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1 Introduce funcons

2 Discuss modularity in some instances of “Initial Algebra Semantics”

3 Discuss other pragmatic considerations

Direct implementation as sets and pure functions (denotational)

M-SOS, I-MSOS (operational semantics)

Funcon translation (component-based semantics)

Attribute grammars (syntax-directed translation)



PLanCompS project (2011-2015...)

• Component-based approach towards formal, dynamic semantics

Main contributions:

A library of highly reusable, fundamental constructs (funcons)

The meta-language CBS for defining component-based semantics1

• http://plancomps.org or https://plancomps.github.io

1Executable Component-Based Semantics. Van Binsbergen, Sculthorpe, Mosses. JLAMP 2019

http://plancomps.org
https://plancomps.github.io


What is the state of the funcon library?

Verified and available at https://plancomps.github.io/

Procedural: procedures, references, scoping, iteration

Functional: functions, bindings, datatypes, pattern matching

Object-oriented: objects, classes, inheritance

Abnormal control: exceptions, break/continue, delimited continuations

Unverified as of yet (prototype phase)

Concurrency: multi-threading

Logical programming: backtracking, unification

Meta-programming: AST conversions, staged evaluation2

2Funcons for Homogeneous Generative Meta-Programming. Van Binsbergen. GPCE 2018

https://plancomps.github.io/


Funcons pipeline - CBS

program ast fct semantics

parser translation interpreter

syntax equations funcon definitions

I-MSOSDenotationalBNF



while - Expressions

plus(e1, e2) = integer-add(e1, e2)

leq(e1, e2) = is-less-or-equal(e1, e2)

int(i) = i

bool(b) = b

ident(x) = assigned(bound(x))



while - Commands

seq(c1, c2) = accumulate(c1, c2)

print(e) = command(seq(print(to-string(e)),print(line-feed)))

assign(x , e) = else(command(assign(bound(x), e)),bind(x , alloc-init(values, e)))

while(e, c) = command(while(e,handle-thrown(effect(c),null)))

continue () = throw("continue")

command(e) = seq(effect(e),map-empty)



while - Programs

program(c) = initialise-binding(initialise-storing(finalise-throwing(c)))

We have seen:

an example of an algebra

a(n) (in)formal semantic specification

agile language engineering with funcons as funcons are executable
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Signature

A set S of sorts

A set of operations written f : (s1, . . . , sn)→ s0 with si ∈ S

Example

S = {commands, expressions,programs, ints,bools, ids}

print : (expressions)→ commands

assign : (ids, expressions)→ commands

leq : (expressions, expressions)→ bools

...

A signature captures the abstract syntax of a language



Signature

A set S of sorts

A set of operations written f : (s1, . . . , sn)→ s0 with si ∈ S

Example

S = {commands, expressions,programs, ints,bools, ids}

print : (expressions)→ commands

assign : (ids, expressions)→ commands

leq : (expressions, expressions)→ bools

...

A signature captures the abstract syntax of a language



Signature

A set S of sorts

A set of operations written f : (s1, . . . , sn)→ s0 with si ∈ S

Example

S = {commands, expressions,programs, ints,bools, ids}

print : (expressions)→ commands

assign : (ids, expressions)→ commands

leq : (expressions, expressions)→ bools

...

A signature captures the abstract syntax of a language



Algebra A for a given signature

A carrier set As for each sort s ∈ S

An evaluation function fA of type As1 × . . .× Asn → As0

for each f : (s1, . . . , sn)→ s0

Example

type Sem Cmds = Funcons -- carrier of commands is the set of funcon terms
type Sem Exprs = Funcons -- carrier of expressions is the set of funcon terms
type Sem Ids = String -- carrier of ids is the set of Haskell strings
...

sem assign :: Sem Ids → Sem Expr → Sem Command
...

An algebra is one semantics for the language; multiple can be defined
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How to connect concrete syntax to abstract syntax?

How to define the carriers and the evaluation functions?



How to connect concrete syntax to abstract syntax?

Syntax definition formalisms enable users to attach operations to productions

problem: There is often a significant gap between concrete and abstract syntax

possible solutions:

If sufficient, simply ignore keywords and separators

Introduce one or more intermediate syntaxes to bridge the gap

Apply generalised parsing technologies, shrinking the gap
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Package gll on Hackage:

Evaluation functions are applied in so-called “semantic actions”

Ignore the output of certain symbols in the right-hand side of productions

Uses generalised top-down (GLL) parsing under the hood

Might require the invocation of ambiguity reduction strategies



How to define the carrier sets and the evaluation functions?

problems:

1 Defining pure evaluation functions for operations with effects

solution: auxiliary semantic entities (carrier sets become functions)

2 Composing carrier sets when composing languages or language fragments

combine Sem Expr :: Env → Val with Sem Cmd :: Sto → Sto so that
Sem Cmd :: Env → Sto → (Val ,Sto)

solutions: object algebras? effect handlers? carrier gen, fixed entity classes

3 Defining modular, pure evaluation functions for operations with effects

solution: implicit propagation schemes for auxiliary semantic entities
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Different techniques vary wildly in how propagation schemes are defined/implemented:

MSOS: Every entity is an instance of a category C.
The composition operator of the category determines how values are propagated.
All entities together form a product category

