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Abstract

Programming languages providing high-level abstractions can increase a programmers’ productivity and the safety of
a program. Language-oriented programming is a paradigm in which domain-specific languages are developed to solve
problems within specific domains with (high-level) abstractions relevant to those domains. However, language develop-
ment involves complex design and engineering processes. These processes can be simplified by reusing (parts of) existing
languages and by offering language-parametric tooling.

In this paper we present iCoLa+, an extensible meta-language implemented in Haskell supporting incremental (meta-
)programming based on reusable components. We demonstrate iCoLa+ through the construction of the Imp, SIMPLE ,
and MiniJava languages via the composition and restriction of language fragments, demonstrate the variability of our
approach through the construction of several languages using a fixed-set of operators, and demonstrate the different
forms of extensions possible in iCoLa+.

Keywords: language composition, domain-specific languages, meta-languages, exploratory language development,
syntax and semantics

1. Introduction

This paper is an extended version of the paper intro-
ducing iCoLa as presented at SLE2022 [1].

High-level programming languages increase program-
mer productivity, program safety, program correctness,
and maintainability, among other qualities. Language-
Oriented Programming (LOP) [2] is a programming paradigm
utilizing the advantages of higher-level programming through
the development of new languages specialized to the prob-
lem domain at hand via domain-specific abstractions. How-
ever, the development of a programming language requires
significant engineering efforts, for example to build an in-
terpreter or compiler, to build tooling for the language
users, to guarantee performance, etc.

To reduce the engineering effort, a variety of approaches
and tools can be utilized. Some examples of such methods
and tools are language workbenches and meta-languages [3],
techniques for modular and reusable specification of syn-
tax [4] and semantics [5, 6], and component-based ap-
proaches to semantics [7].

Besides being a huge engineering effort, creating a pro-
gramming language is also a design process, and navigat-
ing design choices is not straightforward. This is evident
in the frequent revisions seen in the historical development
of general-purpose programming languages as well as in
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the context of Domain-Specific Languages (DSLs). In the
context of DSLs, the design of a language must reflect the
concepts known to the domain experts using the language
and the design of a language is often updated based on
user experience. The design process is thus an iterative
process in which language developers and domain experts
continue to reflect on the existing design.

Exploration of a programmable design space can be
aided by incremental programming. Incremental program-
ming is a style of software development in which a user
repeatedly submits small snippets of code on which they
receive immediate feedback, constructing a larger system
via this feedback-loop. As such, incremental programming
delivers early feedback on design decisions in the software
development process, enabling rapid prototyping and ex-
perimentation. This programming style is supported by
Read-Eval-Print Loop (REPL) environments and systems
like Jupyter notebooks [8].

In this paper we introduce iCoLa+, an extensible meta-
language with a focus on the language design process via
exploratory language development and rapid prototyping,
achieved by utilizing reusable language components and
incremental programming. The work presented in this pa-
per builds upon our earlier work on iCoLa [1] by providing
an extensible implementation that supports user-defined
environment and DSL based domain definitions, as well
as extending the approach with concrete syntax, and also
supporting arbitrary amount of semantic domains. Specif-
ically, we make the following contributions:
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• We extend the approach of iCoLa [1] with concrete
syntax and support for an arbitrary number of se-
mantic domains (Section 4).

• We provide an extensible implementation of the ex-
tended model in the form of a DSL. The implemen-
tation also functions as an alternative to the imple-
mentation presented in [1] (Section 5).

• We evaluate the extended approach and compare the
new implementation with the iCoLa implementation
(Section 6).

The remainder of this paper is outlined as follows: in
Section 2 we give the required background. In Section 3
we detail the formal model of our approach as presented
in [1] and give an overview of the implementation. The
formal model is extended with concrete syntax definitions
and support for arbitrary semantic domains in Section 4.
In Section 5, a DSL for the extended model and its im-
plementation in Haskell is presented. The extended ap-
proach is evaluated via an extended exact replication in
Section 6. A discussion on the two implementations and
the extended model is held in Section 7. Finally, related
work is discussed in Section 8 and we end with a conclusion
in Section 9.

2. Background

The approach presented in this paper combines insights
from earlier works to achieve language composition. The
implementation of the approach is based on certain ad-
vanced functional programming techniques described in
this section.

2.1. Language design, implementation, and evaluation
Language-oriented programming [2] is a paradigm that

puts the construction of a programming language at the
center of the development process by developing domain-
specific languages for the problem at hand. Defining the
solution in a domain-specific language, improves produc-
tivity and simplifies maintenance. In addition, languages
often share similar constructs, promoting reuse with language-
oriented programming.

Domain-specific languages can be implemented in a va-
riety of ways [9]. One way is to embed the domain-specific
language within an already existing general-purpose lan-
guage [10], known as an embedded domain-specific lan-
guage (eDSL). The benefit of such an approach is that no
new parser is needed and the tooling of the general-purpose
language can be used. An embedding is often either shal-
low or deep. With a shallow embedding, the operations of
the DSL are directly mapped to operations in the general-
purpose language. Thus, no abstract-syntax tree (AST)
is built. This makes the implementation simpler but also
more difficult to add different interpretations. With a deep
embedding, the DSL operations build an AST which can
then be interpreted in different ways.

Erdweg et al. provide a framework for discussing and
comparing meta-languages, tools and formalisms that sup-
port various forms of incremental language development [11].
In particular, the authors define the concepts of (modu-
lar) language extension, restriction, and unification, which
they apply to both the syntax (concrete & abstract), static
semantics, operational semantics and IDE services of lan-
guages. Extension occurs when a base language is ex-
tended by another language that has a dependency on
the base language. Restriction is a special form of ex-
tension, where a language is restricted, making the new
language a subset of the original language. Unification is
the process of combining two independent languages with
the help of glue code to unify the two languages. The pa-
per also distinguishes between different forms of extension:
no extension composition, incremental extension, and ex-
tension unification. In case a method does not support ex-
tension composition, it is impossible to combine multiple
extensions. For incremental extension, extension can be
performed in layers where one extension extends the base
and another extension extends the extensions, etc. With
extension unification, two extensions are unified and the
unification is used as the extension on a base language.
In this paper we adopt their terminology and use their
framework as part of our evaluation.

2.2. Programming language semantics
The initial algebra semantics of Goguen et al. [12], con-

cisely described by Mosses in [13], provides the formal
foundation and terminology to our work. Initial algebra
semantics captures the essential elements of many existing
semantic specification formalisms, such as denotational se-
mantics and attribute grammars. A multi-sorted signature
(Σ) lays out the operators of a language in terms of a set of
sorts — a set of symbols functioning as an index set, such
as {int, bool}. A Σ-algebra assigns carrier sets to these
sorts. When taking term-constructors as the carriers, we
obtain the abstract syntax of the language. The algebra
formed this way is initial in the class of Σ-algebras. Due
to its initiality, there is a unique homomorphism from the
initial algebra to any algebra in the class of Σ-algebras —
also known as a catamorphism [14]. Algebras give mean-
ing to the operators of a signature by assigning a semantic
function to each. Following initiality, any abstract syntax
can be mapped to the semantics of an algebra.

The component-based approach to operational seman-
tics presented in [15] is centered around reusable defini-
tions of the fundamental constructs of (general-purpose)
programming languages – referred to as funcons for short.
An example funcon term is print(integer-add(1, 2)), which
outputs the result of 1 + 2 and is constructed using the
print and integer-add funcons. Throughout the text, fun-
cons are indicated with a maroon color, except when used
within code snippets. As explained in [7], ‘micro-interpreters’
can be generated from funcon definitions. The micro-
interpreters are compositional evaluation functions express-
ing the behavior of an individual funcon that can be gen-
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erated and compiled separately. In this paper, we lever-
age the generality of the Funcons-Beta library [16] to be
able to express the semantics of language constructs in a
shared base language. Effectively, the generated micro-
interpreters for funcons are applied as the constructs of an
embedded DSL.

2.3. Incremental and Exploratory Programming
Exploratory programming [17, 18] is a style of program-

ming in which the goal worked towards is open and by ex-
perimenting with code this goal is advanced. This style of
development constitutes the creation of different variants
for experimentation and also entails discarding written
code. Exploratory programming is in a limited form sup-
ported by incremental programming environments such as
read-eval-print loops (REPLs) and notebooks. Incremen-
tal programming supports the submission of small snip-
pets of code to obtain immediate feedback, resulting in
a tight feedback loop which is useful during prototyping.
However, these environments generally do not have first-
class support for the exploration of multiple variants si-
multaneously nor managing explorations that can be dis-
carded. Previous work [19] provides a principled approach
to (defining and developing) REPL interpreters. The ap-
proach involves adapting an existing language to a ‘sequen-
tial’ variant that naturally supports incremental program-
ming. Sequential languages are defined as languages in
which any two programs can be sequenced together to form
a new program, and the interpretation of the sequence is
identical to the composition of the interpretation of the
two programs in isolation. In this definition there is an
assumption on the interpretation function (I), namely it
assigns semantics to a program (p) as a function over con-
figurations, i.e. I(p) : Γ → Γ, for some set of configura-
tions Γ. Configurations represent the context in which a
particular program is evaluated. Visually, a language is
sequential when the diagram in Figure 1 commutes, where
p1; p2 is the sequence containing the programs p1 and p2.

I(p1)

I(p2)
I(p1 ; p2 )

Figure 1: A visual view of the concept of sequential languages. I is
the interpretation function over a set of configurations. p1; p2 is the
sequencing of the programs p1 and p2.

