
iCoLa: A Compositional Meta-language with Support
for Incremental Language Development

Damian Frölich
dfrolich@acm.org

Informatics Institute, University of Amsterdam
Amsterdam, the Netherlands

L. Thomas van Binsbergen
ltvanbinsbergen@acm.org

Informatics Institute, University of Amsterdam
Amsterdam, the Netherlands

Abstract
Programming languages providing high-level abstractions
can increase a programmers’ productivity and the safety
of a program. Language-oriented programming is a para-
digm in which domain-specific languages are developed to
solve problems within specific domains with (high-level)
abstractions relevant to those domains. However, language
development involves complex design and engineering pro-
cesses. These processes can be simplified by reusing (parts
of) existing languages and by offering language-parametric
tooling.

In this paper we present iCoLa, a meta-language support-
ing incremental (meta-)programming based on reusable com-
ponents. In our implementation of iCoLa, languages are first-
class citizens, providing the full power of the host-language
(Haskell) to compose and manipulate languages. We demon-
strate iCoLa through the construction of the Imp, SIMPLE,
and MiniJava languages via the composition and restriction
of language fragments and demonstrate the variability of
our approach through the construction of several languages
using a fixed-set of operators.

CCS Concepts: • Software and its engineering → Do-
main specific languages.

Keywords: language composition, prototyping, domain-specific
languages, meta-language, funcons

ACM Reference Format:
Damian Frölich and L. Thomas van Binsbergen. 2022. iCoLa: A Com-
positional Meta-language with Support for Incremental Language
Development. In Proceedings of the 15th ACM SIGPLAN International
Conference on Software Language Engineering (SLE ’22), December
06–07, 2022, Auckland, New Zealand. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3567512.3567529

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SLE ’22, December 06–07, 2022, Auckland, New Zealand
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9919-7/22/12. . . $15.00
https://doi.org/10.1145/3567512.3567529

1 Introduction
High-level programming languages increase programmer
productivity, program safety, program correctness, and main-
tainability, among other qualities. Language-Oriented Pro-
gramming (LOP) [48] is a programming paradigm utilizing
the advantages of higher-level programming by developing
new languages specialized to the problem domain at hand
by offering abstractions. However, the development of a pro-
gramming language requires significant engineering efforts,
for example to build an interpreter or compiler, to build tool-
ing for the language users, and to guarantee performance.
Language workbenches and meta-languages are created

to support language engineering efforts [14], often delivering
tooling such as IDEs for object languages for free. Techniques
for the modular and reusable specification of syntax [39]
and semantics [8, 23, 45] have been developed. Reusable
fundamental constructs (funcons) have been identified for
general-purpose languages [43] to describe the semantics of
(new) languages in terms of existing components.

Language design is also a time-consuming effort as navi-
gating design choices is not straightforward. This is evident
in the frequent revisions seen in the historical development
of general-purpose programming languages as well as in the
context of Domain-Specific Languages (DSLs). For example,
in the context of DSLs, the design of a language must reflect
the concepts known to the domain experts using the lan-
guage and the design of a language is often updated based
on user experience. The design process is an iterative process
in which language developers and domain experts continue
to reflect on the existing design.
Incremental programming is a style of software develop-

ment in which a user repeatedly submits small snippets of
code on which they receive immediate feedback, construct-
ing a larger system via this feedback-loop. As such, incremen-
tal programming delivers early feedback on design decisions
in the software development process, enabling rapid pro-
totyping and experimentation. This programming style is
supported by Read-Eval-Print Loop (REPL) environments
and systems like Jupyter notebooks. In this work we apply
incremental programming (also) in the context of language
development to support rapid prototyping of languages.

In this paper we introduce iCoLa, a meta-language focused
on the language design process by supporting reusable com-
ponents and incremental language development to enable

https://orcid.org/0000-0003-1016-5303
https://orcid.org/0000-0001-8113-2221
https://doi.org/10.1145/3567512.3567529
https://doi.org/10.1145/3567512.3567529

SLE ’22, December 06–07, 2022, Auckland, New Zealand Damian Frölich and L. Thomas van Binsbergen

rapid prototyping of languages. Concretely, we make the
following contributions:

• We present a new approach to defining languages (sec-
tion 3) which supports unconstrained composition of
languages through incremental programming.

• The approach is implemented as an EmbeddedDomain-
Specific Language (EDSL) with (Template) Haskell as
the host language (section 4). The full power of Haskell
is available to define (operations over) languages, as
languages are first-class citizens [6].

• Wedemonstrate reusability and incrementality through
case-studies (section 5) and relate our approach to ex-
isting meta-languages by applying Erdweg’s evalua-
tion framework [12] (section 6).

2 Background
The approach presented in this paper combines insights from
earlier works to achieve composition. The implementation
of the approach is based on certain advanced functional
programming techniques described in this section.

Initial algebra semantics. The initial algebra semantics
of Goguen et al. [16], concisely described by Mosses in [31],
provides the formal foundation and terminology to our work.
Initial algebra semantics captures the essential elements of
many existing semantic specification formalisms such as
denotational semantics and attribute grammars.
A multi-sorted signature (Σ) lays out the operators of a

language in terms of a set of sorts. A Σ-algebra assigns car-
rier sets to these sorts. When taking term-constructors as the
carriers, we obtain the abstract syntax of the language. The
algebra formed this way is initial in the class of Σ-algebras.
Due to its initiality, there is a unique homomorphism from
the initial algebra to any algebra in the class of Σ-algebras —
also known as a catamorphism [26]. Algebras give meaning
to the operators of a signature by assigning a semantic func-
tion to each. Following initiality, any abstract syntax can be
mapped to the semantics of an algebra.

data types à la carte. As a solution to the expression
problem [47], data types à la carte [39] provides a method
for assembling data types and functions from individual
components to form signatures, an initial algebra for every
signature, and evaluation algebras, respectively.

With the approach, data types are defined as functors and
combined by taking the functor co-product, which is, again,
a functor. Using this technique, a simple integer addition
language can be defined as follows.
data Val a = Val Int
data Add a = Add a a

data (f :+: g) e = Inl (f e) | Inr (g e)

The :+: operator implements the functor co-product.
To allow nested expressions and cross-usage of constructs,

the recursive knot must be tied. This is achieved by taking

the fix-point of the co-product functor [26]: data Term f =
In (f (Term f)).

Although nested expressions are now supported, we still
need to place our expressions on the correct side of our
co-product. To automate this, automatic injections into the
co-product type via type classes are used.

class (Functor sub, Functor sup) => sub :<: sup where
inj :: sub a -> sup a

instance f :<: f where
inj = id

instance f :<: g where
inj = Inl

instance (f :<: g) => f :<: (g :+: h) where
inj = Inr . inj

The :<: operator defines a typing relation such that if f :<:
g, it means that f is subsumed by g, i.e. values of type f can
be constructed as part of values of type g.
Since both the data types and the functor co-product are

functors, catamorphisms can be used to operate on the com-
position of data types.

foldTerm :: Functor f => (f a -> a) -> Expr f -> a
foldTerm f (In t) = f (fmap (foldTerm f) t)

The first argument to the foldTerm function is called an
algebra and defines how the resulting value is constructed.
To enable the extension of new cases at the function level,
the approach implements algebras via type classes. Type
classes are used because they provide ad-hoc polymorphism
and are open for extension via instance definitions.
The comp-data library [3] is a comprehensive Haskell li-

brary implementing the data types à la carte approach with
some extensions, including support for Generalized Alge-
braic Data Types (GADTs) [19], contexts, and automatically
deriving several type class instances using Template Haskell.
The library also supports higher-order functors [19] to im-
plement signatures. A consequence of using higher-order
functors is that algebras become natural transformations
instead of functions, affecting the kind of the algebra.

Funcons. The component-based approach to operational
semantics presented in [32] is centered around reusable defi-
nitions of the fundamental constructs of (general-purpose)
programming languages – referred to as funcons for short.
As explained in [43], ‘micro-interpreters’ can be generated
from funcon definitions. The micro-interpreters are com-
positional evaluation functions expressing the behavior of
an individual funcon that can be generated and compiled
separately. In this paper, we leverage the generality of the
Funcons-beta library [33] to be able to express the semantics
of language constructs in a shared base language. Effectively,
the generated micro-interpreters for funcons are applied as
the constructs of an EDSL.

iCoLa: A Compositional Meta-language with Support for Incremental Language Development SLE ’22, December 06–07, 2022, Auckland, New Zealand

Language composition evaluation framework. Erd-
weg et al. provide a framework for discussing and comparing
meta-languages, tools and formalisms that support various
forms of incremental language development [12]. In particu-
lar, the authors define the concepts of (modular) language
extension, restriction, and unification, which they apply to
both the syntax (concrete & abstract), static semantics, opera-
tional semantics and IDE services of languages. Extension oc-
curs when a base language is extended by another language
that has a dependency on the base language. Restriction is
a special form of extension, where a language is restricted,
making the new language a subset of the original language.
Unification is the process of combining two independent
languages with the help of glue code to unify the two lan-
guages. The paper also distinguishes between different forms
of extension: no extension composition, incremental exten-
sion, and extension unification. In case a method does not
support extension composition, it is impossible to combine
multiple extensions. For incremental extension, extension
can be performed in layers where one extension extends the
base and another extension extends the extensions, etc. With
extension unification, two extensions are unified and the uni-
fication is used as the extension on a base language. In this
paper we adopt their terminology and use their framework
as the basis for our evaluation.

