
REPL-first Exploratory Programming
First conclusions and follow-up questions

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
ltvanbinsbergen@acm.org

March 10, 2021

Evaluation approach

Approach

• Command-line interface for Funcons-beta

• Command-line interface, web-interface, and actor-oriented interface for eFLINT

Evaluation approach

Approach

• Command-line interface for Funcons-beta

• Command-line interface, web-interface, and actor-oriented interface for eFLINT

Figure: Funcons-beta example involving output, binding and storing

Evaluation approach

Approach

• Command-line interface for Funcons-beta

• Command-line interface, web-interface, and actor-oriented interface for eFLINT

Questions
• Advantages and disadvantages of backtracking and/or/nor sharing?

• What functionality is needed of the exploring interpreter to support the various interfaces?

• Is the formal model of ONWARD2020 sufficient? (i.e. def. of languages and algorithm)

Invariants
• Retaining the genericity of the back-end

• Back-end retains canonical exploratory state

• Avoiding code-duplication in the implementation

Single-Trace, Single-Head (STSH) exploration

• Stack-like behaviour: destructive backtracking, no sharing

• Current node (dashed square) always top of stack

•

•

•

◦

p2

p3

p1

•

◦

p4

p5

Figure: Trace of r3

r0 : γ0

r1 : γ1

p1

r2 : γ2

r3 : γ3

p2

p3

r1 : γ1

p1

r4 : γ4

r5 : γ3

p4

p5

Figure: Execution graph after execution p1...p3

and
reverting to r1 and executing p4, p5

Single-Trace, Single-Head (STSH) exploration

• Stack-like behaviour: destructive backtracking, no sharing

• Current node (dashed square) always top of stack

•

◦

•

◦

p2

p3

p1

•

◦

p4

p5

Figure: Trace of r1

r0 : γ0

r1 : γ1

p1

r4 : γ4

r5 : γ3

p4

p5

r1 : γ1

p1

r2 : γ2

r3 : γ3

p2

p3

Figure: Execution graph after execution p1...p3 and
reverting to r1

and executing p4, p5

Single-Trace, Single-Head (STSH) exploration

• Stack-like behaviour: destructive backtracking, no sharing

• Current node (dashed square) always top of stack

•

•

•

◦

p2

p3

p1

•

◦

p4

p5

Figure: Trace of r5

r0 : γ0

r1 : γ1

p1

r4 : γ4

r5 : γ3

p4

p5

r2 : γ2

r3 : γ3

p2

p3

Figure: Execution graph after execution p1...p3 and
reverting to r1 and executing p4, p5

Single-Trace, Multi-Head (STMH) exploration

• Tree-traversal: non-destructive reverting, no sharing

• Multiple paths explored simultaneously

•

◦
p1

•

•

•

◦

p1

p4

p5

Figure: Trace of r1

r0 : γ0

r1 : γ1

p1

r2 : γ2

r3 : γ3

p2

p3

r4 : γ4

r5 : γ3

p4

p5

Figure: Execution graph after execution p1...p3 and
reverting to r1

and executing p4, p5

Single-Trace, Multi-Head (STMH) exploration

• Tree-traversal: non-destructive reverting, no sharing

• Multiple paths explored simultaneously

•

•

•

◦

p1

p4

p5

Figure: Trace of r5

r0 : γ0

r1 : γ1

p1

r2 : γ2

r3 : γ3

p2

p3

r4 : γ4

r5 : γ3

p4

p5

Figure: Execution graph after execution p1...p3 and
reverting to r1 and executing p4, p5

Multi-Trace, Multi-Head (MTMH) exploration

• Graph-traversal: non-destructive reverting, with sharing

• Multiple paths explored, multiple traces on current node

•

•

•

◦

p1

p2

p3

•

•

•

◦

p1

p4

p5

Figure: Traces of r3

r0 : γ0

r1 : γ1

p1

r2 : γ2

r3 : γ3

p2

p3

r4 : γ4

p4

p5

Figure: Execution graph after execution p1...p3 and
reverting to r1 and executing p4, p5

Questions
• Advantages and disadvantages of backtracking and/or/nor sharing?

• What functionality is needed of the exploring interpreter to support the various interfaces?

