y



18 M. Mohajeri Parizi et al.

14. Deljoo, A., van Engers, T., van Doesburg, R., Gommans, L., de Laat, C.: A Nor-
mative Agent-based Model for Sharing Data in Secure Trustworthy Digital Market
Places. Proceedings of the 10th International Conference on Agents and Artificial
Intelligence (April), 290–296 (2018). https://doi.org/10.5220/0006661602900296

15. Dhaon, A., Collier, R.: Multiple inheritance in AgentSpeak(L)-style pro-
gramming languages. In: AGERE! 2014 - Proceedings of the 2014 ACM
SIGPLAN Workshop on Programming Based on Actors, Agents, and De-
centralized Control, Part of SPLASH 2014. pp. 109–120. No. L (2014).
https://doi.org/10.1145/2687357.2687362

16. Dignum, F., Kinny, D., Sonenberg, L.: Motivational attitudes of agents: On de-
sires, obligations, and norms. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2296(Section 2), 83 (2002). https://doi.org/10.1007/3-540-45941-3–“˙˝9

17. Gabbay, D., Horty, J., Parent, X.: The Handbook of Deontic Logic and Normative
Systems, Volume 2. College Publications (2021)

18. Gabbay, D., Horty, J., Parent, X.: Handbook of Deontic Logic and Normative
Systems. College Publications (2013)

19. Gibbs, J.P.: Norms: The problem of definition and classification. American Journal
of Sociology 70(5), 586–594 (1965). https://doi.org/10.1086/223933

20. Hohfeld, W.N.: Fundamental legal conceptions as applied in judicial reasoning.
The Yale Law Journal 26(8), 710–770 (1917). https://doi.org/10.2307/786270

21. Liao, B., Slavkovik, M., van der Torre, L.: The Jiminy Advisor: Moral
Agreements Among Stakeholders Based on Norms and Argumentation (2018).
https://doi.org/10.48550/ARXIV.1812.04741

22. Mohajeri Parizi, M., Sileno, G., van Engers, T.: Preference-based goal refinement
in bdi agents. In: Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems. p. 917925. AAMAS ’22, International Foundation
for Autonomous Agents and Multiagent Systems, Richland, SC (2022)

23. Mohajeri Parizi, M., Sileno, G., van Engers, T., Klous, S.: Run, agent,
run! architecture and benchmarking of actor-based agents pp. 11–20 (2020).
https://doi.org/10.1145/3427760.3428339

24. Morales, J., López-sánchez, M., Rodriguez-Aguilar, J.A., Vasconcelos, W.,
Wooldridge, M.: Online automated synthesis of compact normative systems. ACM
Trans. Auton. Adapt. Syst. 10(1) (mar 2015). https://doi.org/10.1145/2720024

25. Pandžić, S., Broersen, J., Aarts, H.: BOID*: Autonomous goal deliberation through
abduction. In: Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems. p. 10191027. AAMAS ’22, International Founda-
tion for Autonomous Agents and Multiagent Systems, Richland, SC (2022)

26. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: de Velde, W., Perram, J.W. (eds.) Agents Breaking Away. pp. 42–55. Springer
Berlin Heidelberg, Berlin, Heidelberg (1996)

27. Rao, A.S., Georgeff, M.P., others: BDI agents: From theory to practice. Icmas 95,
312–319 (1995). https://doi.org/10.1.1.51.9247

28. Searle, J.R.: Speech acts: An Essay in the Philosophy of Language. Cambridge
University Press (1969)

29. Sileno, G., Boer, A., van Engers, T.: On the interactional meaning of fundamental
legal concepts. In: Proceedings of JURIX 2014. pp. 39–48 (2014)

30. Sileno, G., Boer, A., van Engers, T.: Revisiting Constitutive Rules. In: Proceedings
of the 6th Workshop on Artificial Intelligence and the Complexity of Legal Systems
(AICOL 2015) (2015)



A Modular Architecture for Integrating Normative Advisors in MAS 19

31. Sileno, G., van Binsbergen, L.T., Pascucci, M., van Engers, T.: DPCL: a language
template for normative specifications. Workshop on Programming Languages and
the Law (ProLaLa 2022), co-located with POPL 2022 (2020)

32. Tufis, M., Ganascia, J.G.: Grafting norms onto the BDI agent model. A Construc-
tion Manual for Robots’ Ethical Systems. Cognitive Technologies (2015)


