
JustAct: Actions Universally Justified
by Partial Dynamic Policies

Christopher A. Esterhuyse �1,2 , Tim Müller1,2 , and
L. Thomas van Binsbergen1,3

1 Informatics Institute, University of Amsterdam, The Netherlands
2 { � c.a.esterhuyse,t.muller}@uva.nl

3 ltvanbinsbergen@acm.org

This version of the contribution has been accepted for publication after peer review but is not the Version

of Record and does not reflect post-acceptance improvements or corrections. The final publication is available at

Springer via http:/dx.doi.org/10.1007/978-3-031-62645-6_4

Abstract. Inter-organisational data exchange is regulated by norms orig-
inating from sources ranging from individual consent to (inter)national
laws. Verifying norm-compliance is complex because laws (e.g., GDPR)
distribute responsibility and require accountability. Moreover, in some
domains (e.g., healthcare), the norms themselves may be private. In
contrast, standard solutions (e.g., access- and usage-control, smart con-
tracts) reason about policies that are assumed to be public. Instead,
we present a novel framework prescribing how decentralised agents de-
cide which actions are justified, despite their partial views of the policy.
Crucially, justifications are universal, e.g., accepted by future auditors.
Agents establish a common notion of compliance through an (externally
synchronized) agreement, which is the basis of each justification defined
by policy fragments agents autonomously create, gossip, and assemble.
We demonstrate our framework with a federated medical data processing
system, using Datalog with weak negation as a minimal policy language.

Keywords: Decentralised · Framework · Composition · Coordination
· Multi-agent System · Policy · Program Refinement · Specification .

1 Introduction

Data exchange systems are distributed systems facilitating the controlled sharing,
trading, and processing of (often large) datasets and analysis results within data
exchange applications, increasing the public, commercial or academic value of
collected data. Following the inter-organisational nature of data exchange systems,
and the (market or privacy) sensitive nature of the exchanged assets, collaborating
organisations adopt (potentially complex) governance models [53] in an attempt
to ensure compliance with regulations and contractual agreements. In support of
such governance models, high levels of control should be given to organisations to
influence the execution of data exchange applications, e.g. via access control [40,44]
or usage control [25,36,59]. Furthermore, high levels of accountability are required

https://orcid.org/0000-0002-9124-9092
https://orcid.org/0000-0002-9759-5973
https://orcid.org/0000-0001-8113-2221
http:/dx.doi.org/10.1007/978-3-031-62645-6_4

2 C. A. Esterhuyse et al.

to support dispute resolution [48] and for demonstrating legal compliance [14].
Data exchange systems exhibit a fundamental trade-off between maximising
the availability of data to data users and maximising the control over data
to data owners, subjects and (privacy) authorities. In this work we present a
framework that enables the organisations collaborating in a data exchange system
to formalise their shared and individual position with respect to this trade-off
through powerful, declarative policies.

Our approach is to define a framework that specifies the relation between
runtime system dynamics (messages and actions) and statics (policies and facts)
such that they interact. In one direction: agent messages create and disseminate
policies. In the other direction: policies specify which actions are permitted.
Crucially, permission is decidable, despite agents having only partial knowledge
of the existing policies, and despite policies being changed at runtime. Moreover,
these decisions are agreed by all agents, e.g., an actor can be confident that other
actors (e.g., auditors) will agree that their actions were permitted. For maximum
applicability, our framework is parametric to the policy language, whose syntax
defines the set of policies, and whose semantics defines their relation to facts.
In this work, we demonstrate the framework as instantiated with the policy
language Datalog with weak negation (Datalog¬).

This work represents a step in an on-going investigation into generic, policy-
driven data exchange systems satisfying legal requirements (e.g. accountability
and auditability). The framework in this paper has a prototype implementation
supported by a bespoke domain-specific policy language (not presented here).
We intend to make our policy framework an integral part of the Brane workflow
execution system [55], a central component in the EPI Framework [26], and
demonstrate its applicability in a variety of use cases.

After some background (Section 2), we contribute:

1. the definition of a framework for agents acting on shared policies while
communicating, refining, and modifying those policies (Section 3),

2. a demonstrative application of our instantiated framework to a distributed,
multi-agent, medical workflow processing system (Section 4).

In Section 5, we consider implementation decisions for instantiating the framework.
We discuss our contributions by their own merits (Section 6) and in comparison
to related work (Section 7) before concluding with a summary (Section 8).

2 Background

Distributed Systems and Algorithms Distributed systems model the dis-
tribution of a stateful configuration over a set of processes; each process has its
own, local state. Distributed algorithms, when implemented by each processes,
give systems useful, emergent properties. Often, these algorithms assume only
basic, asynchronous and unreliable message-passing, comparable to IP and UDP.
Some algorithms solve distributed problems (e.g., self-stabilisation), and create
useful abstractions (e.g., synchronisers).

JustAct: Actions Universally Justified by Partial Dynamic Policies 3

HospitalData

Administrator

Amy Hospital Amy

Accesses

Administrator

Policy

Justifies access

Informs

Governs

Fig. 1. Conceptual use-case of the framework. Agents autonomously choose to act,
accessing data in the real world (left), as permitted by their shared policies (right).

In this work, we refer to two classes of algorithms. Firstly, gossip protocols
disseminate information from peer (process) to peer, which results in decen-
tralisation and robustness, by imposing minimal requirements on the network
topology and process behaviour [5]. Secondly, consensus algorithms establish
fundamental agreement on the selection of a value, consistently among processes.
Consensus has been well-studied for decades [41], but has seen renewed interest
in application to blockchain technologies, for example, in [29,30].

Agents and Autonomy The field of multi-agent systems studies processes
(called agents) that exhibit social phenomena as a result of their agency or
autonomy: agents are motivated by goals to draw from their partial information
to act on shared resources and interact with other agents. Literature explores
a variety of (software models of) social organisations, ranging from cooperative
data-sharing consortia (e.g., in [19]) to competitive markets (e.g., in [61]).

Agent-oriented programming studies the programming of agents, balancing the
usual software- and language-engineering concerns, shared with object-oriented
programming, with a unique emphasis on agent autonomy. For example, agent
autonomy also tends to improve system scalability and robustness. All these
ideas are present in seminal agent-oriented programming works like [51], and
persist into more recent works like the survey [34].

Policy Languages We give a very brief overview of the various forms of policy
developed in various disciplines, and influencing our work.

Access control is a mainstay in cyber-physical systems that revolves around
the regulation of events of agents accessing resources. Policies often take the
form of conditional rules [20, 45], sometimes applied in the context of meta-
data attributes [47]. Usage control generalises access control such that access
events occur for a duration of time; access must be maintained, and can be
interrupted [1]. XACML [2] and ODRL [24], are particular policy languages for
implementing access- and usage-control. For example, [54] implements usage
control in XACML. The languages differ in the details. For example, XACML
maps stages of the enforcement pipeline to agent roles: policy-administration-,
-decision-, -enforcement-, -information-, and -retrieval-points.

4 C. A. Esterhuyse et al.

Normative specifications specify fundamental social relations such as power,
duties, rights, obligations, and permissions [3]. Legal regulations specify normative
policies (“norms”) in the context of executive (e.g., governmental) agencies and
organisations. The EU General Data Protection Regulation [18] specifies the
legal usage and access to data within the European Union. Its wide reach and
impact make it influential even outside the EU. The study of norms reflects its
long history in its rich nomenclature, for example, [10] clarifies the relationship
between substantive and procedural norms, and [23] defines open-texture terms.

A wealth of other works intentionally blurs the line between these various
notions of policy. For example, the eFLINT language [7] formalises norms using
the Hohfeldian framework of legal proceedings [58] and has been used for access
control [6]. Symboleo [49] and Fievel [57] are similar languages with similar goals,
that differ in the details. For example, eFLINT particularly emphasises its logical
reasoning features. These tools afford the application of various disciplines and
tools to policies. For example, applying model-driven development [46], and model-
checking for high-level properties in policies, e.g., expressed in Symboleo [38].