• Is the formal model of ONWARD2020 sufficient? (i.e. def. of languages and algorithm)

Discussion on destructive backtracking

Non-destructive reverting is needed for ‘true’ exploratory programming (i.e. Multi-Head)

r0 : γ0

r1 : γ1

p1

r2 : γ2

p2

r3 : γ3

p3

However, certain applications can use destructive backtracking to save time and space, e.g.

• Time: batch testing many tests with a common (costly) prefix (e.g. interpretation in server mode)

• Space: simulations performed with eFLINT normative actors

Decision can easily be based on per application or per revert basis

Discussion on destructive backtracking

Non-destructive reverting is needed for ‘true’ exploratory programming (i.e. Multi-Head)

r0 : γ0

r1 : γ1

p1

r2 : γ2

p2

r3 : γ3

p3

However, certain applications can use destructive backtracking to save time and space, e.g.

• Time: batch testing many tests with a common (costly) prefix (e.g. interpretation in server mode)

• Space: simulations performed with eFLINT normative actors

Decision can easily be based on per application or per revert basis

Discussion on destructive backtracking

Non-destructive reverting is needed for ‘true’ exploratory programming (i.e. Multi-Head)

r0 : γ0

r1 : γ1

p1

r2 : γ2

p2

r3 : γ3

p3

However, certain applications can use destructive backtracking to save time and space, e.g.

• Time: batch testing many tests with a common (costly) prefix (e.g. interpretation in server mode)

• Space: simulations performed with eFLINT normative actors

Decision can easily be based on per application or per revert basis

Potential advantages of sharing (1)

Detecting cycles and convergence. Is this useful in exploratory programming?

r0 : γ0

r1 : γ1

p1

r2 : γ2

r3 : γ3

p2

p3

r4 : γ4

p4

p5

Figure: Convergence

r0 : γ0

r1 : γ1

p1

r2 : γ2

r3 : γ3

p2

p3

p4

Figure: Cycle

What notion of equality to use to detect sharing? structural equality?

Potential advantages of sharing (1)

Detecting cycles and convergence. Is this useful in exploratory programming?

r0 : γ0

r1 : γ1

p1

r2 : γ2

r3 : γ3

p2

p3

r4 : γ4

p4

p5

Figure: Convergence

r0 : γ0

r1 : γ1

p1

r2 : γ2

r3 : γ3

p2

p3

p4

Figure: Cycle

What notion of equality to use to detect sharing? structural equality?

Potential advantages of sharing (2)

Detecting repeated computation before execution, e.g. avoiding p5 ≡ p2

r0 : γ0

r1 : γ1

p1

r2 : γ2

r3 : γ3

p2

p3

p4

p5

Figure: If p5 ≡ p2, then executing p5 in r1 can be skipped

Requires detecting equivalence to be effective, e.g. via normalisation

Disadvantages of sharing (1)

Ambiguity of revert, e.g. what is the trace of r3? i.e. two ‘histories’ in r3

•

•

•

◦

p1

p2

p3

•

•

•

◦

p1

p4

p5

Figure: Traces of r3.

r0 : γ0

r1 : γ1

p1

r2 : γ2

r3 : γ3

p2

p3

r4 : γ4

p4

p5

r5 : γ5

p6

Possible solutions: keep track of actions, order incoming edges, or clickable traces

Disadvantages of sharing (1)

Ambiguity of revert, e.g. what is the trace of r3? i.e. two ‘histories’ in r3

•

•

•

◦

p1

p2

p3

•

•

•

◦

p1

p4

p5

Figure: Traces of r3.

r0 : γ0

r1 : γ1

p1

r2 : γ2

r3 : γ3

p2

p3

r4 : γ4

p4

p5

r5 : γ5

p6

Another complication: what edges/paths to remove when reverting to r1?

Disadvantages of sharing (2)

• Multiples traces per node may not align with programmer’s mental model

• Infinitely many traces (generated) when there is a cycle

• Possible ambiguity when reverting, i.e. when given reference or configuration

• Advantages may be marginal; this requires further, practical studies

Discussion on output – simulated I/O

In the formal model the definitional interpreter is pure:

interpreter : program × config → config

This then require the use of ‘simulated’ input and output (I/O) captured inside configurations

[] [1]

print(1)

[1, 2]

print(2)

[1, 2, 3]

print(3)

Figure: Example of simulated output

Problem: every printed value gives rise to a new ‘execution phase’ with no possibility to reach
configurations of earlier phases through program execution (only through reverts)

Discussion on output – real I/O

Use an impure function instead (e.g. using Haskell’s IO monad or arbitrary monad m):

interpreter : program × config → IO config

interpreter : program × config → m config

r1 r2

print(1)

r3

print(2)

r4

print(3)

!1 !2 !3

Figure: Real output, without sharing

r1print(1)

print(2)

print(3)

!1 !2 !3

Figure: Real output, with sharing

With an arbitrary monad m: choose which effects to consider side-effects
Problem: monad (e.g. real input) determines soundness of the graph (e.g. input changes!)