Template Haskell. Template Haskell is a Haskell exten-
sion permitting compile-time meta-programming [38]. With
Template Haskell, users can write programs that transform
programs. For instance, it is useful when generating boiler-
plate code or to perform calculations at compile-time to im-
prove run-time performance. The extension provides several
facilities to inspect and operate on Haskell programs, includ-
ing a quotation monad that enables reification of Haskell
names, giving the programmer access to the internal repre-
sentation of the compiler. Names are obtained by using prefix
quotes, with one quote operating in the expression context
and two quotes operate in the type context. The $ construct
is used to evaluate, or splice, a Template Haskell expression.
For example, the following splice derives something based
on a name obtained from the expression level and a name
obtained from the type level: $(derive ’f ”Bool). In this
example, f is a function and its name is obtained by prefix-
ing it with single quote, and Bool is a type and its name
is obtained by prefixing it with double quotes. These ob-
tained names can now be reified to get the internal Haskell
representation of the underlying constructs.

A Principled Approach to REPL Interpreters. Previous
work [44] provides a principled approach to (defining and de-
veloping) REPL interpreters. The approach involves adapting
an existing language to a ‘sequential’ variant that naturally
supports incremental programming. The paper defines se-
quential languages as languages in which we can take any
two programs and sequence these programs to form a new

program, and the interpretation of the sequence is identical
to the composition of the interpretation of the two programs
in isolation. There is the assumption that an interpreter 𝐼
assigns semantics to a program as a function over configu-
rations representing execution context, i.e. 𝐼 (𝑝) : Γ → Γ for
some set of configurations Γ. Visually, sequentiality means
that the diagram in Figure 1 commutes, where 𝑝1;𝑝2 is the
sequence containing the programs 𝑝1 and 𝑝2.

𝐼 (𝑝1)

𝐼 (𝑝2)
𝐼 (𝑝

1 ;𝑝
2)

Figure 1. A visual view of the concept of sequential lan-
guages. 𝐼 is the interpretation function over a set of configu-
rations. 𝑝1;𝑝2 is the sequencing of the programs 𝑝1 and 𝑝2.

For sequential languages, tooling for incremental program-
ming such as REPLs, Jupyter Notebooks [21], and even ex-
ploratory programming environments [15], can be obtained
for free. In this paper, we apply the idea of sequential lan-
guages to support incremental programming in our meta-
language iCoLa (i.e. incremental language development) and
to obtain REPL interpreters for the object languages defined
with iCoLa.

3 Compositional definitions
In this section we describe our approach to language devel-
opment conceptually. The insight of incremental language
development via composition and the separation between
operator (or language construct) definitions on the one hand
and language definitions on the other hand, is essential to
our approach. A language definition can freely choose from
the available operators and constrains the flexibility with
which the chosen operators can be used. The definition of
an operator consists of an abstract syntax definition and a
denotational semantics, choosing funcon terms as a semantic
domain. The separation between operator and language def-
initions is enabled by an alternative take on abstract syntax
definitions.

3.1 Abstract syntax
A common approach to defining the abstract syntax of a
language is to give algebraic datatypes (ADTs) of which
the operator1 signatures determine, in a mutually recursive
fashion, the set of terms that forms the abstract syntax of
the language. For example, the abstract syntax of a lambda
calculus can be represented as follows, where Var𝑂 , Abs𝑂 ,

1Such as constructors in Haskell and variants in the ML family of languages.

SLE ’22, December 06–07, 2022, Auckland, New Zealand Damian Frölich and L. Thomas van Binsbergen

and App𝑂 are operators (as indiciated by the subscript) and
String and Expr are sorts.

VarO : String → Expr

AbsO : String × Expr → Expr
AppO : Expr × Expr → Expr

In this style, the signature of an operator simultaneously
identifies the sort of terms constructed by applications of
the operator, the arity of the operator, and the sort of terms
required at each operand position in valid applications of
the operator.
A key insight of our approach is to delay the decisions

related to sorts (but not the arity) until the definition of a
language, rather than making these part of operator defini-
tions. This is achieved by (1) using a unique sort at every
position in the signature and by (2) introducing separate sort
constraints to establish the relations between the sorts. Fol-
lowing (1), the sorts are effectively naming operand positions.
The right-hand side of a signature is made redundant and
can be removed as every operator already has a unique name.
With these changes, the operators are defined as follows:

VarO : VarVar
AbsO : AbsVar × AbsBody

AppO : AppAbs × AppArg

In contrast to the conventional approach, the signatures
do not share any sorts, and the three operators are (as of
yet) completely unrelated. To re-establish the relationships,
we introduce sort constraints. Sort constraints are based on
the interpretation of sorts as sets of operators. For example,
the following sort constraint indicates that strings serve as
identifiers in both variable references and abstractions:

String ⊆ VarVar

String ⊆ AbsVar

This kind of sort constraint is referred to as a sub-sort decla-
ration.

The other kind of sort constraint, referred to as an operator
assignment, indicates that terms constructed by the VarO
operator can be used as the body of an abstraction:

VarO ∈ AbsBody

To express the same relations between the operators as in
the initial example, operator assignments can be written
for every pair of an operator and sort taken from the sets
{VarO,AbsO,AppO} and {AbsBody,AppAbs,AppArg}. Writ-
ing down these operator assignments grows increasingly
tedious (and error-prone) as more and more operators are
added to a language. Therefore, as a convenience, sort con-
straints can also be used to introduce auxiliary sorts that
serve as a level of indirection and enable reuse. The following
sort constraints utilize the auxiliary sort Expr , stating that

all operators assigned to Expr are also assigned to AbsBody,
AppAbs and AppArg:

Expr ⊆ AbsBody

Expr ⊆ AppAbs
Expr ⊆ AppArg

The relations of the original example are then expressed by
assigning the operators to Expr :

VarO ∈ Expr
AppO ∈ Expr

AbsO ∈ Expr

A language designer can introduce new operators with
full flexibility and without modifying existing operator defi-
nitions because our approach separates operators from con-
straints detailing where operators can be used. For example,
extending the lambda calculus with integer addition can be
achieved by defining an Add operator and assigning this
operator to the sorts where we want to use the Add operator.

AddO : AddLeft × AddRight

AddO ∈ Expr

This definition adds AddO to Expr, such that the Add oper-
ator can be used at the operand positions over which we
distributed Expr earlier. Interestingly, no operators have been
assigned to the operands of the Add operator yet. Consider
the following sort constraints:

Integer ⊆ AddLeft

Integer ⊆ AddRight
Integer ⊆ Expr

AddO ∈ AddRight

These constraints express that integer literals can appear as
operands of Add in both positions. However, since the Add
operator is only added to AddRight, the constraints allow
only nested occurrences of Add on the right side, encoding
right-associativity. This example demonstrates the flexibility
of sort constraints: integer expressions can be used in lambda-
expressions — owing to the constraints AddO ∈ Expr and
Integer ⊆ Expr — whereas lambda-expessions cannot be
used in integer expressions. Such rules of composition can be
changed simply by selecting a different set of sort constraints
without affecting the definitions of the operators themselves.
As discussed in §3.4, selecting sort constraints is done as part
of a language definition.

3.2 Compositional semantics
To retain the disjoint property of the operators, their seman-
tics must be defined independently as well. This is achieved
by defining semantic functions that together form an alge-
bra. Semantic functions translate an operator into a specific

iCoLa: A Compositional Meta-language with Support for Incremental Language Development SLE ’22, December 06–07, 2022, Auckland, New Zealand

semantic domain. For example, our previous operators defin-
ing the lambda calculus can have the following semantic
functions, with funcons being our semantic domain2.

VarF (𝑙𝑖𝑡) = bound string lit

AbsF (𝑥, 𝑏) = function closure scope(
bind(string 𝑥, given), 𝑏)

AppF (𝑎𝑏𝑠, 𝑎𝑟𝑔) = apply(𝑎𝑏𝑠, 𝑎𝑟𝑔)
Through the catamorphism, the operands of an operator
are already translated by their respective translation func-
tion when an operator is translated. Hence, an operator only
needs to translate itself into the semantic domain while hav-
ing access to the already translated operands.

3.3 Operator specialization
In certain circumstances, it may be necessary to adapt the
semantics of language constructs in order to make them
suitable for the language in mind. The so-called ‘glue code’,
which adapts an existing semantic definition, is often used
in these circumstances. This glue code is to be written mod-
ularly and in isolation, without anticipating, or constraining,
future interactions. These observations can be exemplified
by the following example: Consider an if operator encoding
if-expressions or if-statements.

