
REPL-first languages

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
ltvanbinsbergen@acm.org

March 10, 2021



Deriving REPLs and Notebooks for DSLs

Figure: SLE2019

Figure: Art, Science, and Engineering of Programming



Deriving REPL/Notebook – commonalities

• READ: Identify entry points, i.e. the alternatives in syntactic root

• EVAL: Connect entry points with evaluation function in DSL interpreter
• PRINT: Specify function to convert evaluation result to string
• LOOP:

How does one execution
affect the next?



Deriving REPL/Notebook – commonalities

• READ: Identify entry points, i.e. the alternatives in syntactic root
• EVAL: Connect entry points with evaluation function in DSL interpreter

• PRINT: Specify function to convert evaluation result to string
• LOOP:

How does one execution
affect the next?



Deriving REPL/Notebook – commonalities

• READ: Identify entry points, i.e. the alternatives in syntactic root
• EVAL: Connect entry points with evaluation function in DSL interpreter
• PRINT: Specify function to convert evaluation result to string

• LOOP:

How does one execution
affect the next?



Deriving REPL/Notebook – commonalities

• READ: Identify entry points, i.e. the alternatives in syntactic root
• EVAL: Connect entry points with evaluation function in DSL interpreter
• PRINT: Specify function to convert evaluation result to string
• LOOP:

How does one execution
affect the next?



Deriving REPL/Notebook – commonalities

• READ: Identify entry points, i.e. the alternatives in syntactic root
• EVAL: Connect entry points with evaluation function in DSL interpreter
• PRINT: Specify function to convert evaluation result to string
• LOOP:

How does one execution
affect the next?



Formal model based on structural operational semantics

A language L is a structure 〈P, Γ, γ0, I 〉 with:

P a set of programs,

Γ a set of configurations (containing semantic entities, attributes, algebraic effects, etc..),

γ0 an initial configuration with γ0 ∈ Γ and

I a definitional interpreter assigning to each program p ∈ P a function Ip : Γ→ Γ.

interpreter : program × config → config

Sufficiently general to capture at least all (deterministic) languages that can have their
semantics expressed as a transition function (e.g. using small-step or big-step semantics)

Note that the interpreter can be applied repeatedly, i.e. that effects can be composed



Formal model based on structural operational semantics

A language L is a structure 〈P, Γ, γ0, I 〉 with:

P a set of programs,

Γ a set of configurations (containing semantic entities, attributes, algebraic effects, etc..),

γ0 an initial configuration with γ0 ∈ Γ and

I a definitional interpreter assigning to each program p ∈ P a function Ip : Γ→ Γ.

interpreter : program × config → config

Sufficiently general to capture at least all (deterministic) languages that can have their
semantics expressed as a transition function (e.g. using small-step or big-step semantics)

Note that the interpreter can be applied repeatedly, i.e. that effects can be composed



Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which p1; p2 is a (syntactically) valid program iff p1
and p2 are valid programs and iff p1; p2 is equivalent to ‘doing’ p1 and then p2

Jp1; p2K = Jp2K ◦ Jp1K

Formally

A language 〈P, Γ, γ0, I 〉 is sequential if there is an operator ⊗ such that for every p1, p2 ∈ P
and γ ∈ Γ it holds that p1 ⊗ p2 ∈ P and that Ip1⊗p2(γ) = (Ip2 ◦ Ip1)(γ)



Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which p1; p2 is a (syntactically) valid program iff p1
and p2 are valid programs and iff p1; p2 is equivalent to ‘doing’ p1 and then p2

Jp1; p2K = Jp2K ◦ Jp1K

Formally

A language 〈P, Γ, γ0, I 〉 is sequential if there is an operator ⊗ such that for every p1, p2 ∈ P
and γ ∈ Γ it holds that p1 ⊗ p2 ∈ P and that Ip1⊗p2(γ) = (Ip2 ◦ Ip1)(γ)



Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which p1; p2 is a (syntactically) valid program iff p1
and p2 are valid programs and iff p1; p2 is equivalent to ‘doing’ p1 and then p2

Jp1; p2K = Jp2K ◦ Jp1K

Formally

A language 〈P, Γ, γ0, I 〉 is sequential if there is an operator ⊗ such that for every p1, p2 ∈ P
and γ ∈ Γ it holds that p1 ⊗ p2 ∈ P and that Ip1⊗p2(γ) = (Ip2 ◦ Ip1)(γ)



Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which p1; p2 is a (syntactically) valid program iff p1
and p2 are valid programs and iff p1; p2 is equivalent to ‘doing’ p1 and then p2