The Datalog¬ Language Logic programming languages are designed to straight-
forwardly operationalise various logics. Here, we give an account of Datalog¬

sufficient to understand the Datalog¬ examples throughout this article.
Datalog, overviewed in [12], is a simple logic programming language: each

program is a set of Horn clauses called rules. Precisely, each rule has form (c1 ∧
c2∧ ...∧cm ← a2∧a2∧ ...∧an), where consequents c1···m and antecedents a1···n are
facts constructed by applying a predicate symbol p to constants and (first-order)
variables. The Datalog semantics gives each program a model, mapping ground
facts (without variables) to Boolean values. Most literature uses the same concrete
syntax: (←) and (∧) are denoted (:-) and (,), respectively, and only variable
identifiers begin with uppercase letters. For example, knows(amy,X) :- knows(X,amy)

formalises “Amy knows everyone that knows Amy”.
Various dialects of Datalog have been studied in the literature, exploring

the combination of various features. Datalog¬ [50] is a useful generalisation:
antecedents may be negated (with ¬, often written not), conditioning consequents
on the absence of truths. This strictly improves expressiveness [28], because it
affords non-monotonic reasoning: each reasoning step may remove truths [52].
Equivalently, truth is non-monotonic with respect to the addition of rules to
programs. For example, fact sun is true in program sun :- not clouds, but false
after rule clouds is added; we say sun is falsified. Unfortunately, not all Datalog¬

programs have unique logical interpretations. Accordingly, different semantics
exist (e.g., stable model [22] and well-founded [56]) attributing different models
to these unstratified (defined in [42]) programs. For example, what should be the
value of p in p :- not p? Fortunately, we consider no such programs in this article.

Several tools can interpret (super-languages of) Datalog¬. For example, the
Clingo answer-set solver [21]4 can interpret each Datalog¬ example in this article.

4 An online Clingo interpreter is available at https://potassco.org/clingo/run

https://potassco.org/clingo/run

JustAct: Actions Universally Justified by Partial Dynamic Policies 5

3 Distributed Runtime Framework

This section defines the framework by supplementing Figure 2 with requirements,
explanations, motivations, and examples. We summarise the framework as follows:

Agents make statements carrying policies that model the system.
Agents gossip, assemble, and validate statements to build justifications.
Agents only take actions that are permitted by their justifications.

times agreements

actions statements

message sets messages agents

valid policies truths facts

appliesAt

contentsbasistakenAt

enactsjustification

extract

author

in of

Fig. 2. Graph of sets and functions (objects) defined by users of the framework. Sets
are named in italics. Functions are denoted as arrows (→) from domain to co-domain.
Functions are identified by their co-domain (or by a label if given). The dotted line
partitions objects into dynamics (above) and statics (below). At runtime, new elements
may be added to dynamic objects, but static objects are fixed. Each (⇒) is a typed
identity function, e.g., statements ⊆ messages. All functions shown are pure and total.
For example, some policy is extracted from each message set.

Figure 2 defines a set of named objects: sets and functions over the sets.
The framework is used by defining (the elements of) these objects. We partition
objects into static and dynamic objects, each discussed in their own subsections.
To use the framework, a user instantiates it by defining the objects in Figure 2
such that the framework requirements are preserved. The most fundamental
framework requirements are expressed in the figure; for example, each action has
exactly one justification, and that each agreement is a message. The remaining
framework requirements are introduced throughout this section. The framework
guarantees Properties 1 and 2, i.e., agents always agree on action permission and
effects, which are both precisely defined in Section 3.2.

Ultimately, we explain how agents can act autonomously while enforcing the
well-behavedness (Definition 1) of themselves and their peers in practice.

Property 1 Agents always agree whether a given action is permitted.

Property 2 Agents always agree on the effects of a given action.

Definition 1 An agent is well-behaved iff all of its actions is permitted.

6 C. A. Esterhuyse et al.

The rest of the section discusses the framework in general, and incrementally
builds an example framework instantiation, using policies built from only the
the Datalog¬ rules in Table 1. We use a running example of well-behaved agents
Amy and Bob. Ultimately, Bob enacts rd, which has the effect of deleting Data1.

Henceforth, we use the following notation. We distinguish definitions (≜) from
assertions of equality (=). We denote disjoint set union as (⊎), i.e., a ⊎ b = a ∪ b
iff sets a and b are disjoint, and otherwise, a ⊎ b is undefined.

3.1 Static Objects

The static objects are fixed at runtime. They concern the fundamentals of the
framework: data types, and the syntax and semantics of the policy language.

The agents5 of the framework author messages occurring dynamically as
statements. We take for granted that (∈) relates messages to message sets as
expected, and we treat each message m also as the singleton set {m}. Statements
communicate policies (see extract below). Policies determine which subset of
possible facts are true, defined true(f, p) ≜ ∃t ∈ truths : (of (t) = f)∧ (in(t) = p).
We instantiate policies as the subsets of the (policy) rules shown in Table 1.
Hence, (∪) is a natural policy-composition operator, unifying rules. Note that
composition does not generally unify truths. We use the semantics of Datalog¬

to define facts and truth: f is true in p iff f ∈ [p], the stable model of policy p,
for example, it holds in the case where f = error and p = {rm}.

We instantiate valid to characterise policies without errors. Precisely, we let
p ∈ valid ≜ ¬true(error, p). Despite the simplicity of this definition, (in)validity
emerges from complex rule interactions. For example, no valid policy is a superset
of {rm, rn}, as these suffice to infer the truth of error. Section 4 demonstrates
how (in)validity lays the groundwork for inter-agent power dynamics.

The definition of extract determines the policies agents can express, as agents
understand policy extract(m) as the subjective assertions of agent author(m).

We instantiate extract as a pure function of the message author and the
message payload, which is an arbitrary policy, chosen by the author. Intuitively,
extract invalidates payloads with undesirable author-rule pairs. Precisely, we let
extract({m}) ≜ payload(m) ∪ {error | ∀(r, a) ∈ owns : (r ∈ m ∧ ¬author(m, a))},

5 Unless otherwise specified, we let framework agents coincide with the agents of the
underlying distributed system.

Name In natural language As Datalog¬ rules
rm Amy must confirm. error :- not ctl-confirms(amy)
rn Amy must not confirm. error :- ctl-confirms(amy)
rc Amy confirms if someone is trusted. ctl-confirms(amy) :- ctl-trusts(amy, X)
rt Amy trusts Bob. ctl-trusts(amy, bob)
rd Bob deletes Data1. ctl-deletes(bob, data1)

Table 1. Example (policy) rules expressed in Datalog¬ and natural language. Each
rule’s name is suggested by the underlined keyword. A policy is any rule set.

JustAct: Actions Universally Justified by Partial Dynamic Policies 7

where owns relates rule r to agent a if r has an antecedent whose predicate
is prefixed by ctl- and whose first parameter is constant a. For example, only
Bob owns rule ctl-deletes(bob, data1), while rule error :- confirms(amy) has no owner
because fact error has neither prefix ctrl- nor a constant first parameter. Finally,
we let extract(∅) ≜ ∅, extract({m} ⊎M) ≜ extract({m}) ∪ extract(M), i.e., the
policy extracted from each message set is the composition of policies extracted
from each message. This simple definition confers a property that simplifies
reasoning: extract commutes and associates over message set union.

The above definition of extract uses invalidity to constrain which subjective
assertions are available to each agent. For example, because Bob owns rd, for
each message m, either Bob authors m, rd /∈ payload(m), or extract(m) is invalid.
Bob can rest assured that Amy alone cannot meaningfully assert rd.

3.2 Dynamic Objects

Dynamic objects are defined by each system configuration at runtime. They
instantiate the statics, and must be stored and communicated by agents.

At runtime, a subset of messages are statements, the messages that have
been created and shared at runtime. Intuitively, statements have few restrictions,
but therefore, they have little impact of their own. They are meaningful because
of their relationship with actions. In practice, we expect each statement to be
autonomously created by its author, i.e., as decided by the author alone. In theory,
the set of statements grows forever. In practice, agents and networks have finite
storage capacity, so we let agents forget or discard statements. For our purposes,
it suffices if the existence of a given statement is semi-decidable: agents can
decide (and prove) that it exists by observing (and showing) it. In practice, the
integrity and provenance of statements is preserved by authors cryptographically
signing their statements, and agents ignoring statements without their authors’
signatures. Agents share statements with their peers (e.g., via gossip), for their
own reasons, and at their own pace. Section 4 demonstrates a case where an
agent intentionally withholds a statement from other agents.

Agreements attribute special meaning to selected statements at selected
times. We require that membership be decidable. Intuitively, this lays the ground-
work for agents agreeing which actions are permitted. In practice, agents explicitly
synchronise the set of agreements. Synchronisation may be infrequent; e.g., one
synchronisation creates agreements for times from 100 to 500. Synchronisation
may be sparse; e.g., agents maintain a synchronised current time and implicitly
extend all current agreements until the next explicit synchronisation. For sim-
plicity in the examples henceforth, we assume a set of current agreements which
appears to change as different statements are agreed to apply at future times.