IfO : 𝐼 𝑓 𝐶𝑜𝑛𝑑 × 𝐼 𝑓 𝑇𝑟𝑢𝑒 × 𝐼 𝑓 𝐹𝑎𝑙𝑠𝑒

If F (𝑐, 𝑡, 𝑓) = if-true-else(𝑐, 𝑡, 𝑓)
The if-then-else funcon expects that the conditional eval-

uates to a boolean. However, in C-like languages, if-statements
are defined in terms of integers. Therefore, to utilize IfO we
need to glue it into our C-like language, as below.3

CExpr ⊆ IfCond (Sort constraint with glue code)
↩→ not is-equal(0,CExprF) (glue code)

In the example, we perform a sub-sort declaration, linking
the CExpr sort — containing the C expression operators —
to the IfCond operand. As part of that declaration, we define
glue code which is only applied when the translated operator
is part of the CExpr group, since glue code is conditional.
Furthermore, the glue code glues the result of the transla-
tion function of the operator on which glue code is defined.
Thus in our example, CExprF is the result of the translation
function associated with the sort CExpr , which is implicitly
defined in terms of the translation functions given for the
operators contained in the sort CExpr , i.e. the catamorphism.

We thus have specialized the If operator to the semantics
of our specific language without modifying the existing defi-
nition of the If operator nor do we need to define a different
2In the right-hand side, juxtaposition is the right-associative applica-
tion of a funcon to a (single) funcon term, i.e. bound string lit ==

bound(string(lit)) .
3The example is simplified to save space. When performing such glue on C,
the checks need to be extended to supports floats, doubles, etc. This can be
easily done by dispatching on the type of the current value.

operator for all possible variations. In addition, by applying
glue-code conditionally, it does not affect other operands
assigned to IfCond and removing C-like expressions from
the language does not leave any stale glue code around.

3.4 Language definition
Given a set𝑂 of operators, with every operator having an ar-
ity, denoted with |𝑜 |, a set of operand positions, denoted with
−→𝑜 = {1, · · · , |𝑜 |}, and a semantic function 𝐹 (𝑜) : F |𝑜 | → F
where F is the set of funcon terms, we define a language as
a structure ⟨𝑇, 𝑆,𝐺, 𝐼 ⟩𝑂 in terms of 𝑂 , with 𝑇 ⊆ 𝑂 being the
set of top-level operators; S is a family ⟨𝑆𝑜∈𝑂,𝑤∈−→𝑜 ⟩ of sets
indexed by𝑂 ×N. 𝑆𝑜,𝑤 is the set of operators assigned to the
operand position𝑤 of operand 𝑜 . 𝐺 is a family ⟨𝐺𝑜∈𝑂,𝑤∈−→𝑜 ⟩
of functions indexed by 𝑂 × N. 𝐺𝑜,𝑤 is the glue function
𝑂 × F → F for operators assigned to the operand position
𝑤 of operand 𝑜 . 𝐼 is a family ⟨𝐼𝑡 ∈𝑇 ⟩ of functions indexed by
the top-level operators. 𝐼𝑡 : F → F denotes the top-level
initialization function for the specific top-level operator.

We do not distinguish between sub-sort declarations and
operator assignments, since all sub-sort declarations can be
described in terms of operator assignments. Furthermore,
the definition does not introduce operand names. Instead,
operand positions are used. Nevertheless, we do use names
in our examples as a notation convenience, ensuring that
there is a one-to-one mapping between operand names and
operand positions.

The top-level operators are present in a language to deter-
mine the entry points of the language. This can be used in
generation of unambiguous parsers for languages, genera-
tion of tooling, generation of language structure diagrams,
etc. Initialization functions can be used to modify the top-
level behavior of the language. For example, in a REPL, re-
turned values might be printed and unhandled exceptions are
caught and displayed while not resulting in termination of
the REPL. This behavior is however not preferred when not
running in a REPL-like environment. With the initialization
functions, this behavior can be encoded as an extension on a
language, creating a clear distinction between the different
languages.

3.5 Language composition
Language composition of two languages, 𝐿1 and 𝐿2, specified
in terms of the same operator set, is defined as follows: 𝐿1 ⋄𝑂
𝐿2 = ⟨𝑇1 ∪𝑇2, 𝑆,𝐺, 𝐼 ⟩𝑂 , where

𝑆 = {𝑆1⟨𝑜,𝑤 ⟩ ∪ 𝑆2⟨𝑜,𝑤 ⟩ |𝑜 ∈ 𝑂,𝑤 ∈ −→𝑜 }
𝐺 = {𝐺2⟨𝑜,𝑤 ⟩ ◦𝐺1⟨𝑜,𝑤 ⟩ |𝑜 ∈ 𝑂,𝑤 ∈ −→𝑜 }
𝐼 = {𝐼2⟨𝑡 ⟩ ◦ 𝐼1⟨𝑡 ⟩ | 𝑡 ∈ 𝑇1 ∪𝑇2}

From the associativity of the operations used on the ele-
ments of the languages, it follows that language composition
is associative. Language composition, however, is not com-
mutative due to the usage of function composition with 𝐺

SLE ’22, December 06–07, 2022, Auckland, New Zealand Damian Frölich and L. Thomas van Binsbergen

and 𝐼 . With language composition, languages form a monoid.
The neutral language can be defined by taking the empty
set for 𝑇 , letting the family 𝑆 assign the empty set to every
index, and letting the families 𝐺 and 𝐼 assign the identity
function over funcon terms to every index.
While in our definitions, languages are defined in terms

of some set of operators, this does not restrict the incremen-
tality we provide nor does it prevent new operators from
being introduced. New operators can be added at any time,
because operators and their semantics are compositional as
well, as inherited from the conceptual model of data types
à la carte and our usage of initial algebra semantics. The
compositional nature provides enough to support the incre-
mental aspect. This insight is best explained according to
Figure 1. In essence, when composition is supported, incre-
mentality is almost obtained for free, because we can always
reformulate an incremental step as a composition from our
starting point. Since every incremental step is then evaluated
as a composition from the starting point, we do assume that
the interpretation of this composition scales and is not much
slower than just doing the incremental step.

iCoLa thus exists out of two languages: one for defining op-
erators and their semantics, and one for defining languages,
such that the interpretation of the operator language results
in a set of operators that is used in the interpretation of the
language-definition language. Because both operators and
languages are compositional, from a users perspective there
is no difference, and language and operator definitions can
be freely mixed. This, again, is a result of our approach of
achieving incrementality via composition.

4 Implementation
In this section we demonstrate an EDSL in Haskell of the
approach introduced in the previous section. The EDSL is
partly embedded inHaskell and partly embedded in Template
Haskell. In case definitions in the EDSL must be given in
terms of Template Haskell, we first give theHaskell definition
and after the corresponding encoding in terms of Template
Haskell, which demonstrates to which Haskell expression
the Template Haskell encoding is evaluated by our approach.

4.1 Operators
Operators are implemented as GADTs with two type param-
eters, o and t, corresponding to the set of operators, which is
needed for injection into the co-product type, and a so-called
meta-type (explained below) of the operator, respectively.
GADTs are needed to support the delayed decision regarding
sort-constraints via class instances in the constructor defini-
tion of the operator. To illustrate, we take the definition for
AbsO as an example.
data Abs u t where

Abs :: IsTrue (AbsBody t)1a =>

String -> u t 1b -> Abs u AbsType2a

type family AbsBody1c t

data AbsType 2b

The sort-constraint (1a) enforces that the second parameter
(1b) is assigned to the AbsBody sort, and sorts are imple-
mented as type-families (1c). Because we carry around the
meta-type in arguments (1b) to enforce sort-constraints,
type u is a type taking a type as a parameter, i.e., it is a
functor. Consequently, our operators are higher-order func-
tors. In addition, every operand is assigned a meta-type (2a),
which are implemented as empty data types (2b) — data
types without constructors. Furthermore, IsTrue is a type
class for which only one instance is defined — the instance
for the type-level boolean True.
class IsTrue bool
instance IsTrue True
data True

To encode AbsO ∈ AbsBody — the assignment of the ab-
straction operator to the body of abstractions — we define
the meta-type of the operator as an instance evaluating to
True of the AbsBody type family.
type instance AbsBody AbsType = True

To retain adaptability of operator assignments, we delay
the instantiation of such instances by defining them in terms
of Template Haskell.
(''AbsType, ''AbsBody) :: OperatorAssignment
type OperatorAssignment = (MetaType, Sort)
type MetaType - Name
type Sort = Name

Auxiliary sorts are also implemented using type families.
For example, our earlier convenience sort, Expr, is defined
as follows.
type family Expr t

As such, instances can be added to an auxiliary sort with an
operator assignment.
To perform sub-sort assignments, a sort is linked to an-

other sort, again in terms of template Haskell. Thus, the
encoding for 𝐸𝑥𝑝𝑟 ∈ 𝐴𝑏𝑠𝐵𝑜𝑑𝑦 is as follows.
(''Expr, ''AbsBody) :: SubSort
type SubSort = (Sort, Sort)