I-MSOS: The formalism chooses certain MSOS categories and provides syntax to
indicate for each entity of which category it is an instance of (entity classes)

Monads/Monad transformers: Every entity is an instance of a monad.
The bind operator defines how its values are propagated.
All entities are composed by either defining a monolithic super-monad or by
composing monad-transformers

Utrecht University Attribute Grammars (UUAGs): Every entity is an
attribute. Missing attribute equations are generated according to built-in schemes

CBS & funcons implementation: I-MSOS + monolithic super-monad
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formalism entity classes
CBS & funcons contextual mutable output control
MSOS (categories) discrete preorder monoidal abrupt term. . . .
I-MSOS (2008) read-only updateable emittable
Haskell Monads reader state writer exception . . .
Attribute grammars inherited chained synthesized

Language aspects covered by CBS & funcons

Procedural: procedures, references, scoping, iteration

Functional: functions, bindings, datatypes, pattern matching

Object-oriented: objects, classes, inheritance

Abnormal control: exceptions, break/continue, delimited continuations

Concurrency: multi-threading

Logical programming: backtracking, unification

Meta-programming: AST conversions, staged evaluation
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To conclude, I am an old-fashioned guy:

Grammar-first

(Modular) Structural Operational Semantics, (Modular) Attribute Grammars

Answer to every question is a collection of pure, higher-order functions

(ideally with a strong static types)

But eager to learn new things: object algebras, meta-modelling with Ecore and Ale(x)
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Contextual - Contextual information only, no effects

For example: environments collecting bindings active only in certain scopes

x := 0; while x 6 10 do x := x + 1; print x done

seq(c1, c2) = accumulate(c1, c2)

assign(x , e) = else(command(assign(bound(x), e)),bind(x , alloc-init(values, e)))

command(e) = seq(effect(e),map-empty)

Contextual entity propagation

Contextual entities appear as parameters to evaluation functions

Automatically copied from ‘parent’ to ‘children’
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Mutable - Contextual information, may mutate

For example: mutable references in a store, fresh atom generation

x := 0; while x 6 10 do x := x + 1; print x done

seq(c1, c2) = accumulate(c1, c2)

assign(x , e) = else(command(assign(bound(x), e)),bind(x , alloc-init(values, e)))

command(e) = seq(effect(e),map-empty)

Mutable entity propagation

Mutable entities appear as parameters and results

Deterministic semantics require a linear (evaluation) order over operands

Automatically copied in ‘around-the-clock’ fashion, determined by linear order



Output - Accumulating effects only

For example: printed values, reporting errors/warnings in a static analysis

print(e) = command(seq(print(to-string(e)),print(line-feed)))

Output entity propagation

Output entities appear as results only

Output needs to form a monoid with associative ⊗ and identity element

Deterministic semantics require a linear (evaluation) order over operands
(unless ⊗ commutative)
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Control - Halting effects only, maybe “handled” by context

For example: pattern match failure, exceptions, continue/break/return statements

x := 0; while x 6 10 do x := x + 1; continue ; x := x + 1; print x done

while(e, c) = command(while(e,handle-thrown(effect(c),null)))

continue () = throw("continue")

Control entity propagation

Control entities are optional values that appear as results only

The presence of a control entity halts evaluation,

The ‘closest’ handler-operator will remove the entity and invoke its handler

Deterministic semantics require linear order over operands
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plus val e1.val + e2.val

e1 val e2 val

plus(e1, e2) = e1() + e2()



Inherited entities

env plus val e1.val + e2.val

env e1 val env e2 val

plus(e1, e2)(ρ) = e1(ρ) + e2(ρ)

Inherited entity propagation

Inherited entities appear as parameters to evaluation functions

Values are copied from ‘parent’ to ‘children’ (occurrence of operation to operands)

seq(c1, c2)(ρ) = c2(ρ · ρ′)
where ρ′ = c1(ρ)



Mutable entities

sto plus val sto

sto e1 val sto sto e2 val sto

plus(e1, e2)(σ0) = 〈v1 + v2, σ2〉
where 〈v1, σ1〉 = e1(σ0)

and 〈v2, σ2〉 = e2(σ1)

Mutable entity propagation

Mutable entities appear as parameters and results

Deterministic semantics require a linear order over operands

Values are copied in ‘counter-clockwise’ fashion, determined by linear order



Mutable entities

sto plus val sto

sto e1 val sto sto e2 val sto

plus(e1, e2)(σ0) = 〈v1 + v2, σ2〉
where 〈v1, σ1〉 = e1(σ0)

and 〈v2, σ2〉 = e2(σ1)

assign(x , e)(ρ, σ) =

{
〈{x 7→ r}, σ[r 7→ v ]〉 ⊥ = ρ(x), r fresh in σ

〈∅, σ[r 7→ v ]〉 r = ρ(x)

where v = e(ρ, σ)



Output entities

plus val out e1.out ⊗ e2.out

e1 val out e2 val out

plus(e1, e2) = 〈v1 + v2, α⊗ β〉
where 〈v1, α〉 = e1()

and 〈v2, β〉 = e2()

Output entity propagation

Output entities appear as results only

Output needs to form a monoid with associative ⊗ and identity element

Deterministic semantics require a linear order over operands
(unless ⊗ commutative)


