REPL-first languages

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
ltvanbinsbergen@acm.org

March 10, 2021

Deriving REPLs and Notebooks for DSLs

From DSL Specification to Interactive Computer
Programming Environment

Pierre Jeanjean Benoit Combemale Olivier Barais
Inria, Univ Rennes, CNRS, IRISA University of Toulouse Univ Rennes, Inria, CNRS, IRISA
Rennes, France Toulouse, France Rennes, France
pierre jeanjean@inria.fr benoit.combemale@irit.fr olivier.barais@irisa.fr

Figure: SLE2019

Bacata: Notebooks for DSLs, Almost for Free

Mauricio Verano Merino®¢, Jurgen Vinju®P, and Tijs van der Storm®<
Eindhoven University of Technology, The Netherlands

Centrum Wiskunde & Informatica, The Netherlands

University of Groningen, The Netherlands

Océ Technologies B.V., The Netherlands

a6 oo

Figure: Art, Science, and Engineering of Programming

Deriving REPL /Notebook — commonalities

o READ: Identify entry points, i.e. the alternatives in syntactic root

Deriving REPL /Notebook — commonalities

o READ: Identify entry points, i.e. the alternatives in syntactic root
® EVAL: Connect entry points with evaluation function in DSL interpreter

Deriving REPL /Notebook — commonalities

o READ: Identify entry points, i.e. the alternatives in syntactic root
® EVAL: Connect entry points with evaluation function in DSL interpreter
® PRINT: Specify function to convert evaluation result to string

Deriving REPL /Notebook — commonalities

READ: Identify entry points, i.e. the alternatives in syntactic root
EVAL: Connect entry points with evaluation function in DSL interpreter
PRINT: Specify function to convert evaluation result to string

LOOP:

Interpreter | :Statement_Instruction ‘Expression_Instruction

iﬂ’— interpret(self)

execute(turtle, st)
turtle.toString() L(-------------- -

Xec o M interpret(self)

compute(st)

H output
U SO __outputtostring)___| [€---- P .

Figure 8. Overall Execution Flow for Logo

Deriving REPL /Notebook — commonalities

Iﬁxec >

XEC

interpret(self)

execute(turtle, st)
turtle.toString() L(-------------- -

interpret(self)

READ: Identify entry points, i.e. the alternatives in syntactic root
EVAL: Connect entry points with evaluation function in DSL interpreter
PRINT: Specify function to convert evaluation result to string

LOOP:
Interpreter | :Statement_Instruction ‘Expression_Instruction

How does one execution

output.toString()

S It Lo STREEET.

compute(st) _ | afFeCt the neXt?

output

fg---- P :

Figure 8. Overall Execution Flow for Logo

Formal model based on structural operational semantics

A language L is a structure (P,T,~°,) with:
P a set of programs,
I a set of configurations (containing semantic entities, attributes, algebraic effects, etc..),
~° an initial configuration with 7% € I' and

| a definitional interpreter assigning to each program p € P a function /,: [—T.

interpreter : program x config — config

Sufficiently general to capture at least all (deterministic) languages that can have their
semantics expressed as a transition function (e.g. using small-step or big-step semantics)

Formal model based on structural operational semantics

A language L is a structure (P,T,~°,) with:
P a set of programs,

I a set of configurations (containing semantic entities, attributes, algebraic effects, etc..),
~° an initial configuration with 7% € I' and

| a definitional interpreter assigning to each program p € P a function /,: [—T.

interpreter : program x config — config

Sufficiently general to capture at least all (deterministic) languages that can have their
semantics expressed as a transition function (e.g. using small-step or big-step semantics)

Note that the interpreter can be applied repeatedly, i.e. that effects can be composed

Observation..!