4.2 Semantic functions
As is the case in data types à la carte, semantic functions are
defined modularly as type class instances and are applied by
the fold of an algebra. For example, the following instance
encodes the definition of AbsF (𝑥, 𝑏) given in subsection 3.2.
instance ToFuncons Abs where4

toFuncons (Abs s (K body)) = K $ function_ [closure_
[scope_ [bind_ [T.string_ s, given_], body]]]

The ToFuncons type class captures those types for which a
translation to ‘Funcons’ is available and is defined as follows.
4The T module provides helper functions to transform Haskell values into
funcon values. Funcon smart constructors — identified by the trailing un-
derscore — take a variable number of arguments, hence the usage of lists.

iCoLa: A Compositional Meta-language with Support for Incremental Language Development SLE ’22, December 06–07, 2022, Auckland, New Zealand

class HFunctor f => ToFuncons f where5

toFuncons :: Alg f (K Funcons)
newtype K a i = K {unK :: a} deriving (Functor)
type Alg f e = f e :-> e
type (:->) f g = forall i. f i -> g i

Since operators are higher-order functors andwe carry around
the meta-type, the carrier of our algebra must be a parame-
terized functor, which funcons are not. Therefore, we wrap
funcons with the K constructor.

4.3 Glue code
Glue code is implemented as functions of type Funcons ->
Funcons and to link glue code to an operand of a specific
operator, we use multi-parameter type classes and an adap-
tation on the catamorphism that applies glue code before
application of the semantic function on the operator being
evaluated. For example, the glue definition from section 3 is
achieved with the following instance definition.
instance GetGlue IfGlue CExpr Funcons where

getGlue IfCondGlue _ = \l -> not_ [is_equal_ [0, l]]
getGlue _ _ = id

class GetGlue operand (f :: (* -> *) -> * -> *) target where
getGlue :: operand -> f (Term a) b -> target -> target
getGlue _ _ = id

In this example, CExpr refers to all operators assigned to
the CExpr sort, and should be read as the generation of this
instance for all operators assigned to the CExpr sort.

To identify the operands, we generate a data type for every
operator, IfGlue in the example, where the cases identify
the operand positions for the application of glue code, which
in the example are identified by the constructors suffixed
with Glue.

Again, to be able to modify glue code instances, we delay
such instances by defining them in terms of Template Haskell
constructs instead.
(''CExpr, ''IfCond, 'cExprGlue) :: GlueDefinition
type GlueDefinition = (MetaType, Sort, GlueFunction)
type GlueFunction = Name
cExprGlue l = not_ [is_equal_ [0, l]]

The Template Haskell definition does not refer to the glue
data type. Instead, the right glue data-type is automatically
determined based on the sort in the glue code definition. The
glue data-type is thus fully abstracted away from language
designers.

4.4 Language definition
Because we defined the components of a language in terms
of template Haskell constructs, we can define a language as
data type in terms of those template Haskell constructs.
data Language = Language

{ op_assign :: [OperatorAssignment]
, sub_sorts :: [SubSort]
, glue_code :: [GlueDefinition]
, init_code :: [(MetaType, GlueFunction)]

5The K, Alg and (:->) types are defined by the comp-data library [3]

} deriving (Show)
instance Semigroup Language
instance Monoid Language

The language definition does not contain a special entry
for top-level operators. Instead, we utilize a special sort —
TopLevel — that can be used inside the operator assignment
and sub-sort definitions. As a result, initialization code is
defined as a tuple linking operator — via their meta-type —
to glue-code functions. In addition, we make languages an
instance of the Monoid type class, allowing usage of the (<>)
operator to compose languages.
To instantiate a language, the genLanguage function is

spliced in.
genLanguage :: [Operator] -> Language -> Q [Dec]
type Operator = (Constructor, MetaType)

The genLanguage function distributes the sub-sort declara-
tions over the operands, generates type family instances for
the operator assignments, generates smart constructors that
automatically inject the operator into the co-product type
(representing the set of operators), generates glue code data
types for the operators, and the glue code definitions are
transformed into GetGlue type class instances. Furthermore,
the function performs several checks. First, it checks if all
operators mentioned in the language are present in the set of
operators. Secondly, it requires that the sub-sort declarations
form a directed acyclic graph. If any of these conditions are
not met, the compilation is stopped with an error indicating
the unsatisfied condition.
Our original definition of the lambda calculus is thus ob-

tained by the definition in Listing 1.

4.5 Parser generation and the iCoLa-shell
The structure present in language definitions is enough to
use in the generation of parsers for the defined languages.
Currently, we generate a parser that parsers a language in
which operator application is written in a style similar to
LISP [25]. We use such syntax to ensure that the generated
grammar is not ambiguous. For example, (add (intv 1)
(add (intv 2) (intv 3))) demonstrates an expression
using the generated syntax for a simple integer addition
language. In this example, add and intv are operators and
applications of operators are always surrounded by parenthe-
ses. The operands are separated by spaces. So this example
simply encodes the arithmetic expression 1 + (2 + 3).

Using these generated parsers, we provide the iCoLa-shell,
which is a ‘meta-REPL’ that accepts any Haskell declara-
tion. This enables users to define languages and operations
over languages inside the meta-REPL. Furthermore, a meta-
command commit is provided that can be used to commit to
a specific language and start an ‘object-REPL’ for the chosen
object language. In the object-REPL, the user can experiment
with the defined language using the LISP-style generated
concrete syntax. When stopping the object-REPL, the user re-
turns to the meta-REPL, continuing the same session where

SLE ’22, December 06–07, 2022, Auckland, New Zealand Damian Frölich and L. Thomas van Binsbergen

$(genLanguage [(''Var, ''VarType), (''Abs, ''AbsType),
(''App, ''AppType)] lambdaLanguage

where
lambdaLanguage = Language

{ op_assign = [(op, ''Expr) | op <- [''VarType, ''AbsType, ''AppType]]
, sub_sorts = [(''Expr, t) | t <- [''AbsBody, ''AppLeft, ''AppRight, ''TopLevel]],
, glue_code = []
, init_code = []
})

Listing 1. Definition of the lambda calculus in iCoLa.

meta> intAdd = intLanguage <> addLanguage
meta> :commit intAdd
intAdd> (add (intv 1) (intv 10))
11
intAdd> :exit
meta>

Listing 2. Example session inside the iCoLa-shell.

they left off. Listing 2 illustrates an example session in the
meta-REPL and an object-REPL for a simple integer addi-
tion language, where meta> denotes execution inside the
meta-REPL, otherwise execution is happening inside the
object-REPL.
In the same iCoLa-shell session, the user can extend the

language and start a new object-REPL, or focus on a subset
of the language by removing part of the composition or
focusing on a subset of languages used in the composition.

5 Examples of incremental compositional
language definitions

In this section we demonstrate iCoLa by defining several
languages in terms of other languages. The used languages
are: Imp [34], a simple imperative language; SIMPLE [35],
a more complex procedural language; and MiniJava [2], a
strict subset of the Java language. These languages have
their semantics described in terms of funcons as part of
the case studies for the PlanCompS project6. This enables
us to focus on the incremental and flexibility aspects of our
approach and to demonstrate the reuse achieved via operator
definitions and glue code.

5.1 The construction of Imp
We define Imp as the composition of the following four lan-
guages: impArith <> impBExpr <> impStmts <> impPrograms,
a simple arithmetic language with support for integer addi-
tion and division; a boolean expression language with sup-
port for less-than-equal comparison and (binary) conjunc-
tion; a statements language containing if-statements, while-
statements, and sequencing of statements; and a program lan-
guage that unifies these languages together by defining the

6https://plancomps.github.io/CBS-beta/docs/Languages-beta/index.html

top-level in accordance to the top-level of Imp, respectively.
The definition of impArith and impBExpr are as follows.
impArith = Language

{ op_assign = [(e, ''ArithExpr) |
e <- [''IntType, ''AddType, ''DivType, ''IdType]]

, sub_sorts = [(''ArithExpr, s) |
s <- [''AddLeft, ''AddRight, ''DivLeft, ''DivRight]]

, glue_code = [(''DivType, ''Always, 'check_divide)]
...} where

check_divide f = checked_ [f]

impBExpr = Language
{ op_assign = [(e, ''BExpr) |

e <- [''BoolType, ''LeqType, ''NotType]]
, sub_sorts = [(''BExpr, s) |

s <- [''NotExpr, ''AndLeft, ''AndRight]]
++ [(''ArithExpr, s) | s <- [''LeqLeft, ''LeqRight]]

...}

In these definitions, there are three things that need to be
highlighted. Firstly, both languages do not define a top-level,
which means that these languages on themselves are not ex-
ecutable since there are no entry points. Secondly, impArith
defines glue code over the Div operator that wraps the divide
in a check. When division by zero occurs, the program is
terminated due to the check. This behavior is not directly
encoded in the semantics of the Div operator, because other
languages handle this differently, for example by throwing
an exception. In the description for the glue code, we see
usage of the shorthand ”Always sort. This sort is a conve-
nience and denotes that the glue code needs to always be
applied on the Div operator, it thus encodes the assignment
of this glue code to all operands to which Div is assigned.
Finally, impBExpr uses the ArithExpr auxiliary sort in its def-
initions but does not assign any operators to this sort. Thus,
impBExpr is an extension on the arithmetic language.