At runtime, there is a growing set of (taken) actions. Each action is takenAt
some time, has a basis agreement, enacts a statement, and is justified by a
message set. We call agent a the actor of action a′ iff a = author(enacts(a′)).
Like statements, actions are created autonomously (by their actors) and then
shared between agents by unspecified gossip. Unlike statements, actions are
restricted such that they can be effectful and meaningful. Precisely, well-behaved

8 C. A. Esterhuyse et al.

agents only permitted actions, defined as preserving Properties 3 to 6. Well-
behavedness has only extrinsic value: when an agent takes a non-permitted
action, this violates the expectations and trust of their peers, and may have
external consequences. For example, Amy is harmed if Bob deletes Data1 without
permission. Well-behavedness is enforceable if Properties 3 to 6 are each decidable.

In practice, agents preserve their own well-behavedness with ex-ante enforce-
ment, i.e., checking permission before acting. Agents enforce well-behavedness on
each other using ex-post enforcement, i.e., checking permission of taken actions
via run-time monitoring or auditing. For example, we expect real systems to
require agents to remain accountable of their actions to auditors, such that they
cannot preserve the appearance of well-behavedness by hiding their actions.

Property 3 (Stated) ∀a ∈ actions : justification(a) ⊆ statements.

Property 4 (Relevant) ∀a ∈ actions : {basis(a), enacts(a)} ⊆ justification(a).

Property 5 (Valid) ∀a ∈ actions : extract(justification(a)) ∈ valid.

Property 6 (Based) ∀a ∈ action : takenAt(a) = appliesAt(basis(a)).

Property 3 requires that justifications consist only of statements. For example,
where author(m) = Bob, until Bob states m, Amy cannot take actions which
necessarily include m in their justification. Property 4 ensures that each justifica-
tion includes the action’s basis and enacted statements. Thus, each justification
is constrained by some agreement, and by the enacted statement. For example,
Bob cannot enact rd with a justification in which deletes(bob, data1) is not true.
Property 5 limits justifications to those whose extracted policies are valid. For
example, recall that only Bob owns rd. Hence, Amy can make statements whose
payloads include rd, but those statements can be safely ignored, as they can never
be included in valid justifications. Finally, Property 6 ensures that each action is
based on an agreement that applies at the time the action is taken. Clearly, adding
new agreements (e.g., to future times) does not affect past actions. However,
the choice of agreements that apply in the future determines which actions are
permitted in the future. For example, the selection of future agreements simulates
updating the payload of the currently agreed statement ma from {rm, rt} to
{rt}, mirroring relaxations in the requirements of the GDPR. New actions are
permitted to Bob in the future, as Amy’s confirmation is no longer required.

Property 1 follows from agents coming to the same conclusions about the
permission of each action a, as Properties 3 to 6 depend only on a’s justification
and the agreement when it is created (which both remain fixed). Property 2
follows from fixing the effects of each action. We propose the following definition
in particular: effects(a) ≜ {f | ∀f ∈ facts, true(extract(enacts(a)), f)}, i.e., each
action’s effects are the truths6 in the enacted statement. With these properties,
6 In practice, it may be desirable to decouple truths from effects. For example, restricting

effects to subset of constant truths (effect(a, f) ≜ ∀p : true(p ∪ enacts(a), f)) lets
agents reason about the effects of each action via the possible justifications.

JustAct: Actions Universally Justified by Partial Dynamic Policies 9

the framework structures the interaction between agents, and ensures that agents
maintain a common understanding of actions’ permission and effects.

The relaxation to agreement ma permits Bob to take action a, which enacts
mb where payload(mb) = {rd}, and has agreement ma and justification {ma, mb}.
Amy and Bob agree that the action is permitted, because it satisfies Properties 3
to 6. Amy and Bob agree this action has one effect: Bob deletes Data1.

4 Case Study: Processing Distributed Medical Data

This section demonstrates an instantiation of the framework through an example
application, using Datalog¬ as the policy language. Bas We adopt the example
instantiation of Section 3, including the definitions of agent, fact, extract, valid,
and so on. However, we instead instantiate policies as the syntactic category of
all Datalog¬ programs. For example, Amy can author a statement with payload
policy ctl-knows(bob,amy), but the extracted policy is ctl-knows(bob,amy). error, which
is invalid, as it has truths {ctl-knows(bob,amy), error}. Furthermore, the statements
of the consortium agent represents the consensus of the agents at large. Precisely,
we instantiate agreements such that some agreement s is agreed for n if and only
if s is the consortium’s nth statement. Agents synchronise agreements, but only
act on the most recent agreement.

Step 1 – We begin with a runtime session formalising a simple requirement:
agents agree that it is an error for a data scientists to access data without the
authorisation of the administrator. Initially, the only agreement contains s1:
% Statement 's1 ' by 'consortium ' (agreement at time 1)
owns(administrator , Data) :- ctl - accesses (Accessor , Data).
error :- ctl - accesses (Accessor , Data), owns(Owner , Data),

not ctl - authorises (Owner , Accessor , Data).

Via a secondary communication channel, not reflected in the framework, agent
Amy convinces the administrator to authorise Amy’s access to data x-rays.
% Statement 's2 ' by 'administrator '
ctl - authorises (administrator , amy , x-rays).

Amy collects the above statements, and then states s3 (below). Amy takes
action a, which enacts s3, and has basis s1 and has justification j ≜ {s1, s2, s3}.
For clarity, just this once, we detail the reasoning of an arbitrary observer of a
given action; they draw the following conclusions about a:

– a preserves Property 3, as j ⊆ statements (in fact, currently, j = statements);
– a preserves Property 4, as s1 = basis(a), s3 = enacts(a), and {s1, s3} ⊆ j;
– a preserves Property 5, as where p ≜ extract(j), no p rule has the wrong

author, so extraction preserves the payload-rules and adds no error, and fact
error is not true in the resulting Datalog¬ model making p valid;

– a preserves Property 6, as a’s basis applies at the time a is taken.

All observers agree that this action is permitted. Furthermore, they agree that
a has the singleton set of effects {ctl-accesses(amy, x-rays)}, the truths of s3. Amy
mirrors this effect in the world outside, accessing the data identified by x-rays.

10 C. A. Esterhuyse et al.

% Statement 's3 ' authored by 'amy '
ctl - accesses (amy , x-rays).

Anton “the antagonist” attempts to interfere with the normal operation of the
system by making statements s4 and s5. However, no other agent takes any notice.
Firstly, the policy extracted from s4 is invalid, making it useless in justifying
actions. Secondly, Statement s5 is valid, but agents have no incentive to consider
it, as it does not falsify owns(administrator, x-rays), instead only further restricting
access. Unlike agreement s1, agents have no need to include s5 in justifications.
% Statement 's4 ' authored by 'anton '
ctl - authorises (administrator , anton , x-rays).

% Statement 's5 ' authored by 'anton '
owns(anton , x-rays).

Step 2 – The administrator makes a new statement that empowers other
agents to create authorisations (delegation). The administrator automatically
authorises Bob’s access to x-rays when authorized by both hospitals h1 and h2.
% Statement 's6 ' authored by 'administrator '
ctl - authorises (administrator , bob , x-rays) :- ctl - authorises (h1 , bob , x-rays),

ctl - authorises (h2 , bob , x-rays).

Now, it suffices for Bob to acquire authorisation to access x-rays from the
administrator or from (h1 and h2). Hospital h1 further shares their power with h2.
% Statement 's7 ' authored by 'h1 '
ctl - authorises (h1 , Accessor , x-rays) :- ctl - authorises (h2 , Accessor , x-rays).

Now, it suffices for Bob to acquire authorisation to access x-rays from h2
or from the administrator. Hospital h2 grants this for all agents except Anton.
Precisely, the authorisations of hospital h2 are only applicable on the condition
that ctl-accesses(anton, x-rays) is false. Thus, s8 is useless to Anton.
% Statement 's8 ' authored by 'h2 '
ctl - authorises (h2 , Accessor , x-rays) :- ctl - accesses (Accessor , x-rays),

not ctl - accesses (anton , x-rays).

Bob states and enacts s9 with justification {s1, s6, s7, s8, s9}. Agents agree
that this action is permitted and has the effect ctl-accesses(bob, x-rays).
% Statement 's9 ' authored by 'bob '
ctl - accesses (bob , x-rays).

An (ex-ante) access control mechanism can prevent access to Anton by observ-
ing that there is no justification for the action with the effect ctl-accesses(anton, x-rays).
Alternatively, a monitoring or auditing mechanism may feed any observed access
violation and message history to an ex-post enforcement authority.