For sequential languages, tooling for incremental pro-
gramming such as REPLs, Jupyter Notebooks [8], and
even exploratory programming environments [20, 21], can
be obtained for free. In this paper, we apply the idea of
sequential languages to support incremental programming
in our meta-language iCoLa+ (i.e. incremental language

development) and to obtain REPL interpreters for the ob-
ject languages defined with iCoLa+.

3. Summary of the original work

In this section we summarize our earlier work on which
this paper is an extension [1]. The insight of incremental
language development via composition and the separation
between operator (or language construct) definitions on
the one hand and language definitions on the other hand,
is essential to our approach. A language definition can
freely choose from the available operators and constrains
the flexibility with which the chosen operators can be used.
The definition of an operator consists of an abstract syntax
definition and a denotational semantics, choosing funcon
terms as a semantic domain. The separation between oper-
ator and language definitions is enabled by an alternative
take on abstract syntax definitions.

3.1. Abstract syntax
A common approach to define the abstract syntax of

a language is to use algebraic datatypes (ADTs), of which
the operator1 signatures determine, in a mutually recur-
sive fashion, the set of terms that forms the abstract syn-
tax of the language. For example, the abstract syntax
of a lambda calculus can be represented as follows, where
VarO, AbsO, and AppO are operators (as indiciated by the
subscript) and String and Expr are sorts.

VarO : String → Expr
AbsO : String × Expr → Expr
AppO : Expr × Expr → Expr

In this style, the signature of an operator simultaneously
identifies the sort of terms constructed by applications of
the operator, the arity of the operator, and the sort of
terms required at each operand position in valid applica-
tions of the operator.

A key insight of our approach is to delay the decisions
related to sorts (but not the arity) until the definition of a
language, rather than making these part of operator def-
initions. This is achieved by (1) using a unique sort at
every position in the signature and by (2) introducing sep-
arate sort constraints to establish the relations between
the sorts. Following (1), the sorts are effectively naming
operand positions. The right-hand side of a signature is
made redundant and can be removed as every operator
already has a unique name. With these changes, the op-
erators are defined as follows:

VarO : VarVar
AbsO : AbsVar ×AbsBody
AppO : AppAbs ×AppArg

1Such as constructors in Haskell and variants in the ML family
of languages.
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In contrast to the conventional approach, the signa-
tures do not share any sorts, and the three operators are
(as of yet) completely unrelated. To re-establish the rela-
tionships, we introduce sort constraints. Sort constraints
are based on the interpretation of sorts as sets of opera-
tors. For example, the following sort constraints indicates
that strings serve as identifiers in both variable references
and abstractions:

String ⊆ VarVar
String ⊆ AbsVar

This kind of sort constraint is referred to as a sub-sort
declaration.

The other kind of sort constraint, referred to as an op-
erator assignment, indicates that terms constructed by the
VarO operator can be used as the body of an abstraction:

VarO ∈ AbsBody

To express the same relations between the operators as
in the initial example, operator assignments can be writ-
ten for every pair of an operator and sort taken from the
sets {VarO, AbsO, AppO} and {AbsBody, AppAbs, AppArg}.
Writing down these operator assignments grows increas-
ingly tedious (and error-prone) as more and more oper-
ators are added to a language. Therefore, as a conve-
nience, sort constraints can also be used to introduce aux-
iliary sorts that serve as a level of indirection and enable
reuse. The following sort constraints utilize the auxiliary
sort Expr , stating that all operators assigned to Expr are
also assigned to AbsBody, AppAbs and AppArg:

Expr ⊆ AbsBody
Expr ⊆ AppAbs
Expr ⊆ AppArg

The relations of the original example are then expressed
by assigning the operators to Expr .

VarO ∈ Expr
AppO ∈ Expr
AbsO ∈ Expr

A language designer can introduce new operators with
full flexibility and without modifying existing operator def-
initions because our approach separates operators from
constraints detailing where operators can be used. For
example, extending the lambda calculus with integer ad-
dition can be achieved by defining an Add operator and
assigning this operator to the sorts where we want to use
the Add operator.

AddO : AddLeft ×AddRight
AddO ∈ Expr

This definition adds AddO to Expr, such that the Add op-
erator can be used at the operand positions over which we

distributed Expr earlier. Interestingly, no operators have
been assigned to the operands of the Add operator yet.
Consider the following sort constraints:

Integer ⊆ AddLeft
Integer ⊆ AddRight
Integer ⊆ Expr

AddO ∈ AddRight

, these constraints express that integer literals can appear
as operands of AddO in both positions. However, since
the Add operator is only added to the AddRight location,
the constraints allow only nested occurrences of AddO on
the right side, encoding right-associativity. This exam-
ple demonstrates the flexibility of sort constraints: integer
expressions can be used in lambda-expressions — owing
to the constraints AddO ∈ Expr and Integer ⊆ Expr —
whereas lambda-expessions cannot be used in integer ex-
pressions. Such rules of composition can be changed sim-
ply by selecting a different set of sort constraints without
affecting the definitions of the operators themselves. As
discussed in §3.4, selecting sort constraints is done as part
of a language definition.

3.2. Compositional semantics
To retain the disjoint property of the operators, their

semantics must be defined independently as well. This
is achieved by defining semantic functions that together
form an algebra. Semantic functions translate an oper-
ator into a specific semantic domain. For example, our
previous operators defining the lambda calculus can have
the following semantic functions, with funcons being our
semantic domain2.

VarF (lit) = bound string lit
AbsF (x, b) = function closure scope(

bind(string x, given), b)
AppF (abs, arg) = apply(abs, arg)

Through the catamorphism, the operands of an operator
are already translated by their respective translation func-
tion when an operator is translated. Hence, an opera-
tor only needs to translate itself into the semantic domain
while having access to the already translated operands.

3.3. Operator specialization
In certain circumstances, it may be necessary to adapt

the semantics of language constructs in order to make them
suitable for the language in mind. The so-called ‘glue
code’, which adapts an existing semantic definition, is of-
ten used in these circumstances. This glue code is to be

2In the right-hand side, juxtaposition is the right-associative
application of a funcon to a (single) funcon term, i.e.
bound string lit == bound(string(lit)).

4



written modularly and in isolation, without anticipating,
or constraining, future interactions. These observations
can be exemplified by the following example: Consider an
if operator encoding if-expressions or if-statements.

IfO : IfCond× IfTrue× IfFalse

IfF (c, t, f) = if-true-else(c, t, f)

The if-then-else funcon expects that the conditional
evaluates to a boolean. However, in C-like languages, if-
statements are defined in terms of integers. Therefore, to
utilize IfO, we need a mechanism to convert the integer-
expression into a boolean-expression. The example below
shows that glue code is added to a sub-sort declaration
to achieve the necessary conversion within the semantic
domain of funcons.3

CExpr ⊆ IfCond (Sort constraint)
↪→ not is-equal(0, CExprF ) (with glue code)

The sub-sort declaration determines that C-expressions
can be used as conditionals. The added glue code de-
fines a function that determines how the funcon terms pro-
duced for C-expressions are modified/extended when C-
expressions occur as conditionals, i.e. occur at the IfCond
operand position. The placeholder CExprF refers to the re-
sult of the translation of the C-expression before the glue-
code, which is implicitly defined in terms of the transla-
tion functions given for the operators contained in the sort
CExpr .

We thus have specialized the If operator to the seman-
tics of our specific language without modifying the existing
definition of the If operator nor do we need to define a dif-
ferent operator for all possible variations. In addition, by
applying glue-code conditionally, it does not affect other
operands assigned to the IfCond location and removing
C-like expressions from the language does not leave any
stale glue code.

3.4. Language definition
Languages can freely choose from the available oper-

ators and use sort-constraints to constrain the operator
usage. We define a language as follows.

Definition 3.1. Given a set O of operators, with every
operator having an arity, denoted with |o|, a set of operand
positions, denoted with −→o = {1, · · · , |o|}, and a semantic
function F (o) : F |o| → F where F is the set of funcon
terms, we define a language as a structure ⟨T, S, G, I⟩O in
terms of O, with T ⊆ O being the set of top-level operators;
S is a family ⟨So∈O,w∈−→o ⟩ of sets indexed by O×N. So,w is
the set of operators assigned to the operand position w of

3The example is simplified to save space. When performing such
glue on C, the checks need to be extended to supports floats, doubles,
etc. This is easily achieved by dispatching on the type of the current
value.

operand o. G is a family ⟨Go∈O,w∈−→o ⟩ of functions indexed
by O × N. Go,w is the glue function O × F → F for
operators assigned to the operand position w of operand o.
I is a family ⟨It∈T ⟩ of functions indexed by the top-level
operators. It : F → F denotes the top-level initialization
function for the specific top-level operator.

We do not distinguish between sub-sort declarations
and operator assignments, since all sub-sort declarations
can be described in terms of operator assignments. Fur-
thermore, the definition does not use names to refer to
operand positions. Instead, integers are used. Neverthe-
less, we do use names in our examples as a notation con-
venience, ensuring that there is a one-to-one mapping be-
tween operand names and operand positions.

The top-level operators are present in a language to
determine the entry points of the language. This can be
used in generation of grammar/parsers for languages, gen-
eration of tooling, generation of language structure dia-
grams, etc. Initialization functions can be used to modify
the top-level behavior of the language, affecting the be-
havior of code fragments when executed, for example, in a
REPL interpreter. In this case, the effects of a code frag-
ment are to be summarized by printing certain information
to the screen such as the value computed for an expres-
sion or any new bindings that have been introduced by
a declaration. This behavior is specified by the top-level
specialization code. Doing so as an individual language
(extension) makes it possible to define alternatives and to
effortlessly switch between them. Another common use of
top-level behavior is the handling of uncaught exceptions,
e.g., to determine what run-time error message is printed
to report uncaught exceptions.