Alternatively, we can define a refined version of impBExpr
that is independent from impArith as follows.
impBExpr− = Language

{ op_assign = [(e, ''BExpr) |
e <- [''BoolType, ''LeqType, ''NotType]]

, sub_sorts = [(''BExpr, s) |
s <- [''NotExpr, ''AndLeft, ''AndRight]]

...}

In this definition, we removed the mentioning of the auxil-
iary sort. As a result, the refinement of impBExpr is not an
extension. To get back to our original definition of impBExpr,

https://plancomps.github.io/CBS-beta/docs/Languages-beta/index.html

iCoLa: A Compositional Meta-language with Support for Incremental Language Development SLE ’22, December 06–07, 2022, Auckland, New Zealand

we can define a new language that glues impArith and the re-
fined version of impBExpr together. This glue language only
contains the sub-sort declaration that we removed, modeling
language unification.
impArith <> impBExpr− <> glueLanguage

where
glueLanguage = Language

{ op_assign = []
, sub_sorts = [(''ArithExpr, s)

| s <- [''LeqLeft, ''LeqRight]]
...}

Alternatively, owing to our languages being first-class
citizens in Haskell, we can define impBExpr as a function
with one parameter denoting the sort that can occur in less-
then-equal expressions.
impBExpr+ leqSort = Language

{ op_assign = [(e, ''BExpr) |
e <- [''BoolType, ''LeqType, ''NotType]]

, sub_sorts = [(''BExpr, s) |
s <- [''NotExpr, ''AndLeft, ''AndRight]]
++ [(leqSort, s) | s <- [''LeqLeft, ''LeqRight]]

...}

This makes the parameterized version of impBExpr config-
urable and removes the hard dependency on the auxiliary
sort while also removing the requirement of a glue language.
Instead, we can decide the correct auxiliary sort when com-
position occurs.

5.2 Reusing Imp to define SIMPLE and MiniJava
We can reuse the definition of Imp to define SIMPLE andMini-
Java, utilizing Imp in different ways. SIMPLE is a much more
elaborate language that almost fully subsumes Imp. Mini-
Java is less elaborate since it does not contain all constructs
present in Imp, but still shares a significant part. However,
the way Imp is defined does not fully correspond with both
SIMPLE and MiniJava, since the top-level of Imp is different
and Imp contains certain constructs not present in MiniJava.
To align Imp with these requirement we refine the language
to a language that aligns with both SIMPLE and MiniJava. A
refinement is an endofunction over languages implemented
directly as a Haskell function. This way, all components of
a language can be refined, closely resembling the idea of
restriction as presented by Erdweg.
To align Imp, we define two refinement functions, one,

denoted with 𝜓 , that removes the operators from the top-
level as defined by Imp and one, denoted with𝜙 , that removes
the operators from the less-than-equal operands, removing
the less-than-equal operator from the language.
𝜓 lang = lang { sub_sorts = removeTopLevels . sub_sorts $ lang}

where
removeTopLevels = filter $ not . (==''TopLevel) . snd

𝜙 lang = lang { op_assign = removeLeq . op_assign $ lang
, sub_sorts = removeLeqOps . sub_sorts $ lang }

where
removeLeq = filter $ not . (==''LeqType) . fst

Table 1. The rows indicate operators used during the evalu-
ation and the columns the constructed languages from the
collection. The indicates that the operator is used as is;

indicates that an operator is used with glue code; and
indicates that an operator is not used.

Imp MiniJava SIMPLE
Int + Addition
Substraction + Multiplication
Division
If + While
Variables
Ouput
Input
Classes
Arrays
Throw + Catch

removeLeqOps = filter $ not .
(flip elem [''LeqLeft, ''LeqRight]) . snd

For SIMPLE,𝜓 is enough to make Imp suitable to use in the
definition. In case of MiniJava, both 𝜓 and 𝜙 are needed,
thus the composition of these refinement functions is the
required refinement function for MiniJava.

Besides the required refinement, Imp makes a distinction
between two types of expressions: arithmetic expressions
and boolean expressions. Variables can only occur inside
arithmetic expressions and not in boolean expression. In the
definitions of SIMPLE and MiniJava this distinction is not
made. Nevertheless, because we make a distinction between
operators and sorts in our approach, these structure choices
do not prevent the usage of Imp when defining both SIMPLE
and MiniJava, because we can define a new auxiliary sort
and link both Imp sorts to this new sort and then distribute
the new sort over the required operands. This demonstrates
the flexibility of our approach and that existing language
structure choices do not restrict in which compositions a
language can be used.
Both SIMPLE and MiniJava also add new constructs that

are not present in Imp. Some of the constructs occur in both
SIMPLE and MiniJava. Table 1 highlights some of the lan-
guage constructs used and their presence in the languages.
This table is not extensive and we sometimes group opera-
tors together due to space limitations, since SIMPLE alone
already contains 40 language constructs. Nevertheless, it
demonstrates a selection of constructs that are often present
in multiple of the defined languages. This highlights the
reusability obtained via our approach.

While operators might occur in multiple languages, their
usage is not always identical. For example, in MiniJava, out-
put is always followed by a newline, which is not the case
in SIMPLE. Also, both languages check out-of-bounds array
access, hence the required glue code.

SLE ’22, December 06–07, 2022, Auckland, New Zealand Damian Frölich and L. Thomas van Binsbergen

5.3 Object language variability
MiniJava is interesting because variations of MiniJava exist
that have been introduced for teaching purposes.7 Flexibil-
ity regarding the constructs included in the language en-
able a teacher to adapt to student expertise. This flexibility
is naturally supported by our system since the (full) Mini-
Java language can be given as the composition of multiple
smaller language variants. This enables a teacher to exclude
or include languages to create new variants. Furthermore,
a teacher is not restricted to the existing core of MiniJava,
because with sort-constraints, a teacher can freely alter the
language to their needs. For instance, a teacher can remove
the object-oriented aspect of MiniJava and start with proce-
dural programming before introducing objects and classes.
Alternatively, a teacher can include the Exceptions from
SIMPLE to add exceptions to MiniJava.

Language variability is also useful when designing a pro-
gramming language. In the iCoLa-shell, different variants
of a language can be defined and tested with relative ease.
Multiple variants can exist side-by-side, making it easy to
compare and contrast variations and gather early feedback
to include in the design process. In Table 2, the outcome of
such a session is listed as a table. In this session, a fixed set of
operators is used to define a variety of languages. Language
definitions were defined in isolation or via composition. For
instance, lambda𝑐𝑏𝑛 is defined by composing the lambda lan-
guage with a language consisting (only) of glue-code that
inserts the semantics of call-by-name using thunks.
lambdaCBN = lambda <> Language
{glue_code = [(''Always, ''AppArg, 'thunk),

(''VarType, ''Always, 'force)]
...} where

thunk f = thunk_ [f]
force f = force_ [f]

In this definition, we assume that all variables are assigned
to thunked values. This is not always the case, e.g. in a pro-
cedural language with global variables. Type information
can be used to distinguish variables based on whether their
values are thunked. This, however, is not possible in our glue
code definitions because glue code is context-free. However,
it can be realized within the semantic domain of funcons,
as funcon terms are dynamically typed. The table shows an
overlap between different languages and the two forms of
variability in our approach: we can add new operators to
existing languages and add new languages using existing
operators, without modification of existing code.

6 Discussion
In iCoLa, some of the techniques discussed in section 2 are
combined as follows. The syntax and semantic functions of
operators are defined modularly using data types à la carte.

7https://courses.cs.washington.edu/courses/cse401/13wi/project/
MiniJava.html; http://teaching.up.edu/cs358/miniJava.pdf

The funcons of Funcons-beta are used to express the seman-
tics of all operators in the same semantic domain. This makes
it possible to define languages by selecting (top-level) opera-
tors from the set of all available operators. This is consistent
with the methodology of [44] and ensures object languages
in iCoLa are ‘sequential languages’ by definition. As such,
REPLs for the object languages are obtained for free. The
meta-language is sequential in itself, thereby supporting
incremental meta-programming in the iCoLa-shell. This is
achieved by defining operators in isolation using ‘sort con-
straints’ as explained in Section 3. The sort contraints are
enforced statically by applying (Template) Haskell in the im-
plementation of iCoLa as an EDSL. In this section we reflect
on further details of our approach.