Jp1; p2K = Jp2K ◦ Jp1K

Formally

A language 〈P, Γ, γ0, I 〉 is sequential if there is an operator ⊗ such that for every p1, p2 ∈ P
and γ ∈ Γ it holds that p1 ⊗ p2 ∈ P and that Ip1⊗p2(γ) = (Ip2 ◦ Ip1)(γ)



Idea..! REPLization

Distinguish between REPL language and base language (e.g. JShell vs Java)

Replization is: extending a base language to a sequential variant

Figure: Onward!2020



Idea..! REPLization

Distinguish between REPL language and base language (e.g. JShell vs Java)
Replization is: extending a base language to a sequential variant

Figure: Onward!2020



Idea..! REPLization

Distinguish between REPL language and base language (e.g. JShell vs Java)
Replization is: extending a base language to a sequential variant

Figure: Onward!2020



REPLization in Onward!2020

Distinguish between REPL language and base language (e.g. JShell vs Java)
Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)

2. Implement definitional interpreter by choosing Γ and in terms of base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

Jp1 ⊗ p2K = Jp2K ◦ Jp1K

• The effect of one phrase on the next is determined by its modifications to γ ∈ Γ



REPLization in Onward!2020

Distinguish between REPL language and base language (e.g. JShell vs Java)
Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)

2. Implement definitional interpreter by choosing Γ and in terms of base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

Jp1 ⊗ p2K = Jp2K ◦ Jp1K

• The effect of one phrase on the next is determined by its modifications to γ ∈ Γ



REPLization in Onward!2020

Distinguish between REPL language and base language (e.g. JShell vs Java)
Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)

2. Implement definitional interpreter by choosing Γ and in terms of base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

Jp1 ⊗ p2K = Jp2K ◦ Jp1K

• The effect of one phrase on the next is determined by its modifications to γ ∈ Γ



REPLization in Onward!2020

Distinguish between REPL language and base language (e.g. JShell vs Java)
Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)

2. Implement definitional interpreter by choosing Γ and in terms of base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

Jp1 ⊗ p2K = Jp2K ◦ Jp1K

• The effect of one phrase on the next is determined by its modifications to γ ∈ Γ



REPLization in Onward!2020

Distinguish between REPL language and base language (e.g. JShell vs Java)
Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)

2. Implement definitional interpreter by choosing Γ and in terms of base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

Jp1 ⊗ p2K = Jp2K ◦ Jp1K

• The effect of one phrase on the next is determined by its modifications to γ ∈ Γ



Onward!2020 (feature model)



Onward!2020 (feature table)



Onward!2020 (MiniJava case study)

Figure: Interpreter for extended MiniJava



Onward!2020 (QL case study)

Figure: QL form

Figure: Rendering



Onward!2020 (eFLINT case study)

Figure: eFLINT command-line REPL

Figure: eFLINT web-interface



Idea..!

REPL-first languages

REPL-first is:

Designing and implementing your language as a sequential language from the get-go

Hypothesis

The iterative execution of the definitional interpreter of a sequential language is the essential
building block of all language services related to interpretation

• Command-line REPLs, notebooks, and servers (Onward!2020)
• Exploring interpreter as a bookkeeping device on top of definitional interpreter

• Enables generic back-end for exploratory programming (TFP2021)
• Back-in-time (omnisicient) debugging

• Delta-operations as phrases to support live programming

• Fluid, bidirectional moves between GUI-actions and code for GUI-interfaces1



Idea..! REPL-first languages

REPL-first is:

Designing and implementing your language as a sequential language from the get-go

Hypothesis

The iterative execution of the definitional interpreter of a sequential language is the essential
building block of all language services related to interpretation

• Command-line REPLs, notebooks, and servers (Onward!2020)
• Exploring interpreter as a bookkeeping device on top of definitional interpreter

• Enables generic back-end for exploratory programming (TFP2021)
• Back-in-time (omnisicient) debugging

• Delta-operations as phrases to support live programming

• Fluid, bidirectional moves between GUI-actions and code for GUI-interfaces1



Idea..! REPL-first languages

REPL-first is:

Designing and implementing your language as a sequential language from the get-go

Hypothesis

The iterative execution of the definitional interpreter of a sequential language is the essential
building block of all language services related to interpretation

• Command-line REPLs, notebooks, and servers (Onward!2020)

• Exploring interpreter as a bookkeeping device on top of definitional interpreter
• Enables generic back-end for exploratory programming (TFP2021)
• Back-in-time (omnisicient) debugging