3.5. Language composition
New languages can be defined by composing existing

languages together.

Definition 3.2. Language composition of two languages,
L1 and L2, specified in terms of the same operator set, is
defined as follows: L1 ⋄O L2 = ⟨T1 ∪ T2, S, G, I⟩O, where

S = {S1⟨o,w⟩ ∪ S2⟨o,w⟩|o ∈ O, w ∈ −→o }
G = {G2⟨o,w⟩ ◦G1⟨o,w⟩|o ∈ O, w ∈ −→o }
I = {I2⟨t⟩ ◦ I1⟨t⟩ | t ∈ T1 ∪ T2}

From the associativity of the operations used on the
elements of the languages, it follows that language com-
position is associative. Language composition, however, is
not commutative due to the usage of function composition
with G and I. With language composition, languages form
a monoid. The neutral language can be defined by taking
the empty set for T , letting the family S assign the empty
set to every index, and letting the families G and I assign
the identity function over funcon terms to every index.

Although languages are defined in terms of some op-
erator set, this does not restrict language composition or
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the incrementality we provide. A language does not need
to utilize all operators of the operator set. As a conse-
quence, we can simply add a new operator and grow the
operator set. Existing composition can then be lifted to
the new operator set for free. iCoLa thus exists out of two
languages: one for defining operators and their semantics,
and one for defining languages, such that the interpreta-
tion of the operator language results in a set of operators
that is used in the interpretation of the language-definition
language. Addition of a new operator is thus evaluated be-
fore the language definitions are evaluated, hence the free
lifting of language composition to a larger operator set.
Furthermore, because both operators and languages are
compositional, from a users perspective there is no differ-
ence, and language and operator definitions can be freely
mixed.

Being able to freely grow the operator set by intro-
ducing new operators while automatically lifting existing
composition is based on achieving sequentiality via compo-
sition. This insight is best explained according to Figure 1.
In essence, when composition is supported, incrementality
is almost obtained for free, because we can always reformu-
late an incremental step as a composition from our start-
ing point. This approach of creating a sequential language
does require that the evaluation of a composition scales
and is not much slower than simply evaluating the incre-
mental step.

3.6. Implementation
The implementation supporting the conceptual model

is a domain-specific language embedded in Haskell with
the Template Haskell (meta-programming) extension. An
example definition, in this case of the lambda calculus, in
the eDSL is given in Listing 1. The Template Haskell func-
tion genLanguage takes an operator set and a language
definition and returns an implementation for the defined
language.

An operator is defined using a GADT and is identified
by the constructor of the GADT and a so-called ‘meta-
type’ – a reification of the conceptual sort containing only
the defined operator. An abstraction operator for the
lambda calculus might be defined as follows in the eDSL.
data Abs u t where

Abs :: IsTrue (AbsBody t) =>
String -> u t -> Abs u AbsType

type family AbsBody t

The constructor signature determines the arity and operand
locations. The return type of the constructor indicates the
data type of the operator and the meta-type. In this ex-
ample, the meta-type is AbsType. Meta-types are used in
operator assignments and are implemented as data types
with no constructors. The operator definition in this ex-
ample has an arity of two and the second parameter is
the operand location identified by the AbsBody name. The
linkage of the AbsBody name to the second parameter hap-
pens in the constraint-head of the constructor, where t

refers to the meta-type of the second parameter. The con-
straint is met when an operator is assigned to the operand
location identified by AbsBody. When the constraint is
not met, a Haskell type error is given. Therefore, it is
impossible to construct terms that violate the constraints.

To assign semantics to an operator, an instance for
the type-class representing the semantic domain is defined.
For example, the translation to the funcons semantic do-
main for the Abs operator is defined as follows.
instance ToFuncons Abs where

toFuncons (Abs s (K body)) = K $ function_ [closure_
[scope_ [bind_ [T.string_ s, given_], body]]]

The usage of the K constructor is (necessary) boilerplate
to ensure kind-correctness. Furthermore, funcon construc-
tors take a variable number of arguments, hence the usage
of lists. The operands of an operator are already trans-
lated to the semantic domain because an algebra is being
defined.

A language definition is a data type in terms of Tem-
plate Haskell, containing operator assignments, sub-sort
declarations, operator specialization code, and initializa-
tion code. Listing 1 gives an example language defini-
tion of the lambda calculus in the iCoLa eDSL. In this
example, (op, ’’Expr) demonstrates an operator assign-
ment in the language, assigning the operator bound to the
op variable, which is bound in the list-comprehension, to
the auxiliary sort Expr — defined as a type family. Since
language definitions are at the level of Template Haskell,
Haskell constructs need to be quoted, hence the ’’ in front
of the Expr auxiliary sort. Sub-sort declarations follow a
similar pattern as operator assignments, except the first el-
ement of the tuple must be an auxiliary sort or an operand
location instead of an operator meta-type.

Because language definitions are Template Haskell data
types, languages form first-class citizens [22]. As a result,
languages can be manipulated via Haskell functions, which
is how the extension, unification, and restriction operators
defined by Erdweg et al [11] are implemented in iCoLa.

4. Extended compositional definitions

In this section we extend the original model with con-
crete syntax and by generalizing to an arbitrary amount
of semantic domains.

To generalize our approach to an arbitrary amount of
semantic domains, we update the notion of an operator set
to a family as follows:

Definition 4.1. Let D be a set of domains. Every domain
gives rise to a set of valid terms in that domain, denoted
with Ad for a given domain d ∈ D. An operator set OD

is a family ⟨Od⟩ indexed by D. Od is the set of operator
symbols with a translation to the semantic domain d, i.e.
there exists a function A

|o|
d → Ad for every operator symbol

o ∈ Od, where |o| is the arity of the operator symbol o.
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Listing 1 Definition of the lambda calculus in the eDSL implementation of iCoLa.
$(genLanguage [(''Var, ''VarType), (''Abs, ''AbsType),

(''App, ''AppType)] lambdaLanguage
where

lambdaLanguage = Language
{ op_assign = [(op, ''Expr) | op <- [''VarType, ''AbsType, ''AppType]]
, sub_sorts = [(''Expr, t) | t <- [''AbsBody, ''AppLeft, ''AppRight, ''TopLevel]],
, glue_code = []
, init_code = []
})

type family Expr t

As a notation convenience, we use O to refer to all operator
symbols in an operator set, i.e. O =

⋃
OD.

When all operator symbols in an operator set have a
translation to a specific domain, we call the set complete
with respect to the domain.

Definition 4.2. An operator set, OD, is complete with
respect to a domain d ∈ D iff all operator symbols have a
translation to the semantic domain d.

We also update our language definition to handle the
arbitrary domains and extend the language definition with
a (concrete) syntax component. Syntax is defined at the
language level instead of the operator level, because oper-
ator definitions are immutable. Syntax, however, can vary
widely for the same operator between languages.

Definition 4.3. A language is a structure
⟨T, S, G, I, P ⟩OD

in terms of OD, with

• T ⊆ O being the set of top-level operator symbols;

• S is a family ⟨So∈O,w∈−→o ⟩ of sets indexed by O × N.
So,w is the set of operator symbols assigned to the
operand position w of operand o;

• G is a family ⟨Go∈O,w∈−→o ,d∈D⟩ of functions indexed
by O × N ×D. Go,w,d is the specialization function
O×Ad → Ad in the domain d for operators assigned
to the operand position w of operand o;

• I is a family ⟨It∈T,d∈D⟩ of functions indexed by T ×
D. It,d : Ad → Ad denotes the top-level initializa-
tion function for the specific top-level operator in the
given domain;

• P is a family ⟨Po∈O⟩ of sets indexed by O. Po ⊂ (Σ∪
−→o )∗ is the singleton set representing the syntax rule
that produces the operator identified by the operator
symbol o, and Σ is a set of terminal symbols.

The update to language composition (Definition 3.2) is
trivial with a right-biased operator for syntax rules and
the empty rule (ϵ) as the neutral element.

In contrast to productions as used in the definition of a
context-free grammar, our definition does not include the
notion of a non-terminal. Instead, in syntax rules, place-
holders are available to refer to the non-terminals gener-
ated for the sorts of the operand positions.

With the used syntax definition, a context-free gram-
mar G = ⟨V, A, P, S⟩ can be generated using the algo-
rithm specified in Algorithm 1. The process is as follows:
We take the alphabet to be all operator symbols in the
operator set, all operand locations, all terminal symbols,
and add a symbol to represent the top-level. The set of
terminals in the CFG correspond to the set of terminals
used in the syntax rules. Productions for operand loca-
tion non-terminals are obtained by creating an alternative
for every non-terminal corresponding to the operators as-
signed to the location (in the algorithmic description, we
use choice to combine alternatives into one production).
Productions for operator symbols are obtained by taking
the syntax rules and turning them into productions by re-
placing the location placeholders with their corresponding
generated non-terminal. Finally, productions for the top-
level non-terminal are obtained by creating an alternative
for every non-terminal corresponding to the operators as-
signed to the top-level, and we denote the top-level as the
distinguished element.

Algorithm 1 Algorithm to turn meta-productions into a
context-free grammar

1: function LangToCFG(⟨T, S, G, I, Pm⟩Od
)

2: A← terminals Pm

3: L← {ow | o ∈ O, w ∈ −→o } ▷ Create non-terminals
for all operand locations

4: V ← O ∪ L ∪ {TopLevel} ∪A
5: P ← {}
6: S ← {TopLevel}
7: for ow ← L do ▷ Create productions for the

operand location non-terminals
8: P ← P ∪ {(ow, reduce Go,w using choice)}
9: end for

10: for p← Pm do
11: P ← P ∪ concrete p ▷ Replace location

placeholders with corresponding operand location non-
terminal

12: end for
13: P ← P ∪ {(TopLevel, reduce T using choice)}
14: return ⟨V, A, P, S⟩
15: end function

To illustrate this process we take our example lambda
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calculus and extend it with the following syntax rules.