6.1 iCoLa as an EDSL
The presented implementation is in the form of a Haskell
EDSL. The EDSL offers static guarantees such that every
operator in a language has a semantic function and sort con-
straints are respected. In addition, language designers have
the full power of Haskell available to themwhen defining and
manipulating languages. However, we are also restricted by
our choice of implementation. Because we utilize Template
Haskell, a compilation step is needed before a defined lan-
guage can be used, only one language can be generated per
module, and there is a stage restriction enforced by Template
Haskell. This requires us to implement the iCoLa-shell sepa-
rately instead of reusing the REPL provided by the Haskell
compiler (e.g. GHCi). Furthermore, we assume Haskell famil-
iarity from language designers, for example to understand
Haskell type errors when operators are incorrectly used.
In addition, operators, semantic functions, and language
definitions involve some boilerplate code. For example, the
introduction of type families for operators, the need for con-
straints on operator definitions, and occurrences of the K
constructor.
Some boilerplate code can be removed by using quasi-

quotation. With quasi-quotation, we could provide a small
layer of syntactic sugar that removes most of the boilerplate
code currently present in our approach. The concern regard-
ingHaskell type-errors can bemitigated by providing custom
type-errors or other strategies for type-error customization
in EDSLs [37].
Another alternative is an implementation with an exter-

nal DSL. This gives the possibility to provide syntax that is
much closer to the mathematical approach of section 3 and
also allows us to give more domain-specific error messages.
However, such an implementation is more complex and puts
a restriction on the semantic functions. Currently, our imple-
mentation is easily extended with new semantic functions;
and because semantic functions are implemented in Haskell,
the possibilities are endless. When providing an external
DSL, this flexibility is lost, requiring either a constraint on
the semantic functions or complicating the implementation

https://courses.cs.washington.edu/courses/cse401/13wi/project/MiniJava.html
https://courses.cs.washington.edu/courses/cse401/13wi/project/MiniJava.html
http://teaching.up.edu/cs358/miniJava.pdf

iCoLa: A Compositional Meta-language with Support for Incremental Language Development SLE ’22, December 06–07, 2022, Auckland, New Zealand

Table 2. Table demonstrating a view from a session in the iCoLa-shell, constructing several languages with a fixed-set of
operators. Columns indicate the operators used during the evaluation and the rows are the languages constructed with (some)
operators from the collection. The indicates that the operator is used as is; indicates that an operator is used with glue
code; and indicates that an operator is not used.

Var Abs App𝑐𝑏𝑣 Addition Int Return Call/cc If Throw Catch
lambda
arithmetic
exceptions
proc
lambda𝑐𝑏𝑛
functional
procedural
procedural + func-
tional

to support more complex semantic functions. Using an exter-
nal DSL also removes many of the benefits we currently have
by providing languages as first-class citizens inside Haskell.
Alternatively, a hybrid approach can be implemented that
provides a DSL layer on top that compiles down to Haskell
such that semantic functions and language refinement can
still be defined as Haskell functions. How these different im-
plementation techniques affect usability and expressiveness
is to be explored in future work.

6.2 Restrictions and Scalability
With the flexibility our approach provides, language def-
initions can become unwieldy where it is unclear where
operators are exactly assigned to, which operators are part
of the language, and how they are affected by glue code. In
our experience from our case study, the development is of-
ten done in layers, where prototyping is done at the current
layer and when done, the layer is fixed. This keeps modifi-
cations local and prototyping focused on specific areas. It is
important, however, that the first layer is well understood
before such a development process can be applied. In future
work, we want to explore tooling that can help in quickly
understanding the effects of new operator assignments and
language composition. For example, via the structure of the
language, a BNF-like grammar can be generated that shows
the structure in an uncluttered fashion. In addition, we envi-
sion tooling that highlights the effects of language composi-
tion and allows one to zoom in on specific operators and see
how they are affected by glue code. Furthermore, the algebra
used in our approach has no context which requires that
the translation must be done in a context independent man-
ner, deferring a lot of the work to the semantic domain, but
keeping operator implementations simple. In future work,
we would like to explore having additional algebras defined
as semantic functions, especially to express static semantics,
without losing the flexible compositional capabilities of our
approach.

6.3 Concrete syntax
In the presented framework, a LISP-style concrete syntax
definition is available for object languages automatically.
However, a language designer might want to define their
own concrete syntax. To support user-defined syntax, we
can extend operator definitions with a notion of concrete
syntax or extend language definitions to attach concrete syn-
tax to the chosen operators of the language. In both cases,
problems with ambiguity can arise when combining concrete
syntax definitions. Generalized parsing techniques, such as
Early parsing [10], GLR [41], and GLL [36], can be used to
accept ambiguous grammars. Handling the ambiguities in
a low-effort way is important as even the introduction of a
single operator into a language can result in ambiguity, ham-
pering rapid prototyping. When a language is finalized, the
grammar can be inspected and adapted to possibly remove
ambiguities.
An alternative approach is to mix user-defined parsers

and the generated parsers. This way, operators are not ex-
tended with a notion of concrete syntax. Instead, a language
designer develops a parser alongside the language definition
and when prototyping with new operators uses the gener-
ated parser for those operators. This way, the parser is incre-
mentally defined just like the language itself. However, this
approach requires an efficient way to connect user-defined
parser and generated parser and further integration to ensure
the language development process to occur fully inside the
iCoLa-shell. Nevertheless, in both cases the existing imple-
mentation of parser generation can be mostly reused, since
the generation of operand parsers is generic.
In future work, we will investigate approaches to incor-

porate user-defined concrete syntax into our current model,
by experimenting with the different options mentioned and
evaluating how these affect the interactive, reusable, and
compositional aspects of our approach.

SLE ’22, December 06–07, 2022, Auckland, New Zealand Damian Frölich and L. Thomas van Binsbergen

7 Related work
Developing languages via some form of composition is sup-
ported by a wide variety of language-development environ-
ments [13, 20, 40, 42, 46]. Erdweg et al. [12], performed a
systematic evaluation of existing environments and their
support for the different forms composition (extension and
unification). Out of the considered environments, only Jas-
tAdd [11], which is an environment for the construction
of Java like languages, supported unification. Nevertheless,
extension-unification is supported by most environments.

Lisa [29] is a full-fledged interactive environment for pro-
gramming language development based on attribute gram-
marswith support for incremental language development [30]
via multiple attribute grammar inheritance [28]. Compared
to our approach, the incremental focus is more linear and
distinction between operators and where operators are used
is not made.
Melange [9] is a meta-language involving meta-models

and aspect oriented programming. It uses aspects to im-
plement the semantics of languages, and supports both ex-
tension and unification. Our operator specialization closely
resembles the idea of aspects as seen in Melange. In contrast
to our approach, Melange makes no distinction between
operator semantics and operator specialization, and does
not make a distinction between operator definitions and
language definitions.

In Feature-oriented programming [1], a system is decom-
posed in the features it provides. This style of programming
aims to increase structure, reuse and variation by making
features user configurable such that a system can be devel-
oped by picking and configuring the correct features. Nev-
erlang [5] is a development environment modeled around
the idea of feature-oriented programming, where features
are implemented using an object-oriented approach.

Software product lines [7] is a development paradigm that
models the software development process as a product line,
where a system is constructed by selecting components from
a repository, somewhat resembling our idea of an operator
universe from the language point of view, adapting the com-
ponents to the use case, and integrating the components
together. Compared to feature-oriented programming, soft-
ware product lines focus on similarities between systems,
also known as family systems. This gives a high variability
where variants of systems can be quickly created. Feature-
oriented programming can be used to implement software
product lines, which is done by AiDE [22]. AiDE provides an
environment for language-development based on software
product lines by building an environment on top of Never-
lang [5]. Besides AiDE, there are several other environments
integrating software product lines in the context of language
development — also known as language product lines [27].

Focus on language families [24], a set of related languages,
is inherent in the language product lines style of develop-
ment. As a result, the variability of these systems is high
enabling the construction of a wide variety of languages in
an incremental manner. However, because the focus is on
language families, there is a restriction on the structure of
the different variations.
Solutions to the expression problem, such as finally tag-

less [4], object algebras [8], and, data types à la carte [39],
naturally lead to an extensible approach for operators and
can be used to implement languages in a modular fashion,
as demonstrated by several systems based on the solutions
to the expression problem [17, 18]. However, composition
and variability are not necessarily obtained. Nevertheless, it
would be interesting to see if these solutions to the expres-
sion problem can function as a compilation target, for which
we use data types à la carte now, in our implementation.

LANG-N-PLAY [6] is a proof-of-concept language intro-
ducing the idea of languages as first-class citizens. LANG-
N-PLAY is a statically typed functional language in which
languages are just expressions. Consequently, operators over
languages are defined as functions. In contrast to our ap-
proach, LANG-N-PLAY is a newly developed language and
not achieved via template programming. In addition, LANG-
N-PLAY is statically typed. Our approach is statically typed
as well, but via Template Haskell, which performs type-
checking in stages: the Template Haskell expression is not
type checked, but the resulting program is [38]. This requires
a translation between the two layers when interpreting type
errors.