Real I/O – Funcons-beta example

Figure: Funcons-beta example involving output, binding and storing

Figure: Funcons-beta example involving input, output, binding and storing

Discussion on output – explicit, simulated output

Pure definitional interpreter with explicit output in its result
Label edges in the execution graph also with program output (enables refreshing)

interpreter : program × config → config × output

r1 r2

〈print(1), 1〉

r3

〈print(2), 2〉

r4

〈print(3), 3〉

Figure: Explicit output, without sharing

r1〈print(1), 1〉

〈print(2), 2〉

〈print(3), 3〉

Figure: Explicit output, with sharing

How to display traces with output but no other effects?

Conclusions

Multiple variants of exploratory programming are possible, each with possible use-cases.

Further studies are required to investigate the value of sharing.

Several extensions/additions to formal model:
• References instead of configurations in nodes
• Extended definitional interpreters with output component
• Variants of display: last edge, path(s) from root to current, ...

The following combination works for all tested applications (Funcons-beta and eFLINT):
• Sharing disabled
• Destructive backtracking / non-destructive revert on per application basis in eFLINT:

• Destructive backtracking: batch testing, scenario web-interface, and normative actors
• Non-destructive reverting: command-line REPL and exploratory web-interface

• Real output or simulated (explicit) output on per application basis in eFLINT:
• Real output and simulated output (reproducability): command-line REPL
• Simulated output: web-interfaces and normative actors

Conclusions

Multiple variants of exploratory programming are possible, each with possible use-cases.

Further studies are required to investigate the value of sharing.

Several extensions/additions to formal model:
• References instead of configurations in nodes
• Extended definitional interpreters with output component
• Variants of display: last edge, path(s) from root to current, ...

The following combination works for all tested applications (Funcons-beta and eFLINT):
• Sharing disabled
• Destructive backtracking / non-destructive revert on per application basis in eFLINT:

• Destructive backtracking: batch testing, scenario web-interface, and normative actors
• Non-destructive reverting: command-line REPL and exploratory web-interface

• Real output or simulated (explicit) output on per application basis in eFLINT:
• Real output and simulated output (reproducability): command-line REPL
• Simulated output: web-interfaces and normative actors

Conclusions

Multiple variants of exploratory programming are possible, each with possible use-cases.

Further studies are required to investigate the value of sharing.

Several extensions/additions to formal model:
• References instead of configurations in nodes
• Extended definitional interpreters with output component
• Variants of display: last edge, path(s) from root to current, ...

The following combination works for all tested applications (Funcons-beta and eFLINT):
• Sharing disabled
• Destructive backtracking / non-destructive revert on per application basis in eFLINT:

• Destructive backtracking: batch testing, scenario web-interface, and normative actors
• Non-destructive reverting: command-line REPL and exploratory web-interface

• Real output or simulated (explicit) output on per application basis in eFLINT:
• Real output and simulated output (reproducability): command-line REPL
• Simulated output: web-interfaces and normative actors

Conclusions

Multiple variants of exploratory programming are possible, each with possible use-cases.

Further studies are required to investigate the value of sharing.

Several extensions/additions to formal model:
• References instead of configurations in nodes
• Extended definitional interpreters with output component
• Variants of display: last edge, path(s) from root to current, ...

The following combination works for all tested applications (Funcons-beta and eFLINT):

• Sharing disabled
• Destructive backtracking / non-destructive revert on per application basis in eFLINT:

• Destructive backtracking: batch testing, scenario web-interface, and normative actors
• Non-destructive reverting: command-line REPL and exploratory web-interface

• Real output or simulated (explicit) output on per application basis in eFLINT:
• Real output and simulated output (reproducability): command-line REPL
• Simulated output: web-interfaces and normative actors

Conclusions

Multiple variants of exploratory programming are possible, each with possible use-cases.