⟨Pvar⟩ ::= ⟨0⟩
⟨Pabs⟩ ::= ⟨0⟩->⟨1⟩
⟨Papp⟩ ::= ⟨0⟩⟨1⟩

With these rules we obtain the following values for the
V and A sets: V = {abs, var, app, TopLevel, -, >}, A =
{-, >}. We then create the productions from the syntax
rules, with operand location productions first.

⟨var0⟩ ::= String

⟨abs0⟩ ::= String

⟨abs1⟩ ::= ⟨Var⟩ | ⟨Abs⟩ | ⟨App⟩
⟨app0⟩ ::= ⟨Var⟩ | ⟨Abs⟩ | ⟨App⟩
⟨app1⟩ ::= ⟨Var⟩ | ⟨Abs⟩ | ⟨App⟩

We continue by filling the locations in the syntax rules
turning the rules into productions for the CFG, and define
the top-level production. The result of this process is a
CFG for our definition of the lambda calculus.

⟨V ar⟩ ::= ⟨var0⟩
⟨Abs⟩ ::= ⟨abs0⟩->⟨abs1⟩
⟨App⟩ ::= ⟨app0⟩⟨app1⟩

⟨TopLevel⟩ ::= ⟨App⟩ | ⟨Abs⟩ | ⟨V ar⟩

5. Implementation

In this section we discuss our DSL implementation of
iCoLa+. The DSL is tool-oriented in the sense that iCoLa+

is by itself not executable, it needs to be embedded within
a larger tool that orchestrates different components, one
of which is iCoLa+. The tool-oriented design enables the
construction of a pyramid abstraction, displayed in Fig-
ure 5, in which the different layers are operated by different
kind of users. Users who operate in the lower parts of the
pyramid require more expertise and provide abstractions
as foundations for the users at higher-levels.

We start this section by explaining the design of the
meta-language, then we detail the internal implementa-
tion, and we finalize by demonstrating the embedding of
iCoLa+ inside tooling.

5.1. The iCoLa+ Language
5.1.1. Operators

Operator are defined using the operator keyword and
require a unique name and a variable amount of operand
locations. Operand locations are identified by names and
these names must be unique among the locations for an

operator, but not among locations across operators.4 The
following example demonstrates the definition of the three
operators present in the lambda calculus.
operator Var : Var
operator Abs : Var Body
operator App : Fun Arg

The name before the : symbol indicates the name of the
operator. The names after the : symbol are the names
for operand locations. In case of our definition of the Abs
operator, there are two locations: Var and Body.

Certain operators have operand locations that can take
a variable number of values when instantiating the opera-
tor. An example of such an operator is a list. To support
this, operand locations can have a modifier indicating the
degree of values an operand location accepts. There are
three modifiers currently available: the + modifier, indi-
cating one or more values; the * modifier, indicating zero
or more values; and the ? modifier, indicating zero values
or one value. For example, a list operator can be defined
as follows in iCoLa+.
operator List : Item*

Indicating that the Item location can have zero or more
values.

5.1.2. Operator semantics
Operator semantics is given by translating an operator

to a chosen semantic domain. Every semantic domain is
uniquely identified by its name. The name of a seman-
tic domain identifies a translation function in the DSL. To
illustrate, we demonstrate the translation for the three op-
erators of the lambda calculus to the semantic domain of
funcons.
funcons Var = bound(@Var)
funcons Abs = function closure scope(bind(@Var, given), @Body)
funcons App = apply(@Fun, @Arg)

The example starts with the name of the semantic domain
— funcons — to indicate that the translation function
is into the semantic domain of funcons. After the name
of the semantic domain, the operator being translated is
identified by its name, and is followed by the = operator to
indicate the start of the body of the translation function.
The syntax available in the body of a translation depends
on the domain in which the translation function is being
defined. A domain definition is free in its choice of syn-
tax as long as it supports the @ operator for naming holes.
The names for holes correspond to operand locations for
the operator being translated. Essentially, a domain defi-
nition can define its own DSL inside the iCoLa+ DSL. In
our example, the body of the funcon translation function
uses funcon terms as the concrete syntax, corresponding
to the syntax used in the formal model of Section 3 and
the syntax used by the PLanComps projects.

4Essentially, operators introduce a namespace for the locations.
Since operator names are unique, we retain the uniqueness of operand
locations as required by the conceptual approach.
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Figure 2: Constraint graph for the lambda calculus example. Ellipses
denote operators, dashed ellipses denote built-in operators, and rect-
angles denote auxiliary sorts. Edges denote assignment of operator
to the operand location determined by the edge label.

5.1.3. Language definitions
Languages are defined via the language keyword and

can contain sort constraints, parser definitions, and op-
erator specialization code. To illustrate, we construct a
variant of the lambda calculus in steps, starting with the
constraints defining the language.
sort Expr
language Lambda
{ {Var, Abs, App} < Expr
, { String } < Var[Var]
, { String } < Abs[Var]
, Expr < Abs[Body]
, Expr < App[Fun, Arg]
, Expr < TopLevel
}

We first define the Expr auxiliary sort. Then a new lan-
guage, named Lambda, is introduced. Inside the language
definition, we start with the {Var, Abs, App} < Expr con-
straint. This states that the Expr sort must contain those
three operators to be a correct instantiation of the Lambda
definition. After, we constraint the String operator over
the operand location Var for the Var and Abs operators.
The syntax operator[name] is used to reference the operand
location identified by name for the specified operator. This
is followed by distributing the Expr sort over the operand
locations where expression can occur, and assigning the
Expr sort to the top-level. With this definition, we get
the constraint graph displayed in Figure 2 for our Lambda
definition.

In language definitions there is no separate syntax be-
tween operator assignments and sub-sort constraints. In-
stead, operator assignments are defined as sub-sort con-
straints using an anonymous sort — identified by the inline
set notation.

Our current definition has several repetitions. To re-
duce repetition, we can utilize several forms of syntactic

sugar supported by the iCoLa+ DSL. First, usage of a
specific sort in multiple constraints can be merged via se-
quencing. In our example, this occurs with the String
operator and the Expr sort. We can update our definition
as follows.
sort Expr
language Lambda
{ {Var, Abs, App} < Expr
, { String } < Var[Var] ; Abs[Var]
, Expr < Abs[Body] ; App[Fun, Arg] ; TopLevel
}

The sequence operator (;) groups sorts together and ap-
plies the constraints as if it were individual constraints.
In the updated definition, sequencing occurs on the right-
hand side of the < operator. Nevertheless, sequencing can
also occur on the left-hand side. Besides sequencing to
reduce duplication, some constraints use all operand lo-
cations of an operator. In our example this occurs within
the constraints referencing Var[Var] and App[Fun, Arg].
Instead of naming all locations, an empty indexing expres-
sion [] can be used. With this form of syntactic sugar,
our example definition can be updated as follows.
sort Expr
language Lambda
{ {Var, Abs, App} < Expr
, { String } < Var[] ; Abs[Var]
, Expr < Abs[Body] ; App[] ; TopLevel
}

Our updated definition has no need for the Expr sort for
the definition of our Lambda language.
language Lambda
{ {Var, Abs, App} < Abs[Body] ; App[] ; TopLevel
, { String } < Var[] ; Abs[Var]
}

However, removing such an auxiliary sort makes it more
work to add a new operator that is usable at the same
operand locations as the three existing operators. Whether
to use an auxiliary sort depends on the intended usage of
the language and the used operators. There is no correct
way and one choice does not restrict future usage of a
defined language.

Having finalized our constraints for the lambda calcu-
lus, we move on to the concrete syntax. Concrete syntax
is added to a language by defining syntax rules using the
::= symbol. Our lambda calculus language can thus be
extended with concrete syntax as follows.
Lambda
{ Var ::= @Var
, Abs ::= '\\' @Var "->" @Body
, App ::= @Fun @Arg
}

Instead of using the language keyword to introduce a new
language, we extend the existing definition by referring to
the name identifying the language. In the extension, we
define syntax rules for the three operators in the lambda
calculus. The left-hand side of the ::= symbol identifies
the operator for which the syntax rule is being defined, and
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the right-hand side contains the actual body of the syntax
rule. The right-hand side has access to the locations of the
current operator via the @ symbol. Besides locations, syn-
tax rules can contain literal strings — enclosed between
“ ” — and literal characters — enclosed between ‘ ’. In
addition, when an operand location can take a variable
number of values, parsing modifications can be used to
control how the values are parsed. For example, a parser
for our previous list operator can be defined as follows:
list ::= @Item{,}, denoting that it will parse items sepa-
rated by the separation character, which is a comma in
this example. In case no parser modification is given, it
will parse multiple items without any separation character
separating them.

Our current definition of the lambda calculus can be
slightly extended by showing evaluation results. To show
evaluation results, we add initialization semantics to the
language. In the DSL, initialization code is achieved by
specializing the TopLevel sort.
Lambda
{ funcons TopLevel when Expr => print @this
}

This example specializes the TopLevel sort for the funcons
domain when the operator currently bound to the top-
level is part of the Expr sort, by printing the evaluation
result. In specialization, the current term being special-
ized in the semantic domain is referenced using the @this
construct. In contrast to the formal model, in the DSL we
make no distinction between initialization and specializa-
tion code. Instead, initialization is achieved by specializing
the TopLevel sort, which is built-in. Without a when ex-
pression, specialization is always applied to all operators
assigned to the specialized location.