8 Conclusion
This paper introduced iCoLa, a meta-language aimed at im-
proving the language design process through rapid proto-
typing with reusable components and incremental program-
ming. The iCoLa-shell enables fast prototyping by supporting
the simultaneous definition of multiple languages that can
be composed, unified, extended, restricted and tested within
a shared REPL session. In iCoLa, languages are first-class cit-
izens such that the users are given the full power of the host
language (Haskell) to define languages. Operators over lan-
guages can be defined (e.g. composition) and languages can
be parameterized, including by other languages (e.g. refine-
ment). By constructing several languages with our approach,
we have demonstrated to which extent our approach simpli-
fies the construction of new languages as well as variants of
existing languages.

The flexibility provided by iCoLamakes it difficult to track
the precise composition of a language when applied at (large)
scale and user-defined concrete syntax is currently not sup-
ported. Methods to improve iCoLa in these regards are to be
explored in future work.

iCoLa: A Compositional Meta-language with Support for Incremental Language Development SLE ’22, December 06–07, 2022, Auckland, New Zealand

References
[1] Sven Apel and Christian Kästner. 2009. An Overview of Feature-

Oriented Software Development. J. Object Technol. 8, 5 (2009), 49–84.
https://doi.org/10.5381/jot.2009.8.5.c5

[2] Andrew W. Appel and Jens Palsberg. 2002. Modern Compiler Imple-
mentation in Java, 2nd edition. Cambridge University Press.

[3] Patrick Bahr and Tom Hvitved. 2011. Compositional data types. In
Proceedings of the seventh ACM SIGPLAN workshop on Generic program-
ming, WGP@ICFP 2011, Tokyo, Japan, September 19-21, 2011, Jaakko
Järvi and Shin-Cheng Mu (Eds.). ACM, 83–94. https://doi.org/10.1145/
2036918.2036930

[4] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally
tagless, partially evaluated: Tagless staged interpreters for simpler
typed languages. J. Funct. Program. 19, 5 (2009), 509–543. https:
//doi.org/10.1017/S0956796809007205

[5] Walter Cazzola. 2012. Domain-Specific Languages in Few Steps - The
Neverlang Approach. In Software Composition - 11th International Con-
ference, SC@TOOLS 2012, Prague, Czech Republic, May 31 - June 1, 2012.
Proceedings (Lecture Notes in Computer Science, Vol. 7306), Thomas
Gschwind, Flavio De Paoli, Volker Gruhn, and Matthias Book (Eds.).
Springer, 162–177. https://doi.org/10.1007/978-3-642-30564-1_11

[6] Matteo Cimini. 2018. Languages as first-class citizens (vision paper).
In Proceedings of the 11th ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2018, Boston, MA, USA, November
05-06, 2018, David J. Pearce, Tanja Mayerhofer, and Friedrich Steimann
(Eds.). ACM, 65–69. https://doi.org/10.1145/3276604.3276983

[7] Paul Clements and Linda Northrop. 2002. Software product lines.
Addison-Wesley Boston.

[8] Bruno C. d. S. Oliveira and William R. Cook. 2012. Extensibility
for the Masses - Practical Extensibility with Object Algebras. In
ECOOP 2012 - Object-Oriented Programming - 26th European Con-
ference, Beijing, China, June 11-16, 2012. Proceedings (Lecture Notes
in Computer Science, Vol. 7313), James Noble (Ed.). Springer, 2–27.
https://doi.org/10.1007/978-3-642-31057-7_2

[9] Thomas Degueule, Benoît Combemale, Arnaud Blouin, Olivier Barais,
and Jean-Marc Jézéquel. 2015. Melange: a meta-language for mod-
ular and reusable development of DSLs. In Proceedings of the 2015
ACM SIGPLAN International Conference on Software Language Engi-
neering, SLE 2015, Pittsburgh, PA, USA, October 25-27, 2015, Richard F.
Paige, Davide Di Ruscio, and Markus Völter (Eds.). ACM, 25–36.
https://doi.org/10.1145/2814251.2814252

[10] Jay Earley. 1970. An Efficient Context-Free Parsing Algorithm. Com-
mun. ACM 13, 2 (1970), 94–102. https://doi.org/10.1145/362007.362035

[11] Torbjörn Ekman and Görel Hedin. 2007. The jastadd extensible java
compiler. In Proceedings of the 22nd Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada, Richard P.
Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr.
(Eds.). ACM, 1–18. https://doi.org/10.1145/1297027.1297029

[12] Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Rendel. 2012. Lan-
guage Composition Untangled. In Proceedings of the Twelfth Workshop
on Language Descriptions, Tools, and Applications (Tallinn, Estonia)
(LDTA ’12). ACM, Article 7, 8 pages. https://doi.org/10.1145/2427048.
2427055

[13] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Os-
termann. 2011. SugarJ: library-based syntactic language extensibility.
In Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA
2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011,
Cristina Videira Lopes and Kathleen Fisher (Eds.). ACM, 391–406.
https://doi.org/10.1145/2048066.2048099

[14] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël D. P. Konat, Pedro J. Molina, Martin

Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler, Ric-
cardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido
Wachsmuth, and Jimi van der Woning. 2013. The State of the Art
in Language Workbenches - Conclusions from the Language Work-
bench Challenge. In Software Language Engineering - 6th International
Conference, SLE 2013, Indianapolis, IN, USA, October 26-28, 2013. Pro-
ceedings (Lecture Notes in Computer Science, Vol. 8225), Martin Er-
wig, Richard F. Paige, and Eric Van Wyk (Eds.). Springer, 197–217.
https://doi.org/10.1007/978-3-319-02654-1_11

[15] Damian Frolich and L. Thomas van Binsbergen. 2021. A Generic
Back-End for Exploratory Programming. In Trends in Functional Pro-
gramming - 22nd International Symposium, TFP 2021, Virtual Event,
February 17-19, 2021, Revised Selected Papers (Lecture Notes in Computer
Science, Vol. 12834), Viktória Zsók and John Hughes (Eds.). Springer,
24–43. https://doi.org/10.1007/978-3-030-83978-9_2

[16] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. 1977.
Initial Algebra Semantics and Continuous Algebras. Journal of the
ACM 24, 1 (1977), 68–95. https://doi.org/10.1145/321992.321997

[17] Maria Gouseti, Chiel Peters, and Tijs van der Storm. 2014. Extensi-
ble language implementation with object algebras (short paper). In
Generative Programming: Concepts and Experiences, GPCE’14, Vasteras,
Sweden, September 15-16, 2014, Ulrik Pagh Schultz and Matthew Flatt
(Eds.). ACM, 25–28. https://doi.org/10.1145/2658761.2658765

[18] Pablo Inostroza and Tijs van der Storm. 2017. Modular interpreters
with implicit context propagation. Comput. Lang. Syst. Struct. 48 (2017),
39–67. https://doi.org/10.1016/j.cl.2016.08.001

[19] Patricia Johann and Neil Ghani. 2008. Foundations for structured
programming with GADTs. In Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2008, San Francisco, California, USA, January 7-12, 2008, George C.
Necula and Philip Wadler (Eds.). ACM, 297–308. https://doi.org/10.
1145/1328438.1328475

[20] Lennart C. L. Kats and Eelco Visser. 2010. The spoofax language work-
bench: rules for declarative specification of languages and IDEs. In
Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA, William R.
Cook, Siobhán Clarke, and Martin C. Rinard (Eds.). ACM, 444–463.
https://doi.org/10.1145/1869459.1869497

[21] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E.
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jes-
sica B. Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián
Avila, Safia Abdalla, Carol Willing, and Jupyter Development Team.
2016. Jupyter Notebooks - a publishing format for reproducible com-
putational workflows. In Positioning and Power in Academic Publishing:
Players, Agents and Agendas, 20th International Conference on Electronic
Publishing, Göttingen, Germany, June 7-9, 2016, Fernando Loizides and
Birgit Schmidt (Eds.). IOS Press, 87–90. https://doi.org/10.3233/978-1-
61499-649-1-87

[22] Thomas Kühn, Walter Cazzola, and Diego Mathias Olivares. 2015.
Choosy and picky: configuration of language product lines. In Pro-
ceedings of the 19th International Conference on Software Product Line,
SPLC 2015, Nashville, TN, USA, July 20-24, 2015, Douglas C. Schmidt
(Ed.). ACM, 71–80. https://doi.org/10.1145/2791060.2791092

[23] Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers
and Modular Interpreters. In 22nd Symposium on Principles of Pro-
gramming Languages. ACM, 333–343. https://doi.org/10.1145/199448.
199528

[24] Jörg Liebig, Rolf Daniel, and Sven Apel. 2013. Feature-oriented lan-
guage families: A case study. In Proceedings of the Seventh International
Workshop on Variability Modelling of Software-intensive Systems. 1–8.