Step 3 – The members of the consortium re-negotiate their agreement, because
the administrator currently holds too much power. For example, the adminis-
trator stating ctl-authorises(administrator, anton, x-rays) would have sufficed to let
Anton justify accessing x-rays, circumventing the need for authorisations from the
hospitals. The new agreement s10 gives the power of authorisation to the (virtual)

JustAct: Actions Universally Justified by Partial Dynamic Policies 11

consortium agent itself and distributes the power between the administrator and
the hospitals: the hospitals label datasets as relevant for research into the flu
(the illness) and the administrator determines which researcher can study the flu.
% Statement 's10 ' authored by 'consortium ' (agreement at time 2)
error :- ctl - accesses (Accessor , Data),

not ctl - authorises (consortium , Accessor , Data).
ctl - authorises (consortium , Accessor , Data)) :-

ctl - labels (administrator , Accessor , flu - researcher),
ctl - labels (Hospital , Data , flu -data),
ctl - hospital (consortium , Hospital).

ctl - hospital (consortium , h1).
ctl - hospital (consortium , h2).

Dan wishes to access x-rays. Dan petitions the administrator and hospital h1
to make the necessary statements. The two agents cooperate.
% Statement 's11 ' authored by 'administrator '
ctl - labels (administrator , dan , flu - researcher).

% Statement 's12 ' authored by 'h1 '
ctl - labels (h1 , x-rays , flu -data).

Dan states and enacts s13 with justification {s10, s11, s12, s13}. Agents agree
that this action is permitted and has the effect ctl-accesses(dan, x-rays).
% Statement 's13 ' authored by 'dan '
ctl - accesses (dan , x-rays).

Step 4 – We demonstrate how agents can act in complete confidence that
their action is permitted, despite partial knowledge of the existing statements.

Hospital h1 automates their labelling of flu data based on the consent of
data subjects. However, consent is itself sensitive information; s14 would let an
observer infer that the scans are connected to Caterina, a hospital patient. As
such, hospital h1 keeps s14 private; the statement is not gossiped to other agents.
% Statement 's14 ' authored by 'h1 '
ctl - labels (h1 , cat -scans , flu -data) :- ctl - consent (caterina , cat - scans).

Dan petitions hospital h1 to label cat-scans as flu data, such that Dan can
access it. The hospital does not grant Dan access immediately, but instead,
acquires statement s15 (below) from Caterina, and then sends s14 and s15 to
Dan, with the understanding that Dan will keep these statements private.
% Statement 's15 ' authored by 'caterina '
ctl - consent (caterina , cat - scans).

Dan states and enacts s16 with justification {s10, s11, s14, s15, s16}. Dan pub-
licises the statement s16, but keeps the justification private. The system is
established with rules for access to justifications with sensitive information. The
justification is checked only by auditors with special permissions. For example,
an automated auditor runs in a contained environment that leaks no information
and only publicises the answer to the question: is the given action justified?
% Statement 's16 ' authored by 'dan '
ctl - accesses (dan , cat - scans).

Other agents negotiate and enact data accesses despite ignorance of the
sensitive statements s14 and s15. Their own actions and permissions are unaffected.

12 C. A. Esterhuyse et al.

5 Implementation

This section discusses the considerations for implementing our framework in
general, and describes our ongoing prototype implementation in particular.

5.1 Implementation of the Framework Statics

Section 3.1 specifies the requirements on policy language needed to instantiate
the framework. Here, we briefly consider the practical design space in general,
and describe the approach of our prototype implementation.

Deterministic Truth To be instantiated, the framework must define truth as a
static relation over policies and facts. This implies a deterministic semantics: the
same policies always denote the same truths. This ensures that the communication
of policies realises a consistent communication of understanding about the domain
of discourse. For example, (complete) Prolog is unsuitable as a policy language
as its inference procedure is non-terminating. Even if all agents agree on a Prolog
program, generally, no agent can be certain that the conclusions drawn will be
replicated consistently, e.g., by an auditor checking the validity of a key policy.

Our prototype policy language uses the operational form [39] of the well-
founded semantics negation [56], assigning a unique value to each fact by isolating
logical contradictions to unknown values. For example, p is unknown in p :- not p.
This semantics confers the necessary property: inference of each program always
terminates, and each truth is replicated by every agent every time.

Complex Facts and Reflective Extraction Section 3.1 and Section 4 demon-
strated two (similar) definitions of the extract function, demonstrating its role in
controlling which policies authors can express.

Our prototype generalises Datalog¬ by supporting the construction of complex
facts like knows(amy,owns(bob,x-rays)) from other facts. This feature affords a powerful
definition of extract that more completely reflects the relation between true
facts, statements, and authors. Precisely, extract injects rules into the policy
that reflect the message context at a finer granularity, affording agents more
context-sensitive control. For example, agent a cannot assert the truth of fact f
with a rule in message m without also asserting the truth of facts authors(a, m) and
has-rule-asserting(m, a). Thus, policies can reflect on the system dynamics, giving
their authors more fine-grained control over actions. For example, statements
can explicitly refer to particular statements, and condition validity on the author
of rules resulting in the truth of particular facts.

5.2 Implementation of the Framework Dynamics

Our prototype implements a proposed policy-enforcement component [17] for
the EPI framework [27]. This prescribes the agents and actions relevant to
the use case, similar to our demonstration in Section 4. The agents include

JustAct: Actions Universally Justified by Partial Dynamic Policies 13

processors, administrators, and owners of sensitive data (hospitals and their
patients). The agreement formalises the dependency of processors on the owners.
Firstly, with the assistance of planner agents, processors make statements defining
data-processing workflows. Secondly, the relevant data owners make statements
authorising workflows, permitting their data access and processing actions.

Administrative agents are trusted to mediate the collection and transport of
statements between data owners and processors. Agents communicate statements
asynchronously, and only synchronise periodically to check for changes to the
agreement. The agreement is changed only by the administrators in two circum-
stances: members join or leave the consortium, or to temporarily halt processing
while the infrastructure underlying workflow processing is maintained.

6 Discussion

We discuss the strengths and limitations of (systems instantiating) the framework
defined in section 3, and demonstrated in Section 4.

6.1 Strengths

Highly Dynamic and Extensible The framework is highly abstract, making
it applicable to many policy languages and runtime systems.

Notably, the framework is parametric to the statically-defined policy language,
admitting any formal language affording pure functions of truth and validity. This
leaves significant room for systems instantiating the framework to adopt various
notions of policy, with various information models, and various semantics. For
example, the framework’s notion of policy affords the n-ary relations and logical
constraints underlying Bell-LaPadua security policies and various Rule-Based
Access control policies, which are all summarised and compared in [60]. However,
we leave the precise instantiation of these kinds of policy to future work.

Moreover, the relations between agents that ultimately control actions are
highly dynamically configurable, by agents making statements. Different configu-
rations confer different characteristics on the system, for example, allowing for
dynamic specialisation for various use cases in reaction to runtime information.
We recognise two noteworthy spectra on which particular system configurations
fall. Together, these help to clarify the ways systems can change their characteris-
tics at runtime. Firstly, systems can be centralised (where inter-agent consistency
is high) or decentralised (where many agents have meaningful power to act).
Secondly, systems can be highly static (where properties of interest are preserved)
or dynamic (where properties can be changed by agents at runtime).

Formal Agent Power Dynamics Agents are specified to remain well-behaved
(Definition 1): agents take only permitted actions. Well-behavedness enables
complex power dynamics, because action permission is influenced by statements
and agreements. This lets systems model various common and useful normative

14 C. A. Esterhuyse et al.

concepts by delegating power. For example, Section 4 demonstrates the adminis-
trator sharing power with the hospitals, and also the partitioning of consortium
power over the administrator and the hospitals.

Well-behavedness is robust; an agent that violates their own well-behavedness
by taking a non-permitted action preserves the well-behavedness of their peers.
The permission of actions is independent of (the permission) of actions; each
agent must independently justify their actions from the available statements.

Autonomy and Parallelism Agents synchronise to change agreements. All
other communication can be asynchronous, delayed, and lossy. Agents are very
autonomous, as they are never fundamentally compelled to act or make statements.
Hence, agents are robust to unreliable peers. The framework affords realistic
inter-agent enforcement of well-behavedness: agents monitor actions, and actors
bear the burden of proving that their actions are permitted. Thus, agents must
retain their actions’ justifications. However, other statements and actions can be
forgotten (e.g., to free memory) while preserving the framework guarantees.