5.2. Internal representation
iCoLa+ is implemented in Haskell and in this section

we detail the internal representation and the evaluation
pipeline that turns an iCoLa+ specification into an exe-
cutable language given a language definition and a seman-
tic domain. Figure 3 gives an overview of this process.

5.2.1. Operators
Operators are implemented as functors — type trans-

formations that come with a function (fmap in Haskell) to
lift functions from the original type to functions on the
transformed type. Using functors, we can use the same
data type for the different representations of an opera-
tor. When an operator is defined in the DSL, it has a
string representation. When a language is instantiated,
operators have a fix-point representation, allowing us to
represent terms of the defined language.
data Operator a = Operator ID [a]

| OBuiltIn (BuiltInOp a)

data BuiltInOp a = OTuple [a]
| OInt Int

| OOString String
| OBool Bool
{- ... -}

The Operator constructor is used for operator definitions.
The remaining constructor is used for the built-in operator
data type, of which a selection of the constructors is shown.

5.2.2. Semantic domains
A semantic domain is represented by a name, a parse

function, an algebra definition, and an instance of the sub-
stitution type-class. The parse function takes the body of
a semantic function and translates it into an internal rep-
resentation with holes. Then the algebra is applied on this
internal representation, which translates built-in operators
to the semantic domain. The substitution type-class im-
plements the replacement of named holes with the terms
to which the names are mapped, and is used to automat-
ically translate the Operator constructor to the semantic
domain. To illustrate, let us look at the definition for the
funcons domain.
funconsDomain :: Domain Funcons
funconsDomain = Domain "funcons" Funcons.parse funconsAlg

funconsAlg :: BuiltInOp FT.Funcons -> FT.Funcons
funconsAlg (OInt i) = FT.int_ i
funconsAlg (OOString s) = FT.string_ s
funconsAlg (OBool b) = FT.bool_ b
funconsAlg (OTuple t) = FT.tuple_ t

instance Substitution Funcons where
subst = applyFuncon

data Domain a =
Domain String (String -> a) (BuiltInOp a -> a)

class Substitution a where
subst :: M.Map ID a -> a -> a

The Funcons.parse function parses the concrete syntax of
funcons into a funcons term with holes, and the applyFuncon
function substitutes named holes with the term to which
the name is mapped.

5.2.3. Parser concretization
To handle ambiguity in syntax rules we utilize General-

ized LL (GLL) parsing [23]. Syntax rules are implemented
by translating them to combinators defined by the GLL
combinators library [24], and follows the process as out-
lined in Algorithm 1.

For example, parsers for operand locations are achieved
by mapping to the <|> combinator, denoting choice. operand
locations that can parse multiple values are mapped to the
multiple or multiple1 combinators, depending on the
presence of an operand location modifier. In case a parser
modifier is present, one of the sepBy, sepBy1, or optional
combinators is used. Essentially, there is a mapping for ev-
ery construct present in parser definitions to a combinator
in the GLL library.

To handle the parse results of operand location modi-
fiers, the OTuple constructor is used. When the ? modifier
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Figure 3: Overview of the iCoLa+ evaluation pipeline. Domain parsing and the catamorphism are parameterized by a domain definition.

is used, the result is either a tuple with one element con-
taining the result or a tuple with zero elements. In case of
the + and * modifiers, the OTuple constructor containing
all the parsed values is used. Semantic domains thus must
support operations on tuples. For example, the translation
to the funcon domain for the List operator is as follows.
funcons List = list tuple-elements @Item

The tuple-elements extracts a tuple into a sequence of
values, which is accepted by the funcons list construc-
tor. The method in which a semantic domain supports
operation on tuples can be done differently. In case of the
funcons domain, this needs to be explicitly encoded in the
translation functions. Alternatively, a semantic domain
can encode this internally without requiring the unpack-
ing of tuples to happen inside translation functions. Then,
for example, the list constructor would accept a tuple as
an argument.

5.3. Environment definitions
So far, we have looked at the iCoLa+ implementation

using the semantic domain of funcons and have not de-
tailed how users interact with iCoLa+. User interaction
and the full capabilities of iCoLa+ are determined by en-
vironment definitions. Figure 4 gives an abstract view
of environment definitions, which consists out of two en-
vironments: the meta-environment and the language en-
vironment. A language designer interacts with a meta-
environment and a user of the defined language interacts
with the language environment. Of course, these two might
be the same. The method of interaction is determined by
the environment definition, which orchestras the interac-
tion between the different users with their respective envi-
ronments, and in case of the meta-environment determines
the capabilities via the selection of domain definitions.

Inside an environment definition, there is a dependency
of the language environment on the meta-environment in
the form of generated language implementations. Inter-
nally, the instantiateLanguage function is used to ob-
tain a language implementation for a given language and
a given domain.
instantiateLanguage :: String -> Domain a

-> ICoLa (String -> FOperator, FOperator -> a)

The first parameter to the function is the name of the lan-
guage being instantiated, and the second parameter is the
domain for which the language is being instantiated. The
result of this function is a parser and an evaluator, which
can be used by the environment definition to connect to
user interaction in whatever way fit. The parser and eval-
uator are separate instead of composed to give flexibility
to the environment definition.

When instantiating a language, we require that the
language is complete with respect to the chosen domain
(Definition 4.2) If not, an error is thrown.

iCoLa+ specifications can contain domain definitions
which are not used by a specific environment. iCoLa+ only
checks the correctness of the domain when a language is
instantiated. As a result, a specification does not need to
change when used in an alternative environment.

5.4. The interaction layers of iCoLa+

The iCoLa+ implementation can be divided in three
layers: the DSL for language and operator definitions, the
environment definitions, and the domain definitions. The
aim of this separation is to allow different kind of users
with different expertise and knowledge to interact with
iCoLa+. The layers form the earlier mentioned pyramid
abstraction as displayed in Figure 5.

Domain definitions

Environment definitions

Spec

Figure 5: Abstraction pyramid showing the different interaction lay-
ers of iCoLa+.

Most users will be interacting with the top layer of the
pyramid, which is the layer where languages and operators
are being defined. Users that want to integrate language
environments into tooling or want to work on user inter-
faces for language development will be interacting with the
middle layer. Users that are language engineering experts
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Figure 4: Visual view showing the embedding of iCoLa+ inside an environment definition. Normal arrows denote a dependency. Stealthed
arrows denote generation. Pipes denote abstract interaction between two components. The concrete interactions patters are determined by
the environment definitions and therefore unknown to iCoLa+. Inspired by a diagram found in previous work [25].

and want to experiment with alternative approaches to se-
mantic specifications will be interacting with the last layer.
Of course, a user can interact with multiple layers as well,
but the intention behind the abstraction pyramid is that
it is, in the general case, not needed. The different layers
thus also require different levels of understanding of the
system. Interaction with the Spec layer requires no Haskell
knowledge and no knowledge of the implementation; it
does require understanding of the semantic domains being
used by the user, and the conceptual idea of iCoLa+ on the
usage of sort-constraints. Users that interact with iCoLa+

via the Environment definitions layer need to understand
the basics of Haskell. They do not need to understand the
actual details of the evaluation pipeline. Users interacting
with the Domain definitions layer need to have an inter-
mediate understanding of Haskell, and need to understand
the basics of the iCoLa+ evaluation pipeline as shown in
Figure 3, especially the usage of catamorphisms since that
guides the domain definitions.

6. A Demonstration of iCoLa+

In this section we evaluate iCoLa+ by conducting an
extended exact replication of the evaluation performed on
iCoLa. We opted for this kind of evaluation to enable
us to focus on the extensions proposed in this paper, and
to be able to compare the implementation introduced in
this paper to the already existing implementation, and by
extending iCoLa+ via the provided extension points.

As part of the evaluation, we construct the following
three languages via the composition, extension, and re-
finement of existing languages and language fragments —
language definitions that are not executable by themselves.
Imp [26], a simple imperative language; SIMPLE [27], a
more complex procedural language; and MiniJava [28],
a strict subset of the Java language. These languages
are chosen because they have their semantics described in

terms of funcons as part of the case studies for the Plan-
CompS project.5 We have various reasons for picking
languages that already have their structure and seman-
tics expressed. With this choice, we are able to demon-
strate that our approach is applicable to already existing
language definitions, and is effective as shown by taking
existing language definitions and turning them into the
compositions of smaller languages. In addition, we are
able to show that our approach promotes reusability by
reusing language definitions within new definitions. It is
incremental because the chosen languages are defined in
an incremental and step-wise manner, and is flexible by
showing that language design choices do not restrict fu-
ture usage of language definitions.

The structure of this section is based on the abstraction
pyramid introduced in the previous section. Sections 6.1-
6.5 correspond to the Spec layer; Section 6.6 corresponds to
Environment definitions layer; and Section 6.7 corresponds
to the Domain definitions layer.

6.1. Specification of Imp
We define Imp as the composition of the following four

languages:
language Imp = ImpArith <> ImpBExpr

<> ImpStmt <> ImpProgram

The composition is comprised of a simple arithmetic lan-
guage with support for integer addition and division; a
boolean expression language with support for less-than-
equal comparison and (binary) conjunction; a statement-
language containing if-statements, while-statements, and
sequencing of statements; and a program language that
unifies these languages together by defining the top-level
in accordance to the top-level of Imp (in that order). The
structural definition of these languages are displayed in

5https://plancomps.github.io/CBS-beta/docs/
Languages-beta/index.html
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Listing 2, and the concrete syntax definitions for opera-
tors used in the fragments are displayed in Listing 3.