Further studies are required to investigate the value of sharing.

Several extensions/additions to formal model:
• References instead of configurations in nodes
• Extended definitional interpreters with output component
• Variants of display: last edge, path(s) from root to current, ...

The following combination works for all tested applications (Funcons-beta and eFLINT):
• Sharing disabled

• Destructive backtracking / non-destructive revert on per application basis in eFLINT:
• Destructive backtracking: batch testing, scenario web-interface, and normative actors
• Non-destructive reverting: command-line REPL and exploratory web-interface

• Real output or simulated (explicit) output on per application basis in eFLINT:
• Real output and simulated output (reproducability): command-line REPL
• Simulated output: web-interfaces and normative actors

Conclusions

Multiple variants of exploratory programming are possible, each with possible use-cases.

Further studies are required to investigate the value of sharing.

Several extensions/additions to formal model:
• References instead of configurations in nodes
• Extended definitional interpreters with output component
• Variants of display: last edge, path(s) from root to current, ...

The following combination works for all tested applications (Funcons-beta and eFLINT):
• Sharing disabled
• Destructive backtracking / non-destructive revert on per application basis in eFLINT:

• Destructive backtracking: batch testing, scenario web-interface, and normative actors
• Non-destructive reverting: command-line REPL and exploratory web-interface

• Real output or simulated (explicit) output on per application basis in eFLINT:
• Real output and simulated output (reproducability): command-line REPL
• Simulated output: web-interfaces and normative actors

Conclusions

Multiple variants of exploratory programming are possible, each with possible use-cases.

Further studies are required to investigate the value of sharing.

Several extensions/additions to formal model:
• References instead of configurations in nodes
• Extended definitional interpreters with output component
• Variants of display: last edge, path(s) from root to current, ...

The following combination works for all tested applications (Funcons-beta and eFLINT):
• Sharing disabled
• Destructive backtracking / non-destructive revert on per application basis in eFLINT:

• Destructive backtracking: batch testing, scenario web-interface, and normative actors
• Non-destructive reverting: command-line REPL and exploratory web-interface

• Real output or simulated (explicit) output on per application basis in eFLINT:
• Real output and simulated output (reproducability): command-line REPL
• Simulated output: web-interfaces and normative actors

Open questions

• Are there applications to Multi-Trace Single Head (MTSH, not discussed here)?

• Version control systems as a form of (STMH) exploratory programming.
Can we use the formal model to describe this kind of exploratory programming?

• Is it practical to try detect and prevent repeated computations when sharing is enabled?

Open questions

• Are there applications to Multi-Trace Single Head (MTSH, not discussed here)?

• Version control systems as a form of (STMH) exploratory programming.
Can we use the formal model to describe this kind of exploratory programming?

• Is it practical to try detect and prevent repeated computations when sharing is enabled?

Open questions

• Are there applications to Multi-Trace Single Head (MTSH, not discussed here)?

• Version control systems as a form of (STMH) exploratory programming.
Can we use the formal model to describe this kind of exploratory programming?

• Is it practical to try detect and prevent repeated computations when sharing is enabled?

Future work

• What generic interface components can we develop on top of the different variants?

• Is there a role for detecting convergence and cycles through sharing?

• How to display (parts of) the execution graph
(such as configurations/nodes, programs/edges, traces, etc.)?

Investigate the human-computer interaction aspect of REPL-first
exploratory programming, starting with Single-Trace, Multi-Head (STMH)

Future work

• What generic interface components can we develop on top of the different variants?

• Is there a role for detecting convergence and cycles through sharing?

• How to display (parts of) the execution graph
(such as configurations/nodes, programs/edges, traces, etc.)?

Investigate the human-computer interaction aspect of REPL-first
exploratory programming, starting with Single-Trace, Multi-Head (STMH)

Future work

• What generic interface components can we develop on top of the different variants?

• Is there a role for detecting convergence and cycles through sharing?

• How to display (parts of) the execution graph
(such as configurations/nodes, programs/edges, traces, etc.)?

Investigate the human-computer interaction aspect of REPL-first
exploratory programming, starting with Single-Trace, Multi-Head (STMH)

REPL-first Exploratory Programming
First conclusions and follow-up questions

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
ltvanbinsbergen@acm.org

March 10, 2021