Consistent Permission despite Privacy Agents always agree which actions
are permitted, despite being defined by statements not known to all agents. This
apparent contradiction is resolved by agents being able to decide when their
known statements suffice for permission. Moreover, permission is objective; agents
are certain that other agents (e.g., future auditors) agree that their actions were
permitted, without involving them at all. For example, in Section 4, Dan observes
s15 and Amy does not, but both agree that both are well-behaved.

6.2 Limitations

Costly Justification Search To remain well-behaved, agents must search
for justifications that permit their desired actions. In general, this problem is
undecidable. In practice, the difficulty depends on which statements are available,
and on the characteristics of the policy language. For example, the operational
semantics of Datalog¬ is desirably tractable. Moreover, this search problem is
reducible to many problems well-studied in the literature. We are particularly
interested in applying answer set solving (e.g., with Clingo [21]) or model-checking
rewrite systems modulo theories (e.g., with Maude [13]) to this problem in future.
The hard, general problem is made tractable by restricting policies.

No Obligation to Act (in Time) Our framework offers no fundamental
mechanism for agents to compel one another to action. Thus, the framework
cannot internalise normative obligations to act. These features can be added to
systems implementing our framework, but they may have difficulty in compelling
agents to act before specific deadlines, as a consequence of the aforementioned
point on the search for justifications. For this reason, our framework is not a
natural choice for implementations of real-time systems, where agents must react

JustAct: Actions Universally Justified by Partial Dynamic Policies 15

to stimuli within strict time limits. Future work can investigate constraints on
system configurations that strike desirable compromises between system flexibility
on the one hand, and predictability of actions (and their timing) on the other.

Specification of Communication As specified in Section 3.2, and demon-
strated in Section 4, agents can decide that their actions are universally permitted,
despite each having only partial knowledge of the existing statements and actions.
However, the framework itself does not prescribe how messages and actions
are shared between agents. In future work, we want to supplement the current
(justification) agreements with sharing agreements, which specify how agents
share (e.g., gossip) their statements and actions with their peers.

No Privacy from the Actor Agents are only able to act on permissions defined
by known statements. For example, in Section 4, for Amy to justify access, Amy
acquires the patient’s consent, revealing the patient identity to Amy. This can
be worked around; trusted intermediaries can forward transformed policies to
hide private information. In this case, the hospital can authorise Amy’s access
(unconditionally) after observing the patient consent themselves. In future, we
want to systematise these intermediary transformations such that the hidden
policy information can always be recovered (e.g., by trusted auditors).

7 Related work

Our framework prescribes a relation between concerns that are each independently
explored in the literature: 1. blockchains can synchronise dynamic, decentralised
policies, 2. trust management specifies the delegation of power between agents,
and 3. Curie evaluates data access policies as a function of sensitive data.

Smart Ledgers atop Blockchains Distributed ledgers provide a (probabilistic)
means of consensus on the state between decentralised processes. Blockchains are
a technology for implementing distributed ledgers. For example, Fabric emphasises
scalability [4], while Ouroboros emphasises provable security [31].

Systems such as SmartAccess [37] use distributed ledgers to store policies
and (meta-)data, enabling decentralised implementations of the access-control
model. However, these technologies synchronise policies, making them unsuitable
for private policy information (e.g., the consent rule in s16 in Section 4).

Other ledger-based systems allow a heterogeneous view on the policy state.
For example, Canton [15] (whitepaper) replaces the (sequential) blockchain with
a (hierarchical) blocktree. Agents must only synchronise the relevant sub-trees
with their neighbours. This lays the groundwork for private policies.

We see ledgers and blockchains as one way for our agents to synchronise agent
agreements in particular. However, they are unsuitable for distributing our agent
statements in general, as their ordering and synchronisation is unnecessary.

16 C. A. Esterhuyse et al.

Curie Curie is a policy-based data exchange system [11]. Our works share a
fundamentally decentralised approach to the specification and enforcement of
formal policies to regulate the exchange of data, based on consortium agreements
and local policies. Moreover, both works define permission to act in terms of
assembled policies, for Curie, of dual policies of x sharing with y and y acquiring
from x. We also see similarities between Curie and the EPI framework in their
shared application to federated machine learning with sensitive medical data.

A significant feature of Curie is its specification and evaluation of data
sharing policies as a function of the shared data itself. Policy decisions digest
the homomorphically encrypted data [16], revealing only the evaluation result in
plain text. For example, a hospital’s sharing policy is conditioned on the shared
data surpassing a threshold of differential privacy [35].

Our work abstracts away from the relation between policies and the effects
of actions (e.g., sharing data). Instead, we focus on relating policies and agent
actions and communications. Our approach affords a fundamentally multi-party
approach to policy decisions. Permissions arise from the composition of statements
from different agents at different times. Thus, our statements more extensively
internalise the negotiation and refinement of multi-party power dynamics. For
example, Section 4 demonstrates multiple agents participating in the incremental
sharing of power to permit data access requests. By decoupling statements from
their authors, statements meaningfully delegate reasoning and action to other
agents. For example, also in Section 4, the consortium agent begins with sole
power over authorisation, but after the agreement, it plays no further part.

As such, our contributions are largely orthogonal to Curie, and we are inspired
to investigate the combination of the works’ best features. Can (data sharing)
actions be justified as a function of the shared data itself?

Trust Management Traditional access control develops languages and tools for
specifying and checking a requester’s permission to access data. Trust management
reifies the role of the accessor as a certificate, primarily, to enable access control
in a decentralised environment, where the identities of particular requesters are
not known ahead of time [9]. Much literature dates to the 1980’s and 1990’s,
investigating policy languages suited to defining certificates and inferring them at
request time from context. Many of these are specialised extensions of Datalog,
adding non-monotonicity [32], constraints [33], and weights [8].

Like access control, trust management focuses agent reasoning on the access-
request decision, whereas our framework emphasises the inter-relationship between
agents and their actions via their synchronised agreements. However, the bulk of
trust management research complements our work, because it informs the selection
of particular policy languages suited to particular purposes. [43] overviews and
compares (the complexity of) noteworthy trust management languages.

JustAct: Actions Universally Justified by Partial Dynamic Policies 17

8 Conclusion

We define a framework for policy-driven data exchange, which minimises the
requirements on the policy language itself, maximising applicability to existing
work. The framework focuses on defining the relation between agent statements
and the permissions on agent actions. Ultimately, we show that any definition
of framework objects that satisfies our realistic requirements satisfies a useful
property. Namely, agents can decide which actions are permitted, such that all
other agents certainly agree. Moreover, agents are confident their decisions are
universal, e.g., shared by all peers, including monitors and auditors.

Our work is motivated by its application to the exchange of sensitive (e.g.,
medical) data between autonomous agents, where the policies themselves are
potentially private. Crucially, agents can decide, on a case-by-case basis, with
whom they share their dynamic policy statements, balancing policy privacy on
the one hand, with permitting peers’ actions on the other hand.

Work continues to develop a policy component in the EPI framework, an
existing, federated, medical workflow processing system. This entails developing
our own specialised policy language, and implementing the agent reasoning and
communications, by drawing from several related works.

Acknowledgments. This research is partially funded by the EPI project (NWO grant
628.011.028), the AMdEX-fieldlab project (Kansen Voor West EFRO grant KVW00309),
and the AMdEX-DMI project (Dutch Metropolitan Innovations ecosystem for smart
and sustainable cities, made possible by the Nationaal Groeifonds).

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.

References

1. Akaichi, I., Kirrane, S.: Usage control specification, enforcement, and robustness: A
survey. CoRR abs/2203.04800 (2022). https://doi.org/10.48550/arXiv.2203.
04800

2. Anderson, A., Nadalin, A., Parducci, B., Engovatov, D., Lockhart, H., Kudo, M.,
Humenn, P., Godik, S., Anderson, S., Crocker, S., et al.: extensible access control
markup language (xacml) version 1.0. Oasis (2003)

3. Andrighetto, G., Governatori, G., Noriega, P., van der Torre, L.W.N. (eds.): Nor-
mative Multi-Agent Systems, Dagstuhl Follow-Ups, vol. 4. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2013)

4. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., Caro,
A.D., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., Muralidharan,
S., Murthy, C., Nguyen, B., Sethi, M., Singh, G., Smith, K., Sorniotti, A.,
Stathakopoulou, C., Vukolic, M., Cocco, S.W., Yellick, J.: Hyperledger fabric:
a distributed operating system for permissioned blockchains. In: Oliveira, R.,
Felber, P., Hu, Y.C. (eds.) Proceedings of the Thirteenth EuroSys Conference,
EuroSys 2018, Porto, Portugal, April 23-26, 2018. pp. 30:1–30:15. ACM (2018).
https://doi.org/10.1145/3190508.3190538

https://doi.org/10.48550/arXiv.2203.04800
https://doi.org/10.48550/arXiv.2203.04800
https://doi.org/10.48550/arXiv.2203.04800
https://doi.org/10.48550/arXiv.2203.04800
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538