Except for the definition of ImpProgram, the top-level
is not constrained. As a result, these language definitions
are not executable on themselves due to there being no
entry points. Such languages will be referred to as lan-
guage fragments. In addition, ImpArith defines special-
ization code over the Div operator, wrapping the divide in
a check. When division by zero occurs, the program is ter-
minated following the application of the funcon checked.
This behavior is not directly encoded in the semantics of
the Div operator, because other languages handle this dif-
ferently, for example by throwing an exception. Finally,
ImpBExpr uses the Aexpr auxiliary sort in its definition
(Aexpr < Leq[]) but does not assign any operators to this
sort. Hence, ImpBExpr is an extension on ImpArith.

Instead of extending ImpArith, we can define ImpBExpr
independently and use language unification to connect the
two languages. Therefore, we define a weaker variant of
the ImpBExpr language as follows.
language ImpBExpr−

{ {Bool, Leq, Not, And } < Bexpr
, Bexpr < Not[] ; And[]
}

And we unify this with the impArith language via a glue
language to come back to our original definition.
language ImpBGlue = { Aexpr < Leq[] }
language ImpBExpr = impArith <> impBExpr− <> ImpBGlue

6.2. Specification of SIMPLE
Since language composition is a main concept in our

implementation, we can utilize Imp and the language frag-
ments used to define it in the definition of other languages.
Even when the definition of Imp does not directly corre-
spond to the definition of the to be defined language. To
illustrate this, we will define SIMPLE using the Imp lan-
guage or the language fragments making up Imp.

There are two adaptations required to Imp to define
SIMPLE as an extension of Imp: removing the top-level
definition of Imp and removing the distinction Imp makes
between arithmetic and boolean expressions. Note that
Imp variables can only occur inside arithmetic expressions.
To alleviate the problem of the top-level, we opt to define
the base using the language fragments of Imp without the
ImpProgram fragment. To alleviate the second problem we
define a new language that glues the two different expres-
sions into a new sort:
sort Expr
language UnifiedExpr
{ Aexpr ; Bexpr < Expr
, Expr < Leq[] ; Add[] ; Div[] ; While[Cond] ; If[Cond]
}

We first constrain the new Expr sort with both the Aexpr
and Bexpr sort. Then we constraint the operand locations
of Imp operators which also occur in SIMPLE and use
expressions with the new Expr sort. Using this language,

we removed structural choices of Imp to align with SIM-
PLE . Now, we can reuse the fragments to define a base for
SIMPLE :
language SimpleBase = UnifiedExpr <> ImpArith

<> ImpBExpr <> ImpStmt

Having defined a suitable base, we can extend our base
with the constructs that are present in SIMPLE but not
in Imp. A subset of these constructs is displayed in Ta-
ble 1. The table is not exhaustive. Most operators that
only occur within SIMPLE have been omitted for brevity.
Operators are grouped to indicate their relation within a
possible language fragment.

Imp MiniJava SIMPLE
Arith

Addition
Division
Substraction
Multiplication

Bool
Negation
≤
And
Or
<

Statements
If*
While
Assignments*

Input/Output
Ouput*
Input

Classes
Arrays

Length*
Indexing

Exceptions
Throw
TryCatch

Table 1: The rows indicate operators used during the evaluation and
the columns the constructed languages from the collection. The
indicates that the operator is used as is; indicates that an operator
is used with glue code; and indicates that an operator is not used.
A * next to an operator indicates that the concrete syntax for the
operator is not identical between the languages.

6.3. Specification of MiniJava
To define MiniJava, we can reuse the definition of the

base for SIMPLE . However, MiniJava requires one more
step, because the less-than-equal operator does not oc-
cur in MiniJava. Therefore, we define a refinement which
removes the less-than-equal operator from the SIMPLE
base.
language MiniJavaBase = refine SimpleBase $ { Leq }

Building on our MiniJava base, we can add operators not
present in Imp, such as classes and arrays.
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Listing 2 Structure definitions for the language fragments used in the definition of the Imp language.

language ImpArith
{ {Int, Id, Div, Add, AParen} < Aexpr
, {String} < Id[]
, Aexpr < Add[] ; Div[] ; AParen[]
, funcons Div ⇒ checked @this
}

language ImpStmt
{ {Assign, If, While, Block} < Stmt
, { String } < Assign[Id]
, Aexpr < Assign[Expr]
, Bexpr < While[Cond] ; If[Cond]
, Stmt < Block[]
, { Block } < If[True, False] ; While[Body]
}

language ImpBExpr
{ { Bool, Leq, Not, And, BParen } < Bexpr
, Bexpr < Not[] ; And[] ; BParen[]
, Aexpr < Leq[]
}

language ImpProgram
{ { String } < SIdList[Id]
, { SIdList } < IdList[] ; Program[Ids]
, { IdList } < IdList[Rem] ; Program[Ids]
, Stmt < Program[Program]
, { Program } < TopLevel
}

Listing 3 Concrete syntax extensions to the language fragments used in the definition of the Imp language.

ImpArith
{ Add ::= @Left '+' @Right
, Div ::= @Left '/' @Right
, AParen ::= '(' @Expr ')'
, Id ::= @Var
}

ImpStmt
{ While ::= "while" '(' @Cond ')' @Body
, If ::= "if" '(' @Cond ')' @True

"else" @False
, Block ::= '{' @Stmt @Rem '}'
, Assign ::= @Id '=' @Expr ';'
}

ImpBExpr
{ Not ::= '!' @Expr
, Leq ::= @Left "<=" @Right
, And ::= @Left "&&" @Right
, BParen ::= '(' @Expr ')'
}

ImpProgram
{ Program ::= "int" @Ids ';' @Program
, IdList ::= @Id ',' @Rem
, SIdList ::= @Id
}

Many of the operators used within MiniJava are also
present within SIMPLE . However, the usage of these op-
erators is not always identical. For example, in MiniJava
output is always followed by a newline, which is not the
case in SIMPLE . Such differences are alleviated using glue
code, which enables us to still share operators and lan-
guages even when the usage of operators does not fully
align.

MiniJava is interesting because variations of MiniJava
exist that have been introduced for teaching purposes.
Flexibility regarding the constructs included in the lan-
guage enable a teacher to adapt to student expertise. This
flexibility is naturally supported by our system since the
(full) MiniJava language can be given as the composition
of multiple smaller language variants. For instance, our
version of MiniJava actually deviates slightly from the
original definition. The slight deviation is the presence
of the division operator. This is not present in the original
definition due to the requirement of exceptions to support
this. In our version, we simply inherit this from the Imp
language and obtain division for free. To obtain the orig-
inal definition, we can simply refine our version of Mini-
Java and remove the division operator. Utilizing existing
language definition gives a teacher the means to simply
create new variants with more or less language features
based on the needs of the assignment and teaching objec-

tives. Another possible extension we could have included
is the inclusion of exceptions as present in the SIMPLE
language definition. Again, extending MiniJava without
much effort.

6.4. Object language variability
Language variability is not only useful for teaching pur-

poses; it is also useful when designing a programming lan-
guage. With iCoLa+, different variants of a language can
be defined and tested with relative ease. Multiple vari-
ants can exist side-by-side, making it easy to compare and
contrast variations and gather feedback early, on both the
concrete syntax and semantics, to include in the design
process. Table 2 demonstrates some of the variability one
can obtain with a relative small set of operators. The
language definitions were defined in isolation or via com-
position. For instance, lambdacbn is defined by composing
the lambda language with a language consisting (only) of
glue-code that inserts the semantics of call-by-name using
thunks [29].
language cbnGlue
{ funcons App[Arg] ⇒ thunk @this
, funcons Var ⇒ force @this
}
lambdaCBN = lambda <> cbnGlue
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In this definition, we assume that all variables are assigned
to thunked values. This is not always the case, e.g. in a
procedural language with global variables. Type informa-
tion can be used to distinguish variables based on whether
their values are thunked. This, however, is not possible in
our glue code definitions because glue code is context-free.
Nonetheless, it can be realized within the semantic do-
main of funcons, as funcon terms are dynamically typed.
The table shows an overlap between different languages
and the two forms of variability in our approach: we can
add new operators to existing languages and add new lan-
guages using existing operators, without modification of
existing code.

6.5. Exploratory language development
The variability obtained in the previous section was

achieved purely via incremental programming by intro-
ducing unique names for variants, as illustrated with the
different lambda variants. In an exploratory setting, such
variants can instead be explicitly defined as variants with
the same name, supporting the utilization of both vari-
ants throughout an exploration. For instance, we could
have defined our two lambda versions as two explicit vari-
ants by introducing a branch for both variants. An advan-
tage of this approach is that we can experiment on both
branches without having to duplicate our steps by replicat-
ing the actions executed on one branch automatically on
the other branch, a concept we call mirroring. With mir-
roring, we can explore multiple branches simultaneously
while operating on a single branch. A visual presentation
of the idea of mirroring is displayed in Figure 6.

lambda=cbn

mirroring

lambda=cbv

...
α

...
α

Figure 6: Visual idea of mirroring during exploratory programming,
where a branch mirrors another branch explore different paths with-
out duplication. α represents the execution of an arbitrary iCoLa+

program, boxes denote configurations, solid lines denote actions
taken by the user, dashed lines denote meta-actions, and dotted lines
denote actions automatically done by system.

Mirroring is not the only advantage of first-class sup-
port for exploratory programming. With first-class sup-
port it is also trivial to experiment with different combi-
nations of languages within different context, for example
functional vs object-oriented, and switch between the con-
texts easily while also being able to compare the explo-
rations. Furthermore, handling dead-ends during explo-
ration is also supported by being able to go back to earlier
points of the exploration. Since exploratory programming
is an open ended task, such dead-ends are not unusual and
having to restart a session, thus losing all context, ham-
pers the experimentation. The support for exploratory

programming within iCoLa+ is essentially achieved for free
via the generic back-end of [30] and the design of our DSL
as a sequential language.