REPLs with incremental execution implement a language with the following property:

Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which p1; p> is a (syntactically) valid program iff p;
and py are valid programs and iff p1; po is equivalent to ‘doing’ p; and then p»

Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which p1; p> is a (syntactically) valid program iff p;
and py are valid programs and iff p1; po is equivalent to ‘doing’ p; and then p»

[p1; p2] = [p2] © [p1]

Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which p1; p> is a (syntactically) valid program iff p;
and py are valid programs and iff p1; po is equivalent to ‘doing’ p; and then p»

[p1; p2] = [p2] © [p1]

A language (P,T,~°, 1) is sequential if there is an operator ® such that for every p;, pr € P
and v € T it holds that p; ® po € P and that I5,gp,(7) = (Ip, © Ip;)(7)

Idea..! REPLization

Distinguish between REPL language and base language (e.g. JShell vs Java)

Idea..! REPLization

Distinguish between REPL language and base language (e.g. JShell vs Java)
Replization is: extending a base language to a sequential variant

Idea..! REPLization

Distinguish between REPL language and base language (e.g. JShell vs Java)
Replization is: extending a base language to a sequential variant

A Principled Approach to REPL Interpreters

L. Thomas van Binsbergen
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
Itvanbinsbergen@acm.org

Tijs van der Storm
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
University of Groningen
Groningen, The Netherlands
storm@cwi.nl

Mauricio Verano Merino
Eindhoven University of Technology
Eindhoven, The Netherlands
m.verano.merino@tue.nl

Benoit Combemale
University of Rennes, Inria, CNRS,
IRISA
Rennes, France
benoit.combemale@irit.fr

Figure: Onward!2020

Pierre Jeanjean
Inria, University of Rennes, CRNS,
IRISA
Rennes, France
pierre.jeanjean@inria.fr

Olivier Barais
University of Rennes, Inria, CNRS,
IRISA
Rennes, France
olivier.barais@irisa.fr

REPLization in Onward!2020

Distinguish between REPL language and base language (e.g. JShell vs Java)
Replization is: extending a base language to a sequential variant

REPLization in Onward!2020

Distinguish between REPL language and base language (e.g. JShell vs Java)
Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)

REPLization in Onward!2020

Distinguish between REPL language and base language (e.g. JShell vs Java)
Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)

2. Implement definitional interpreter by choosing ' and in terms of base interpreter

REPLization in Onward!2020

Distinguish between REPL language and base language (e.g. JShell vs Java)
Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)
2. Implement definitional interpreter by choosing ' and in terms of base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

[p1 ® p2] = [p2] o [p1]

REPLization in Onward!2020

Distinguish between REPL language and base language (e.g. JShell vs Java)
Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)
2. Implement definitional interpreter by choosing ' and in terms of base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

[p1 @ p2]l = [p2] o [P

e The effect of one phrase on the next is determined by its modifications to v € [

Onward!2020 (feature model)

TmppT Snippet Save and Summar Summary
Com- Execution Load of Current | | of Snippet

pletion T~ / v\ Session State Effects
Keywords | Identifiers Full Incremental U;:do /| Current Valid REPL code | | Access to
T " .~ state program snippets Previous
[! Results
[Syntax- | | Hierarchy-| | Type- | | Mulfiple Access Access
aware Input to all to last

Definition

aware

aware / \
Legend: All Last Help Command
outputs output Command History

Modifi-
cation

Abstract Feature
Concrete Feature “)
® Mandatory Language REPL User Ope.n & Redefine
() Optional use commands access Extend
‘ Arbit}a.ry ‘ Search Sequ-entia.l

A Or Group

/\ Alternative Group

Onward!2020 (feature table)

g &g sEg &~ 8L =23
2 5 2% ¥ s 2
Snippet Execution Incremental e & @ o ¢ ¢ o ¢ o o e o o
Full °
Undo [)
Summary of Current State L N e o e o L J
Summary of Snippet Effects e e 0o 0 0o o o e e 0 0 0 0o o
Access to Previous Results Access to last [BN) [) [] [) []
Access to all L] [) []
Multiple Input Last output ° o o o ° ° e o o
All outputs e o o o
Snippet Completion Keywords ° o o ° e o o ° °
Syntax-aware ° ° °
Identifiers ® & & & & & & & & o o o o [
Type-aware ° - - -
Hierarchy-aware ® & & o o o ® [] o o -
Definition Modification Redefine o o o o o o o o - o
Open & Extend - e
Help Command REPL commands ® & & o o o ® o o o []
Language use o o . o o
Command History (User Access) ~Sequential ®© ©6 6 06 6 0606 06 06 06 06 0 0 0 0
Search ® & & & & & o o O o o o [
Arbitrary ° ° [}
Save and Load Session Current state o o -
REPL code snippets [] ° [] ¢ <
Valid programs ° [] ¢ < L]