18 C. A. Esterhuyse et al.

5. Bakhshi, R., Cloth, L., Fokkink, W.J., Haverkort, B.R.: Meanfield analysis for
the evaluation of gossip protocols. SIGMETRICS Perform. Evaluation Rev. 36(3),
31–39 (2008). https://doi.org/10.1145/1481506.1481513

6. van Binsbergen, L.T., Kebede, M.G., Baugh, J., van Engers, T.M., van Vuurden,
D.G.: Dynamic generation of access control policies from social policies. In: Varan-
das, N., Yasar, A., Malik, H., Galland, S. (eds.) The 12th International Conference
on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2021) / The
11th International Conference on Current and Future Trends of Information and
Communication Technologies in Healthcare (ICTH-2021), Leuven, Belgium, Novem-
ber 1-4, 2021. Procedia Computer Science, vol. 198, pp. 140–147. Elsevier (2021).
https://doi.org/10.1016/j.procs.2021.12.221

7. van Binsbergen, L.T., Liu, L., van Doesburg, R., van Engers, T.M.: eflint: a domain-
specific language for executable norm specifications. In: Erwig, M., Gray, J. (eds.)
GPCE ’20: Proceedings of the 19th ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences, Virtual Event, USA,
November 16-17, 2020. pp. 124–136. ACM (2020). https://doi.org/10.1145/
3425898.3426958

8. Bistarelli, S., Martinelli, F., Santini, F.: Weighted datalog and levels of trust. In:
Proceedings of the The Third International Conference on Availability, Reliability
and Security, ARES 2008, March 4-7, 2008, Technical University of Catalonia,
Barcelona , Spain. pp. 1128–1134. IEEE Computer Society (2008). https://doi.
org/10.1109/ARES.2008.197

9. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: 1996 IEEE
Symposium on Security and Privacy, May 6-8, 1996, Oakland, CA, USA. pp. 164–173.
IEEE Computer Society (1996). https://doi.org/10.1109/SECPRI.1996.502679

10. Boella, G., van der Torre, L.W.N.: Substantive and procedural norms in normative
multiagent systems. J. Appl. Log. 6(2), 152–171 (2008). https://doi.org/10.
1016/j.jal.2007.06.006

11. Celik, Z.B., Acar, A., Aksu, H., Sheatsley, R., McDaniel, P.D., Uluagac, A.S.: Curie:
Policy-based secure data exchange. In: Ahn, G., Thuraisingham, B., Kantarcioglu,
M., Krishnan, R. (eds.) Proceedings of the Ninth ACM Conference on Data and
Application Security and Privacy, CODASPY 2019, Richardson, TX, USA, March 25-
27, 2019. pp. 121–132. ACM (2019). https://doi.org/10.1145/3292006.3300042

12. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989).
https://doi.org/10.1109/69.43410

13. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott,
C.L.: The maude 2.0 system. In: Nieuwenhuis, R. (ed.) Rewriting Techniques and
Applications, 14th International Conference, RTA 2003, Valencia, Spain, June
9-11, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2706, pp. 76–87.
Springer (2003). https://doi.org/10.1007/3-540-44881-0_7

14. Curry, E., Tuikka, T.: An organizational maturity model fordata spaces: A data
sharing wheel approach. In: Curry, E., Scerri, S., Tuikka, T. (eds.) Data Spaces
- Design, Deployment and Future Directions, pp. 21–42. Springer (2022). https:
//doi.org/10.1007/978-3-030-98636-0_2

15. Digital Asset: Canton network: A network of networks for smart contract ap-
plications. Available at https://www.digitalasset.com/hubfs/Canton/Canton%
20Network%20-%20White%20Paper.pdf (Accessed: 23-2-2024), (Whitepaper)

16. Doan, T.V.T., Messai, M., Gavin, G., Darmont, J.: A survey on implementations
of homomorphic encryption schemes. J. Supercomput. 79(13), 15098–15139 (2023).
https://doi.org/10.1007/S11227-023-05233-Z

https://doi.org/10.1145/1481506.1481513
https://doi.org/10.1145/1481506.1481513
https://doi.org/10.1016/j.procs.2021.12.221
https://doi.org/10.1016/j.procs.2021.12.221
https://doi.org/10.1145/3425898.3426958
https://doi.org/10.1145/3425898.3426958
https://doi.org/10.1145/3425898.3426958
https://doi.org/10.1145/3425898.3426958
https://doi.org/10.1109/ARES.2008.197
https://doi.org/10.1109/ARES.2008.197
https://doi.org/10.1109/ARES.2008.197
https://doi.org/10.1109/ARES.2008.197
https://doi.org/10.1109/SECPRI.1996.502679
https://doi.org/10.1109/SECPRI.1996.502679
https://doi.org/10.1016/j.jal.2007.06.006
https://doi.org/10.1016/j.jal.2007.06.006
https://doi.org/10.1016/j.jal.2007.06.006
https://doi.org/10.1016/j.jal.2007.06.006
https://doi.org/10.1145/3292006.3300042
https://doi.org/10.1145/3292006.3300042
https://doi.org/10.1109/69.43410
https://doi.org/10.1109/69.43410
https://doi.org/10.1007/3-540-44881-0_7
https://doi.org/10.1007/3-540-44881-0_7
https://doi.org/10.1007/978-3-030-98636-0_2
https://doi.org/10.1007/978-3-030-98636-0_2
https://doi.org/10.1007/978-3-030-98636-0_2
https://doi.org/10.1007/978-3-030-98636-0_2
https://www.digitalasset.com/hubfs/Canton/Canton%20Network%20-%20White%20Paper.pdf
https://www.digitalasset.com/hubfs/Canton/Canton%20Network%20-%20White%20Paper.pdf
https://doi.org/10.1007/S11227-023-05233-Z
https://doi.org/10.1007/S11227-023-05233-Z

JustAct: Actions Universally Justified by Partial Dynamic Policies 19

17. Esterhuyse, C.A., Müller, T., van Binsbergen, L.T., Belloum, A.S.Z.: Exploring the
enforcement of private, dynamic policies on medical workflow execution. In: 18th
IEEE International Conference on e-Science, e-Science 2022, Salt Lake City, UT,
USA, October 11-14, 2022. pp. 481–486. IEEE (2022). https://doi.org/10.1109/
ESCIENCE55777.2022.00086

18. European Commission: Regulation (EU) 2016/679 of the European Parliament and
of the Council of 27 April 2016 on the protection of natural persons with regard
to the processing of personal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection Regulation) (Text with
EEA relevance) (2016), https://eur-lex.europa.eu/eli/reg/2016/679/oj

19. Fernandez, R.C.: Data-sharing markets: Model, protocol, and algorithms to in-
centivize the formation of data-sharing consortia. Proc. ACM Manag. Data 1(2),
172:1–172:25 (2023). https://doi.org/10.1145/3589317

20. Fragkos, G., Johnson, J., Tsiropoulou, E.: Dynamic role-based access control policy
for smart grid applications: An offline deep reinforcement learning approach. IEEE
Trans. Hum. Mach. Syst. 52(4), 761–773 (2022). https://doi.org/10.1109/THMS.
2022.3163185

21. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.:
Potassco: The potsdam answer set solving collection. AI Commun. 24(2), 107–124
(2011). https://doi.org/10.3233/AIC-2011-0491

22. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R.A., Bowen, K.A. (eds.) Logic Programming, Proceedings of the Fifth
International Conference and Symposium, Seattle, Washington, USA, August 15-19,
1988 (2 Volumes). pp. 1070–1080. MIT Press (1988)

23. Governatori, G., Idelberger, F., Milosevic, Z., Riveret, R., Sartor, G., Xu, X.:
On legal contracts, imperative and declarative smart contracts, and blockchain
systems. Artif. Intell. Law 26(4), 377–409 (2018). https://doi.org/10.1007/
s10506-018-9223-3

24. Ianella, R.: Open digital rights language (odrl). Open Content Licensing: Cultivating
the Creative Commons (2007)

25. Jung, C., Dörr, J.: Data usage control. In: Otto, B., ten Hompel, M., Wrobel, S.
(eds.) Designing Data Spaces: The Ecosystem Approach to Competitive Advantage,
pp. 129–146. Springer (2022). https://doi.org/10.1007/978-3-030-93975-5_8