6.6. Environment definitions
The session as described by Table 2 was performed in

the iCoLa+-shell. The iCoLa+-shell is a construction of
the original iCoLa-shell as an environment definition with
support for the aforementioned exploratory programming.
In the iCoLa+-shell, users can define operators and lan-
guages, and commit a language which results in a REPL
for the defined language. After experimenting with this
language, they can return back to their session in the
iCoLa+-shell, adapt the language definition and then com-
mit the newly defined language. Furthermore, within
the iCoLa+-shell users can manage the exploration state
via two meta-commands: jump and revert. With jump,
users can jump to arbitrary states already seen during
the exploration, which can be used to introduce branch-
ing. With revert, users can prune the exploration tree to
throw away futile paths. In addition, users have access to
the mirror meta-command, which results in mirroring of
program execution across multiple branches. The mirror
meta-command is fully defined in terms of jump and the
execution of programs.

6.7. Domain definitions
The main requirement for a domain definition is that

its evaluation model must abide by the initial algebra se-
mantics approach. To illustrate the extensibility this pro-
vides, we give an alternative semantic domain. The exam-
ple semantic domain we use to demonstrate is rendering
operators as strings.

renderDomain :: Domain String
renderDomain = Domain "render" Render.parse renderAlg

renderAlg :: BuiltInOp String -> String
renderAlg (OInt i) = show i
renderAlg (OOString s) = s
renderAlg (OBool b) = show b
renderAlg (OTuple t) = show t
{- ... -}

With the render domain definition, we can give pretty
printing semantics to operators.
pretty Var = @Var
pretty Abs = lambda @Var : @Body
pretty App = @Fun(@Arg)

7. Discussion

In this section we discuss the results of our extended ex-
act replication. We start by comparing iCoLa and iCoLa+

in Section 7.1. The remainder of the discussion focuses on
the iCoLa+ specific parts.
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Table 2: Table demonstrating a view from a session in the iCoLa+-shell, constructing several languages with a fixed-set of operators. Columns
indicate the operators used during the evaluation and the rows are the languages constructed with (some) operators from the collection. The

indicates that the operator is used as is; indicates that an operator is used with glue code; and indicates that an operator is not
used.

Var Abs Appcbv Addition Int Return Call/cc If Throw Catch
lambda
arithmetic
exceptions
proc
lambdacbn

functional
procedural
procedural
+ functional

7.1. iCoLa vs iCoLa+

Without looking at concrete syntax, we fully replicate
the results obtained with iCoLa. This is explainable be-
cause the formal model implemented by iCoLa+ is an ex-
tension that fully encompasses the formal model imple-
mented by iCoLa. However, when including concrete syn-
tax in the comparison, we do see some decline in operator
reuse as indicated in Table 1. Nevertheless, as Table 1
highlights, not all operators required a different concrete
syntax definition. This indicates that the introduction of
concrete syntax does not nullify the reusability obtained
with our approach. Furthermore, during exploration one
might opt to not modify the concrete syntax definition of
some operators but only do this after the choice of oper-
ators is finalized. Nevertheless, concrete syntax can have
an impact on language ergonomics. In iCoLa, concrete
syntax had to be defined separately from iCoLa, and is
therefore not incremental, and was not integrated within
the iCoLa-shell. With iCoLa+, concrete syntax is defined
within iCoLa+, and integrated within environment defini-
tions.

7.1.1. eDSL vs DSL
Since both iCoLa+ and iCoLa are built upon the same

foundation, some of their main differences arise in the way
users interact with the implementations. iCoLa provides
an eDSL for interaction, while iCoLa+ provides a DSL.
The benefits and limitations of this design choice are dis-
cussed in this section.

The DSL implementation provides concise definitions
of languages and operators by removing boilerplate code.
For example in operator definitions, the eDSL requires that
the operand locations have type families and are matched
in the constructor for the operator. In the DSL this is done
automatically, as illustrated in Listing 4 by comparison of
the Abs operator.

Definition of semantic functions is rather similar be-
tween the implementations, with the main difference that
the DSL allows domains to define their own concrete syn-
tax, resulting in more concise definitions. In our compari-
son this is mostly noted by the fact that the eDSL requires

wrapping arguments in lists due to the variable number of
arguments funcon constructors can take. In the DSL im-
plementation, this is not needed.

Language definitions in the eDSL and DSL are also
rather similar, with some differences in available syntax.
For example in the eDSL, list comprehension can be used.
Similar expressiveness is obtained with constraint sequenc-
ing in the DSL. In addition, several forms of syntactic
sugar are available in the DSL that make language defini-
tions slightly more concise.

Another benefit of the DSL is error reporting to the
user. The eDSL was based on Template Haskell, and er-
rors resulted in Haskell type errors. With the DSL imple-
mentation, we can give domain-specific errors instead and
use the terms available in our language, such as operator,
inside error message.

The DSL does not provide the full power of Haskell,
making it more difficult for users to create abstractions,
such as function composition or using where clauses to
improve readability, and languages are not first-class cit-
izens anymore. Difficulty in the creation of abstractions
is clearly visible with refinements. In the eDSL, refine-
ment functions can be composed, which is not possible
in the DSL implementation because refinements are di-
rectly applied on languages instead of taking languages
as parameters, resulting in some duplication. Not having
languages be first-class citizens makes abstractions like pa-
rameterized languages very convoluted. Some of the ab-
straction capabilities can still be achieved via the extension
points provided by iCoLa+. Nevertheless, in future work
we would like to explore how to enable users to introduce
abstractions natively in the DSL. One possible direction
to achieve this is by enabling operator inheritance and pa-
rameterized refinements. With operator inheritance, oper-
ators can be built by composing other operators together
and thus inheriting their semantic descriptions. With pa-
rameterized refinements, refinements can take a language
as a parameter, making composition of refinements possi-
ble.

Implementation wise, the DSL implementation required
around two to three times as much code as the eDSL, with
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the remark that the tooling for the external DSL is almost
non-existing. So far, we have implemented the iCoLa+-
shell, similarly to the iCoLa-shell. However, no support
for debugging, profiling, and editor services are available
with the DSL, while the eDSL inherits this from the em-
bedding in Haskell.

To summarize, iCoLa+ required a more substantial de-
velopment effort compared to iCoLa. With the choice of a
DSL, iCoLa+ sacrifices some expressiveness for more con-
cise definitions, better error reporting and more flexibil-
ity. In addition, users can define operators and languages
without any Haskell knowledge with iCoLa+, in contrast
to iCoLa where Haskell knowledge is required.

7.2. Restrictions and Scalability
With the flexibility our approach provides, language

definitions can become unwieldy where it is unclear where
operators are exactly assigned to, which operators are part
of the language, and how they are affected by specializa-
tion code. In our experience, the development is often done
in layers, where prototyping is done at the current layer
and when done, the layer is fixed. This keeps modifica-
tions local and prototyping focused on specific areas. It is
important, however, that the first layer is well understood
before such a development process can be applied.

In future work, we want to explore tooling that can
help in quickly understanding the effects of new opera-
tor assignments and language composition. For example,
by utilizing visual views of the defined languages, as we
have shown in Figure 2. One possible direction is to move
away from text-based language engineering towards a vi-
sual style, by connecting operators with operand locations
by drawing an edge between them. This allows a devel-
oper to see the structure of a language easier compared
to a text based approach. How this scales to larger lan-
guages and how it affects the ergonomics of a developer
is something that needs to be investigated. These exten-
sions can be achieved in future work via environment def-
initions that manage the interaction. Consequently, these
extensions require no modifications to the existing iCoLa+

implementation.

7.3. Domain definitions and domain fusion
Through a standard example of a pretty printing ex-

tensions, we have demonstrated that it is possible to add
new domain definitions and modify the iCoLa+ DSL this
way. With the possibility to add new domains, iCoLa+

can also be used as a vessel for the evaluation of new se-
mantic specification languages. Currently, we are in the
process of defining domains for static semantics and scope
graphs [31]. In future work, we will report on these efforts
and investigate how to fuse domain definitions together.
With domain fusion, translation functions can utilize other
domains. Using information from another domain can re-
sult in more efficient specifications, for example, by utiliz-
ing typing information.

7.4. Language composition and syntax ambiguity
Through the construction of several languages via com-

position, we have shown that our approach supports the
extension, refinement and unification operators for seman-
tic and syntax, as introduced by Erdweg [11]. However,
currently disambiguation can only be achieved by encod-
ing the disambiguation rules inside the structure of the
language, which is difficult to manage when composing
languages and not always sufficient. As a result, our def-
initions of the Imp, MiniJava, and SIMPLE languages
slightly deviate from the definitions present in the PLan-
CompS case-study.

We are still exploring the best way to introduce disam-
biguation inside iCoLa+. The easiest approach is to extend
the concrete syntax definition with many of the combina-
tors available in the used GLL library. Alternatively, we
can take a similar approach as used in the SDF formal-
ism, but then adapted to GLL where applicable. Another
possible alternative is to use pattern matching to do dis-
ambiguation [32]. In addition, we aim to investigate in
future work whether the debug friendliness of GLL pars-
ing can aid disambiguation in an interactive style, such
that it can be integrated into the design process.