• Delta-operations as phrases to support live programming

• Fluid, bidirectional moves between GUI-actions and code for GUI-interfaces1



Idea..! REPL-first languages

REPL-first is:

Designing and implementing your language as a sequential language from the get-go

Hypothesis

The iterative execution of the definitional interpreter of a sequential language is the essential
building block of all language services related to interpretation

• Command-line REPLs, notebooks, and servers (Onward!2020)
• Exploring interpreter as a bookkeeping device on top of definitional interpreter

• Enables generic back-end for exploratory programming (TFP2021)
• Back-in-time (omnisicient) debugging

• Delta-operations as phrases to support live programming

• Fluid, bidirectional moves between GUI-actions and code for GUI-interfaces1



Idea..! REPL-first languages

REPL-first is:

Designing and implementing your language as a sequential language from the get-go

Hypothesis

The iterative execution of the definitional interpreter of a sequential language is the essential
building block of all language services related to interpretation

• Command-line REPLs, notebooks, and servers (Onward!2020)
• Exploring interpreter as a bookkeeping device on top of definitional interpreter

• Enables generic back-end for exploratory programming (TFP2021)
• Back-in-time (omnisicient) debugging

• Delta-operations as phrases to support live programming

• Fluid, bidirectional moves between GUI-actions and code for GUI-interfaces1



Idea..! REPL-first languages

REPL-first is:

Designing and implementing your language as a sequential language from the get-go

Hypothesis

The iterative execution of the definitional interpreter of a sequential language is the essential
building block of all language services related to interpretation

• Command-line REPLs, notebooks, and servers (Onward!2020)
• Exploring interpreter as a bookkeeping device on top of definitional interpreter

• Enables generic back-end for exploratory programming (TFP2021)
• Back-in-time (omnisicient) debugging

• Delta-operations as phrases to support live programming

• Fluid, bidirectional moves between GUI-actions and code for GUI-interfaces1

1mage: Fluid Moves Between Code and Graphical Work in Computational Notebooks. Mary Beth Kery et al.



Exploring interpreter algorithm

The reachability graph for a configuration γ ∈ Γ of a language 〈P, Γ, γ0, I 〉 contains all the
configurations γ′ that are reachable by executing programs p ∈ P using I . Nodes are
configurations, edges are labelled with programs

An exploring interpreter for a language 〈P, Γ, γ0, I 〉 is an algorithm constructing a subgraph of
the reachability graph from γ0 by performing one of the following actions:

Algorithm

• execute(p): take γ′ = Ip(γ) and (p given as input, γ current configuration):
• add γ′ to the set of nodes (if new), and
• add 〈γ, p, γ′〉 to the set of edges (if new).

• revert(γ): take γ as the current configuration (with γ given as input and in the graph).

• display: produce a structured representation of the current graph, distinguishing the
current configuration in the graph from the other configurations.



Exploring interpreter algorithm

The reachability graph for a configuration γ ∈ Γ of a language 〈P, Γ, γ0, I 〉 contains all the
configurations γ′ that are reachable by executing programs p ∈ P using I . Nodes are
configurations, edges are labelled with programs

An exploring interpreter for a language 〈P, Γ, γ0, I 〉 is an algorithm constructing a subgraph of
the reachability graph from γ0 by performing one of the following actions:

Algorithm

• execute(p): take γ′ = Ip(γ) and (p given as input, γ current configuration):
• add γ′ to the set of nodes (if new), and
• add 〈γ, p, γ′〉 to the set of edges (if new).

• revert(γ): take γ as the current configuration (with γ given as input and in the graph).

• display: produce a structured representation of the current graph, distinguishing the
current configuration in the graph from the other configurations.



Exploring interpreter algorithm

The reachability graph for a configuration γ ∈ Γ of a language 〈P, Γ, γ0, I 〉 contains all the
configurations γ′ that are reachable by executing programs p ∈ P using I . Nodes are
configurations, edges are labelled with programs

An exploring interpreter for a language 〈P, Γ, γ0, I 〉 is an algorithm constructing a subgraph of
the reachability graph from γ0 by performing one of the following actions:

Algorithm

• execute(p): take γ′ = Ip(γ) and (p given as input, γ current configuration):
• add γ′ to the set of nodes (if new), and
• add 〈γ, p, γ′〉 to the set of edges (if new).

• revert(γ): take γ as the current configuration (with γ given as input and in the graph).

• display: produce a structured representation of the current graph, distinguishing the
current configuration in the graph from the other configurations.



REPL-first languages

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
ltvanbinsbergen@acm.org

March 10, 2021