26. Kassem, J.A., de Laat, C., Taal, A., Grosso, P.: The EPI framework: A dynamic
data sharing framework for healthcare use cases. IEEE Access 8, 179909–179920
(2020). https://doi.org/10.1109/ACCESS.2020.3028051

27. Kassem, J.A., Valkering, O., Belloum, A., Grosso, P.: EPI framework: Approach
for traffic redirection through containerised network functions. In: 17th IEEE
International Conference on eScience, eScience 2021, Innsbruck, Austria, September
20-23, 2021. pp. 80–89. IEEE (2021). https://doi.org/10.1109/eScience51609.
2021.00018

28. Ketsman, B., Koch, C.: Datalog with negation and monotonicity. In: Lutz, C.,
Jung, J.C. (eds.) 23rd International Conference on Database Theory, ICDT 2020,
March 30-April 2, 2020, Copenhagen, Denmark. LIPIcs, vol. 155, pp. 19:1–19:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.
4230/LIPIcs.ICDT.2020.19

29. Khan, M., den Hartog, F.T.H., Hu, J.: A survey and ontology of blockchain
consensus algorithms for resource-constrained iot systems. Sensors 22(21), 8188
(2022). https://doi.org/10.3390/S22218188

https://doi.org/10.1109/ESCIENCE55777.2022.00086
https://doi.org/10.1109/ESCIENCE55777.2022.00086
https://doi.org/10.1109/ESCIENCE55777.2022.00086
https://doi.org/10.1109/ESCIENCE55777.2022.00086
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1145/3589317
https://doi.org/10.1145/3589317
https://doi.org/10.1109/THMS.2022.3163185
https://doi.org/10.1109/THMS.2022.3163185
https://doi.org/10.1109/THMS.2022.3163185
https://doi.org/10.1109/THMS.2022.3163185
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.1007/s10506-018-9223-3
https://doi.org/10.1007/s10506-018-9223-3
https://doi.org/10.1007/s10506-018-9223-3
https://doi.org/10.1007/s10506-018-9223-3
https://doi.org/10.1007/978-3-030-93975-5_8
https://doi.org/10.1007/978-3-030-93975-5_8
https://doi.org/10.1109/ACCESS.2020.3028051
https://doi.org/10.1109/ACCESS.2020.3028051
https://doi.org/10.1109/eScience51609.2021.00018
https://doi.org/10.1109/eScience51609.2021.00018
https://doi.org/10.1109/eScience51609.2021.00018
https://doi.org/10.1109/eScience51609.2021.00018
https://doi.org/10.4230/LIPIcs.ICDT.2020.19
https://doi.org/10.4230/LIPIcs.ICDT.2020.19
https://doi.org/10.4230/LIPIcs.ICDT.2020.19
https://doi.org/10.4230/LIPIcs.ICDT.2020.19
https://doi.org/10.3390/S22218188
https://doi.org/10.3390/S22218188

20 C. A. Esterhuyse et al.

30. Khobragade, P., Turuk, A.K.: Blockchain consensus algorithms: A survey. In: Prieto,
J., Martínez, F.L.B., Ferretti, S., Guardeño, D.A., Nevado-Batalla, P.T. (eds.)
Blockchain and Applications, 4th International Congress, BLOCKCHAIN 2022,
L’Aquila, Italy, 13-15 July 2022. Lecture Notes in Networks and Systems, vol. 595,
pp. 198–210. Springer (2022). https://doi.org/10.1007/978-3-031-21229-1_19

31. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I. Lecture Notes
in Computer Science, vol. 10401, pp. 357–388. Springer (2017). https://doi.org/
10.1007/978-3-319-63688-7_12

32. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation logic: A logic-based approach
to distributed authorization. ACM Trans. Inf. Syst. Secur. 6(1), 128–171 (2003).
https://doi.org/10.1145/605434.605438

33. Li, N., Mitchell, J.C.: DATALOG with constraints: A foundation for trust manage-
ment languages. In: Dahl, V., Wadler, P. (eds.) Practical Aspects of Declarative
Languages, 5th International Symposium, PADL 2003, New Orleans, LA, USA,
January 13-14, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2562,
pp. 58–73. Springer (2003). https://doi.org/10.1007/3-540-36388-2_6

34. Mao, X., Wang, Q., Yang, S.: A survey of agent-oriented programming from software
engineering perspective. Web Intell. 15(2), 143–163 (2017). https://doi.org/10.
3233/WEB-170357

35. Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving machine
learning. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose,
CA, USA, May 22-26, 2017. pp. 19–38. IEEE Computer Society (2017). https:
//doi.org/10.1109/SP.2017.12

36. Munoz-Arcentales, A., López-Pernas, S., Pozo, A., Alonso, Á., Salvachúa, J., Huecas,
G.: An architecture for providing data usage and access control in data sharing
ecosystems. In: Shakshuki, E.M., Yasar, A., Malik, H. (eds.) The 10th International
Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2019)
/ The 9th International Conference on Current and Future Trends of Information and
Communication Technologies in Healthcare (ICTH-2019) / Affiliated Workshops,
Coimbra, Portugal, November 4-7, 2019. Procedia Computer Science, vol. 160, pp.
590–597. Elsevier (2019). https://doi.org/10.1016/J.PROCS.2019.11.042

37. de Oliveira, M.T., Reis, L.H.A., Verginadis, Y., Mattos, D.M.F., Olabarriaga, S.D.:
Smartaccess: Attribute-based access control system for medical records based on
smart contracts. IEEE Access 10, 117836–117854 (2022). https://doi.org/10.
1109/ACCESS.2022.3217201

38. Parvizimosaed, A., Roveri, M., Rasti, A., Amyot, D., Logrippo, L., Mylopoulos,
J.: Model-checking legal contracts with symboleopc. In: Syriani, E., Sahraoui,
H.A., Bencomo, N., Wimmer, M. (eds.) Proceedings of the 25th International
Conference on Model Driven Engineering Languages and Systems, MODELS 2022,
Montreal, Quebec, Canada, October 23-28, 2022. pp. 278–288. ACM (2022). https:
//doi.org/10.1145/3550355.3552449

39. Przymusinski, T.C.: The well-founded semantics coincides with the three-valued
stable semantics. Fundam. Inform. 13(4), 445–463 (1990)

40. Qiu, J., Tian, Z., Du, C., Zuo, Q., Su, S., Fang, B.: A survey on access control
in the age of internet of things. IEEE Internet Things J. 7(6), 4682–4696 (2020).
https://doi.org/10.1109/JIOT.2020.2969326

https://doi.org/10.1007/978-3-031-21229-1_19
https://doi.org/10.1007/978-3-031-21229-1_19
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1145/605434.605438
https://doi.org/10.1145/605434.605438
https://doi.org/10.1007/3-540-36388-2_6
https://doi.org/10.1007/3-540-36388-2_6
https://doi.org/10.3233/WEB-170357
https://doi.org/10.3233/WEB-170357
https://doi.org/10.3233/WEB-170357
https://doi.org/10.3233/WEB-170357
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1016/J.PROCS.2019.11.042
https://doi.org/10.1016/J.PROCS.2019.11.042
https://doi.org/10.1109/ACCESS.2022.3217201
https://doi.org/10.1109/ACCESS.2022.3217201
https://doi.org/10.1109/ACCESS.2022.3217201
https://doi.org/10.1109/ACCESS.2022.3217201
https://doi.org/10.1145/3550355.3552449
https://doi.org/10.1145/3550355.3552449
https://doi.org/10.1145/3550355.3552449
https://doi.org/10.1145/3550355.3552449
https://doi.org/10.1109/JIOT.2020.2969326
https://doi.org/10.1109/JIOT.2020.2969326

JustAct: Actions Universally Justified by Partial Dynamic Policies 21

41. Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-
agent coordination. In: American Control Conference, ACC 2005, Portland, OR,
USA, 8-10 June, 2005. pp. 1859–1864. IEEE (2005). https://doi.org/10.1109/
ACC.2005.1470239

42. Ross, K.A.: Modular stratification and magic sets for DATALOG programs with
negation. In: Rosenkrantz, D.J., Sagiv, Y. (eds.) Proceedings of the Ninth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, April
2-4, 1990, Nashville, Tennessee, USA. pp. 161–171. ACM Press (1990). https:
//doi.org/10.1145/298514.298558

43. Sacha, K.: Trust management languages and complexity. In: Meersman, R., Dillon,
T.S., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.C., Damiani, E., Schmidt,
D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M.K. (eds.) On the Move to
Meaningful Internet Systems: OTM 2011 - Confederated International Conferences:
CoopIS, DOA-SVI, and ODBASE 2011, Hersonissos, Crete, Greece, October 17-21,
2011, Proceedings, Part II. Lecture Notes in Computer Science, vol. 7045, pp.
588–604. Springer (2011). https://doi.org/10.1007/978-3-642-25106-1_12