7.5. Extensible built-in operators
In the current implementation we have decided upon

a selection of built-in operators. This selection is based
on the requirement we found during the construction of
the several languages and fragments demonstrated in this
paper. The current selection will not be enough for all
possible language definitions. Currently, addition of new
built-in operators requires extension to the core of iCoLa+.
Since built-in operators correspond to lexemes of a lan-
guage, we expect that a better system for the addition of
built-in operators is required. For now, we see two ways to
achieve this. The first option is to add a catch-all built-in
operator that bypasses the Haskell type system and then
require domain definitions to handle these built-in opera-
tors. This approach is easy to implement in the current
system and easy to understand from a users perspective.
Since this approach bypasses the Haskell type system, it
can result in run-time errors when a domain definition
needs to handle an operator for which it has no handler.
The second option is to use data-types à la carte [4]. With
data types à la carte, built-in operators can be defined in-
dependently and composed together. The composition is
then given to iCoLa+ together with a lexing definition for
the operator. Algebra definitions then become type-class
instances which need to be implemented for all the built-in
operators supported by the domain, which is checked by
the Haskell compiler. This approach requires a bigger en-
gineering effort to achieve in the current implementation,
makes built-in operators mutable, and results in more com-
plex operator definitions.
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Listing 4 Comparison of the definition for the Abs operator in the eDSL (left) and the DSL (right).
data Abs u t where

Abs :: IsTrue (AbsBody t) => String -> u t -> Abs u AbsType
type family AbsBody t

operator Abs : Var Body

7.6. Exploration within iCoLa+

iCoLa+ support exploratory programming as a first-
class citizen via its design as a sequential language and em-
bedding within existing tooling. Exploring multiple ideas
via the creation of many variants and discarding futile
paths is fully supported via the jump and revert meta-
commands present in iCoLa+. Although we currently only
provide an exploratory REPL, in future work we want to
investigate alternative interfaces with an explicit focus on
exploratory language development, which can be defined
as environment definitions. Towards this idea, we also aim
to utilize the presented implementation to investigate ex-
ploratory patterns within language development to further
guide interface design. In addition, within the iCoLa+-
shell a user can commit to a language and experiment with
the object language within an object REPL. However, af-
ter exiting the object REPL, the object REPL session is
lost. But, within an exploration session, a user might want
to compare two languages by their usage within the object
REPL. Currently, that is possible by scrolling back in the
REPL, but there is no real support for it, yet. In future
work, we aim to investigate how to support retention of
the object REPL sessions within the exploration session
in an ergonomic and efficient manner.

7.7. Limitations and Threats to validity
The primary evaluation of our approach is based on

the semantic domain which uses funcons. This limits the
scope to the class of languages which can have their se-
mantics expressed in funcons. Since the funcon library is
open-ended [7], this class is mostly characterized by the
fixed set of semantic entities. Nevertheless, a variety of
languages already have their semantics expressed in fun-
con terms [33, 19]. Furthermore, our approach is extensible
through new semantic domains. An interesting foundation
for an alternative semantic domain is algebraic effects and
handlers [34, 35], which provide a mathematical approach
for reasoning about effects in programming languages and
support composition [36, 37].

The usage of catamorphisms to guide the translation
from initial algebra to semantic algebra constitutes a fun-
damental functionality to our approach. Nevertheless, the
initial algebra semantics presents a unified approach to for-
mal semantics of programming languages [12], and there-
fore supports different approaches. However, this choice
of abstraction puts certain restrictions on the translation
functions used in our approach, which can affect the man-
ner in which semantic domains are defined.

8. Related work

Developing languages via some form of composition is
supported by a wide variety of language-development envi-
ronments [38, 39, 40, 41, 42]. Erdweg et al. [11], performed
a systematic evaluation of existing environments and their
support for the different forms composition (extension and
unification). Out of the considered environments, only
JastAdd [43], which is an environment for the construc-
tion of Java like languages, supported unification at the
semantic level. For syntax, both Spoofax [38] and Sug-
arJ [40] support unification. To handle ambiguous gram-
mars, Spoofax and SugarJ use the SDF formalism [44].
Our approach supports unification at both the syntax and
semantic level, with the remark that disambiguation at
the syntax level is minimal. Much of the syntax available
in concrete syntax definitions of iCoLa+ are influenced by
SDF. In contrast to SDF, we use GLL parsing instead of
scannerless Generalized LR parsing.

Lisa [45] is a full-fledged interactive environment for
programming language development based on attribute
grammars with support for incremental language develop-
ment [46] via multiple attribute grammar inheritance [47].
Lisa also supports visual based development of program-
ming languages. Compared to our approach, no distinction
between operators and where operators are used is made.

Melange [48] is a meta-language involving meta-models
and aspect oriented programming. It uses aspects to im-
plement the semantics of languages, and supports both ex-
tension and unification. Our operator specialization closely
resembles the idea of aspects as seen in Melange. Com-
pared to our approach, Melange makes no distinction be-
tween operator semantics and operator specialization; does
not make a distinction between operator definitions and
language definitions; and operators are not immutable, in-
stead a renaming mechanism is provided to solve conflict-
ing abstract syntax. Multi-level modeling [49] supports
more than two meta-modeling levels and has been used in
language development to achieve extensible meta-models
via linguistic extensions [50] and by specializing meta-
models to specific domains via instantiation [51]. However,
to support optionality of language primitives (closed vari-
ability), multi-level modeling needs to be combined with
the product lines approach [52]. Within our approach,
such optionality is achieved via refinements on language
definitions. Perspectives [53] are a layer above the model
layer and are used to describe the relations between multi-
ple languages and consistency requirements among them,
or to exclude language concepts from the model layer. The
approach has similar characteristics as Melange, with the
addition that it enforces consistency requirements among
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languages. Our approach explicitly has few restrictions
to promote the exploration phase. However, outside the
exploration phase, more refined restrictions might be ben-
eficial.

In Feature-oriented programming [54], a system is de-
composed in the features it provides. This style of pro-
gramming aims to increase structure, reuse and variation
by making features user configurable such that a system
can be developed by picking and configuring the correct
features. Neverlang [55] is a Java-based development en-
vironment with support for language unification, modeled
around the idea of feature-oriented programming. Nev-
erlang uses evaluation phases for semantic specifications
and supports evaluation phases depending on other phases.
Compared to our approach, syntax definitions are not re-
stricted, resulting in dependencies among syntactic defini-
tions, and no distinction between operator definitions and
operator usage is made.

Software product lines [56] is a development paradigm
that models the software development process as a prod-
uct line, where a system is constructed by selecting com-
ponents from a repository, adapting the components to the
use case, and integrating the components together. Com-
pared to feature-oriented programming, software product
lines focus on similarities between systems, also known as
families. This gives a high variability where variants of
systems can be quickly created. Feature-oriented program-
ming can be used to implement software product lines,
which is done by AiDE [57]. AiDE provides an environ-
ment for language-development based on software product
lines by building an environment on top of Neverlang [55].
Besides AiDE, there are several other environments inte-
grating software product lines in the context of language
development — also known as language product lines [58].

A focus on language families [59], a set of related lan-
guages, is inherent in the language product lines style of
development. As a result, the variability of these systems
is high, enabling the construction of a wide variety of lan-
guages in an incremental manner. However, because the
focus is on language families, there is a restriction on the
structure of the different variations. Nevertheless, correct-
ness of model properties can be efficiently checked, which
opens the door to promote the variability offered by prod-
uct lines to more areas such as model editors and code
generators [60]. Language product lines have been com-
bined with multi-level modeling at the (abstract) syntax
level [61] to enable both extension and selection based
on a feature model. The approach supports bottom-up
extensions where a meta-model is extended from below,
which can be useful during the exploration process. To
also enable modularity at the semantic level, graph trans-
formation have been used [62]. With graph transforma-
tions, consistency of semantic constraints can be enforced
among the languages within a language family. Our ap-
proach achieves modularity at the semantic level by sup-
porting the introduction of new semantic domains and the
introduction of new operators accompanied by semantic

translation functions. Although our approach essentially
describes a constraint graph, as indicated by Figure 2, we
have not yet explored whether this can be utilized to en-
force constraints without affecting the exploration capa-
bilities, or aid the exploration process.

Concern-oriented language development [63] moves away
from the family constraint by combining different modu-
larity approaches at the language development level via so
called concerns: reusable piece of language artifacts. Con-
cerns have a variation interface, a customization interface,
and a usage interface. The variation interface represents
configurable components and the customization interface
describes how a concern can be integrated into a differ-
ent context. The exploratory capabilities of a concern are
thus determined by the flexibility of these interfaces and
the inherit restrictions present in concern definitions. The
ideas of concern-oriented language development are used
to reuse language components that are textual, external,
and translational [64]. The approach uses specific com-
position operator to ensure compatibility within the used
technologies, which makes it impossible to remove parts of
a language.

9. Conclusion

In this paper we introduced iCoLa+, an extensible meta-
language aimed at improving the language design process
via rapid prototyping with reusable components and in-
cremental programming. iCoLa+ extends the iCoLa meta-
language by adding support for concrete syntax, by pro-
viding a DSL for language definitions, and by supporting
an arbitrary amount of semantic domains. The iCoLa+

implementation is extensible via Haskell defined environ-
ment definitions and domain definitions. Environment def-
initions determine how users interact with iCoLa+ and the
defined languages. Domain definitions determine the ca-
pabilities of semantic translation functions.

By constructing several languages with our approach,
we have demonstrated to which extent our approach sim-
plifies the construction of new languages as well as vari-
ants of existing languages. Through the construction of
the iCoLa+-shell and by adding a new domain definition,
we have shown the possibilities of extending iCoLa+. The
flexibility provided by iCoLa+ makes it easy to modify ex-
isting language design choices, but also increases the dif-
ficulty of tracking the precise composition of languages
when applied at (large) scale. In addition, disambiguation
of concrete syntax is only supported in a limited form.
Methods to improve iCoLa+ in these regards are to be
explored in future work.
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