[25] John McCarthy. 1978. History of LISP. In History of Programming
Languages, from the ACM SIGPLAN History of Programming Languages
Conference, June 1-3, 1978, Los Angeles, California, USA, Richard L.

https://doi.org/10.5381/jot.2009.8.5.c5
https://doi.org/10.1145/2036918.2036930
https://doi.org/10.1145/2036918.2036930
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1007/978-3-642-30564-1_11
https://doi.org/10.1145/3276604.3276983
https://doi.org/10.1007/978-3-642-31057-7_2
https://doi.org/10.1145/2814251.2814252
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1145/2427048.2427055
https://doi.org/10.1145/2427048.2427055
https://doi.org/10.1145/2048066.2048099
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1007/978-3-030-83978-9_2
https://doi.org/10.1145/321992.321997
https://doi.org/10.1145/2658761.2658765
https://doi.org/10.1016/j.cl.2016.08.001
https://doi.org/10.1145/1328438.1328475
https://doi.org/10.1145/1328438.1328475
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1145/2791060.2791092
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528

SLE ’22, December 06–07, 2022, Auckland, New Zealand Damian Frölich and L. Thomas van Binsbergen

Wexelblat (Ed.). Academic Press / ACM, 173–185. https://doi.org/10.
1145/800025.1198360

[26] Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. 1991. Functional
Programming with Bananas, Lenses, Envelopes and Barbed Wire. In
Functional Programming Languages and Computer Architecture, 5th
ACM Conference, Cambridge, MA, USA, August 26-30, 1991, Proceed-
ings (Lecture Notes in Computer Science, Vol. 523), John Hughes (Ed.).
Springer, 124–144. https://doi.org/10.1007/3540543961_7

[27] David Méndez-Acuña, José Angel Galindo, Thomas Degueule, Benoît
Combemale, and Benoit Baudry. 2016. Leveraging Software Product
Lines Engineering in the development of external DSLs: A system-
atic literature review. Comput. Lang. Syst. Struct. 46 (2016), 206–235.
https://doi.org/10.1016/j.cl.2016.09.004

[28] Marjan Mernik, Mitja Lenic, Enis Avdicausevic, and Viljem Zumer.
2000. Multiple Attribute Grammar Inheritance. Informatica (Slovenia)
24, 3 (2000).

[29] Marjan Mernik, Mitja Lenic, Enis Avdicausevic, and Viljem Zumer.
2002. LISA: An Interactive Environment for Programming Language
Development. In Compiler Construction, 11th International Conference,
CC 2002, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2002, Grenoble, France, April 8-12, 2002,
Proceedings (Lecture Notes in Computer Science, Vol. 2304), R. Nigel Hor-
spool (Ed.). Springer, 1–4. https://doi.org/10.1007/3-540-45937-5_1

[30] Marjan Mernik and Viljem Zumer. 2005. Incremental programming
language development. Comput. Lang. Syst. Struct. 31, 1 (2005), 1–16.
https://doi.org/10.1016/j.cl.2004.02.001

[31] Peter D. Mosses. 1990. Denotational Semantics. In Handbook of The-
oretical Computer Science, Volume B: Formal Models and Semantics,
Jan van Leeuwen (Ed.). Elsevier and MIT Press, 575–631. https:
//doi.org/10.1016/b978-0-444-88074-1.50016-0

[32] Peter D. Mosses. 2019. Software meta-language engineering and
CBS. Journal of Computer Languages 50 (2019), 39–48. https:
//doi.org/10.1016/j.jvlc.2018.11.003

[33] Peter D. Mosses, Neil Sculthorpe, and L. Thomas Van Binsbergen. 2021.
Funcons-Beta. Retrieved August 17, 2022 from https://plancomps.
github.io/CBS-beta/Funcons-beta/ Online GitHub repository.

[34] Grigore Rosu and Traian-Florin Serbanuta. 2010. An overview of the
K semantic framework. J. Log. Algebraic Methods Program. 79, 6 (2010),
397–434. https://doi.org/10.1016/j.jlap.2010.03.012

[35] Grigore Rosu and Traian-Florin Serbanuta. 2014. K Overview and
SIMPLE Case Study. Electron. Notes Theor. Comput. Sci. 304 (2014),
3–56. https://doi.org/10.1016/j.entcs.2014.05.002

[36] Elizabeth Scott and Adrian Johnstone. 2010. GLL Parsing. Electron.
Notes Theor. Comput. Sci. 253, 7 (2010), 177–189. https://doi.org/10.
1016/j.entcs.2010.08.041

[37] Alejandro Serrano. 2018. Type Error Customization for Embedded
Domain-Specific Languages. Ph. D. Dissertation. Utrecht University,
Netherlands. http://dspace.library.uu.nl/handle/1874/363523

[38] Tim Sheard and Simon L. Peyton Jones. 2002. Template meta-
programming for Haskell. ACM SIGPLAN Notices 37, 12 (2002), 60–75.
https://doi.org/10.1145/636517.636528

[39] Wouter Swierstra. 2008. Data types à la carte. J. Funct. Program. 18, 4
(2008), 423–436. https://doi.org/10.1017/S0956796808006758

[40] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew
Flatt, and Matthias Felleisen. 2011. Languages as libraries. In Pro-
ceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2011, San Jose, CA, USA, June
4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 132–141.
https://doi.org/10.1145/1993498.1993514

[41] Masaru Tomita. 1985. Efficient Parsing for Natural Language: A Fast
Algorithm for Practical Systems. Kluwer Academic Publishers.

[42] Laurence Tratt. 2008. Domain specific language implementation via
compile-time meta-programming. ACM Trans. Program. Lang. Syst. 30,
6 (2008), 31:1–31:40. https://doi.org/10.1145/1391956.1391958

[43] L. Thomas van Binsbergen, Peter D. Mosses, and Neil Sculthorpe. 2019.
Executable component-based semantics. J. Log. Algebraic Methods Pro-
gram. 103 (2019), 184–212. https://doi.org/10.1016/j.jlamp.2018.12.004

[44] L. Thomas van Binsbergen, Mauricio Verano Merino, Pierre Jean-
jean, Tijs van der Storm, Benoit Combemale, and Olivier Barais.
2020. A Principled Approach to REPL Interpreters. ACM, 84–100.
https://doi.org/10.1145/3426428.3426917

[45] Birthe van den Berg, Tom Schrijvers, Casper Bach Poulsen, and Nico-
las Wu. 2021. Latent Effects for Reusable Language Components. In
Programming Languages and Systems, Hakjoo Oh (Ed.). Springer Inter-
national Publishing, Cham, 182–201. https://doi.org/10.1007/978-3-
030-89051-3_11

[46] M Voelter and K Solomatov. 2010. Language modularization and com-
position with projectional language workbenches illustrated with MPS.
Software Language Engineering.

[47] Philip Wadler et al. 1998. The expression problem. Posted on the Java
Genericity mailing list (1998).

[48] Martin P. Ward. 1994. Language-Oriented Programming. Softw. Con-
cepts Tools 15, 4 (1994), 147–161.

https://doi.org/10.1145/800025.1198360
https://doi.org/10.1145/800025.1198360
https://doi.org/10.1007/3540543961_7
https://doi.org/10.1016/j.cl.2016.09.004
https://doi.org/10.1007/3-540-45937-5_1
https://doi.org/10.1016/j.cl.2004.02.001
https://doi.org/10.1016/b978-0-444-88074-1.50016-0
https://doi.org/10.1016/b978-0-444-88074-1.50016-0
https://doi.org/10.1016/j.jvlc.2018.11.003
https://doi.org/10.1016/j.jvlc.2018.11.003
https://plancomps.github.io/CBS-beta/Funcons-beta/
https://plancomps.github.io/CBS-beta/Funcons-beta/
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.entcs.2014.05.002
https://doi.org/10.1016/j.entcs.2010.08.041
https://doi.org/10.1016/j.entcs.2010.08.041
http://dspace.library.uu.nl/handle/1874/363523
https://doi.org/10.1145/636517.636528
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1145/1993498.1993514
https://doi.org/10.1145/1391956.1391958
https://doi.org/10.1016/j.jlamp.2018.12.004
https://doi.org/10.1145/3426428.3426917
https://doi.org/10.1007/978-3-030-89051-3_11
https://doi.org/10.1007/978-3-030-89051-3_11

	Abstract
	1 Introduction
	2 Background
	3 Compositional definitions
	3.1 Abstract syntax
	3.2 Compositional semantics
	3.3 Operator specialization
	3.4 Language definition
	3.5 Language composition

	4 Implementation
	4.1 Operators
	4.2 Semantic functions
	4.3 Glue code
	4.4 Language definition
	4.5 Parser generation and the iCoLa-shell

	5 Examples of incremental compositional language definitions
	5.1 The construction of Imp
	5.2 Reusing Imp to define SIMPLE and MiniJava
	5.3 Object language variability

	6 Discussion
	6.1 iCoLa as an EDSL
	6.2 Restrictions and Scalability
	6.3 Concrete syntax

	7 Related work
	8 Conclusion
	References