44. Samarati, P., di Vimercati, S.D.C.: Access control: Policies, models, and mechanisms.
In: Focardi, R., Gorrieri, R. (eds.) Foundations of Security Analysis and Design,
Tutorial Lectures [revised versions of lectures given during the IFIP WG 1.7
International School on Foundations of Security Analysis and Design, FOSAD 2000,
Bertinoro, Italy, September 2000]. Lecture Notes in Computer Science, vol. 2171,
pp. 137–196. Springer (2000). https://doi.org/10.1007/3-540-45608-2_3

45. Sandhu, R.S.: Role-based access control. Adv. Comput. 46, 237–286 (1998). https:
//doi.org/10.1016/S0065-2458(08)60206-5

46. Schmidt, D.C., et al.: Model-driven engineering. Computer-IEEE Computer Society-
39(2), 25 (2006)

47. Servos, D., Osborn, S.L.: Current research and open problems in attribute-based
access control. ACM Comput. Surv. 49(4), 65:1–65:45 (2017). https://doi.org/
10.1145/3007204

48. Shakeri, S., Maccatrozzo, V., Veen, L.E., Bakhshi, R., Gommans, L., de Laat,
C., Grosso, P.: Modeling and matching digital data marketplace policies. In: 15th
International Conference on eScience, eScience 2019, San Diego, CA, USA, Septem-
ber 24-27, 2019. pp. 570–577. IEEE (2019). https://doi.org/10.1109/ESCIENCE.
2019.00078

49. Sharifi, S., Parvizimosaed, A., Amyot, D., Logrippo, L., Mylopoulos, J.: Symboleo:
Towards a specification language for legal contracts. In: Breaux, T.D., Zisman, A.,
Fricker, S., Glinz, M. (eds.) 28th IEEE International Requirements Engineering
Conference, RE 2020, Zurich, Switzerland, August 31 - September 4, 2020. pp.
364–369. IEEE (2020). https://doi.org/10.1109/RE48521.2020.00049

50. Shi, B., Zhou, A.: Bottom-up evaluation of datalog with negation. J. Comput. Sci.
Technol. 9(3), 229–244 (1994). https://doi.org/10.1007/BF02939504

51. Shoham, Y.: Agent-oriented programming. Artif. Intell. 60(1), 51–92 (1993). https:
//doi.org/10.1016/0004-3702(93)90034-9

52. Strasser, C., Antonelli, G.A.: Non-monotonic Logic. In: Zalta, E.N. (ed.) The Stan-
ford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
Summer 2019 edn. (2019)

53. Torre-Bastida, A.I., Gil, G., Miñón, R., Díaz-de-Arcaya, J.: Technological perspec-
tive of data governance in data space ecosystems. In: Curry, E., Scerri, S., Tuikka,
T. (eds.) Data Spaces - Design, Deployment and Future Directions, pp. 65–87.
Springer (2022). https://doi.org/10.1007/978-3-030-98636-0_4

https://doi.org/10.1109/ACC.2005.1470239
https://doi.org/10.1109/ACC.2005.1470239
https://doi.org/10.1109/ACC.2005.1470239
https://doi.org/10.1109/ACC.2005.1470239
https://doi.org/10.1145/298514.298558
https://doi.org/10.1145/298514.298558
https://doi.org/10.1145/298514.298558
https://doi.org/10.1145/298514.298558
https://doi.org/10.1007/978-3-642-25106-1_12
https://doi.org/10.1007/978-3-642-25106-1_12
https://doi.org/10.1007/3-540-45608-2_3
https://doi.org/10.1007/3-540-45608-2_3
https://doi.org/10.1016/S0065-2458(08)60206-5
https://doi.org/10.1016/S0065-2458(08)60206-5
https://doi.org/10.1016/S0065-2458(08)60206-5
https://doi.org/10.1016/S0065-2458(08)60206-5
https://doi.org/10.1145/3007204
https://doi.org/10.1145/3007204
https://doi.org/10.1145/3007204
https://doi.org/10.1145/3007204
https://doi.org/10.1109/ESCIENCE.2019.00078
https://doi.org/10.1109/ESCIENCE.2019.00078
https://doi.org/10.1109/ESCIENCE.2019.00078
https://doi.org/10.1109/ESCIENCE.2019.00078
https://doi.org/10.1109/RE48521.2020.00049
https://doi.org/10.1109/RE48521.2020.00049
https://doi.org/10.1007/BF02939504
https://doi.org/10.1007/BF02939504
https://doi.org/10.1016/0004-3702(93)90034-9
https://doi.org/10.1016/0004-3702(93)90034-9
https://doi.org/10.1016/0004-3702(93)90034-9
https://doi.org/10.1016/0004-3702(93)90034-9
https://doi.org/10.1007/978-3-030-98636-0_4
https://doi.org/10.1007/978-3-030-98636-0_4

22 C. A. Esterhuyse et al.

54. Um-e-Ghazia, Masood, R., Shibli, M.A., Bilal, M.: Usage control model specification
in XACML policy language - XACML policy engine of UCON. In: Cortesi, A., Chaki,
N., Saeed, K., Wierzchon, S.T. (eds.) Computer Information Systems and Industrial
Management - 11th IFIP TC 8 International Conference, CISIM 2012, Venice, Italy,
September 26-28, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7564,
pp. 68–79. Springer (2012). https://doi.org/10.1007/978-3-642-33260-9_5

55. Valkering, O., Cushing, R., Belloum, A.: Brane: A framework for programmable
orchestration of multi-site applications. In: 17th IEEE International Conference on
eScience, eScience 2021, Innsbruck, Austria, September 20-23, 2021. pp. 277–282.
IEEE (2021). https://doi.org/10.1109/ESCIENCE51609.2021.00056

56. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the ACM 38(3), 619–649 (Jul 1991). https://doi.org/
10.1145/116825.116838

57. Viganò, F., Colombetti, M.: Symbolic model checking of institutions. In: Gini,
M.L., Kauffman, R.J., Sarppo, D., Dellarocas, C., Dignum, F. (eds.) Proceedings
of the 9th International Conference on Electronic Commerce: The Wireless World
of Electronic Commerce, 2007, University of Minnesota, Minneapolis, MN, USA,
August 19-22, 2007. ACM International Conference Proceeding Series, vol. 258, pp.
35–44. ACM (2007). https://doi.org/10.1145/1282100.1282109

58. Wesley, N.H.: Some fundamental legal conceptions as applied in judicial reasoning.
The Yale Law Journal 23(1), 16 (1913)

59. Zhang, X., Parisi-Presicce, F., Sandhu, R.S., Park, J.: Formal model and policy
specification of usage control. ACM Trans. Inf. Syst. Secur. 8(4), 351–387 (2005).
https://doi.org/10.1145/1108906.1108908

60. Zhao, G., Chadwick, D.W.: On the modeling of bell-lapadula security policies
using RBAC. In: 17th IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises, WETICE 2008, Rome, Italy, June
23-25, 2008, Proceedings. pp. 257–262. IEEE Computer Society (2008). https:
//doi.org/10.1109/WETICE.2008.34

61. Zhou, X., Belloum, A., Lees, M.H., van Engers, T.M., de Laat, C.: The dynamics
of corruption under an optional external supervision service. Appl. Math. Comput.
457, 128172 (2023). https://doi.org/10.1016/J.AMC.2023.128172

https://doi.org/10.1007/978-3-642-33260-9_5
https://doi.org/10.1007/978-3-642-33260-9_5
https://doi.org/10.1109/ESCIENCE51609.2021.00056
https://doi.org/10.1109/ESCIENCE51609.2021.00056
https://doi.org/10.1145/116825.116838
https://doi.org/10.1145/116825.116838
https://doi.org/10.1145/116825.116838
https://doi.org/10.1145/116825.116838
https://doi.org/10.1145/1282100.1282109
https://doi.org/10.1145/1282100.1282109
https://doi.org/10.1145/1108906.1108908
https://doi.org/10.1145/1108906.1108908
https://doi.org/10.1109/WETICE.2008.34
https://doi.org/10.1109/WETICE.2008.34
https://doi.org/10.1109/WETICE.2008.34
https://doi.org/10.1109/WETICE.2008.34
https://doi.org/10.1016/J.AMC.2023.128172
https://doi.org/10.1016/J.AMC.2023.128172

	 JustAct: Actions Universally Justified by Partial Dynamic Policies