Onward!2020 (MiniJava case study)

) Ju pyter Minidava Example Last Checkpoint: an hour ago (autosaved)

File Edit View Insert Cell Kernel Widgets Help
B+ % @@ B 4 & MNRin B C W Code RN
Id [1]: class A {
int a;

public int ma() {
a = 4;
return a;

out[1]:

Id [2]: A oa;
oa = new A();

out[2]:

Id [3]: oa.ma();
Out[3]: 4

Id [4]:

Logout
Trusted | MiniJava ©
Validate

Execution Graph

cell-1

cell-2

cell-3

-1520434513

Config eval((Phrase)‘<Expression e> ;‘, Config c)
= catchExceptions(collectBindings(
setOutput(createBinding(eval(c, e)))));

Config eval((Phrase)‘<Statement s>, Config c)

= catchExceptions(collectBindings(
setOutput(exec(s, c))));

Config eval((Phrase)‘<ClassDecl cd>*, Config c)
= catchExceptions(collectBindings(
declareClass(cd, ¢)));

Config eval((Phrase)‘<VarDecl vd>*, Config c)
= catchExceptions(collectBindings(
declareVariables(vd, c)));

Config eval((Phrase)‘<MethodDecl md>", Config c)
= catchExceptions(collectBindings(
declareGlobalMethod(md, c)));

Config eval((Phrase)‘<Phrase p1> <Phrase p2>*, Config c)
= eval(p2, eval(pl, c));

Figure: Interpreter for extended MiniJava

Onward!2020 (QL case study)

form taxOfficeExample {
"Did you sell a house in 2010?"
hasSoldHouse: boolean

"Did you buy a house in 2010?" . . V]
hasBoughtHouse: boolean Did you sell a house in 20107

"Did you enter a loan?" Did you buy a house in 201020

hasMaintLoan: boolean Did you enter a loan?()

if (hasSoldHouse) { What was the selling price?

"What was the selling price?" .

sellingPrice: integer Private debts for the sold house:
"Private debts for the sold house:" .

privateDebt: integer Value residue:
"Value residue:" .

valueResidue: integer =
sellingPrice - privateDebt

Figure: Rendering

Figure: QL form

Onward!2020 (eFLINT case study)

+seller("Alice")

+buyer("Bob")
+duty-to-deliver(seller("Alice"),buyer("Bob"))
+duty-to-pay(buyer("Bob"),seller("Alice"))

),amount(18))

+deliver(seller("Alice"),buyer("Bob"),asset-id("Meat"))
query successful
query successful

actions & events:

1. deliver(seller("Alice"),buyer("Bob"),asset-id("Meat")) (ENABLED)
2. pay(buyer("Bob"),seller("Alice"),amount(10)) (ENABLED)

3. suspend-delivery(seller("Alice"),buyer("Bob")) (DISABLED)

4. tick() (ENABLED)

#9 > :4

-clock(®)
+clock(1)
#10 > :4

violations:
violated duty!: duty-to-pay(buyer("Bob"),seller("Alice"))
-clock(1)
+clock(2)
+suspend-delivery(seller("Alice"),buyer("Bob"))
#11 > suspend-delivery(Alice,Bob)
violations:
violated duty!: duty-to-pay(buyer(”"Bob"),seller("Alice"))
#12 > :revert 9
#9 > suspend-delivery(Alice,Bob)
not a compliant action
#9 >

Figure: eFLINT command-line REPL

frames

Fact seller
Fact buyer

Fact anount Identified by

Fact asset-id Identified by Strin

Duty duty-to-deliver
Holder seller
Clainant buyer

olds when seller &
Viotated when clock >

Duty duty-to-pay
Holder buye;
Clainant seller
Holds when seller & buyer
Violated when clock >= 2 * week

te
M G ()
Holds when asset-id

ct pay
Actor buyer

s duty-to-pay()

duty-to-deliver()
ot when Viotated (duty-ro-pay()

scenario

// initialize contract
+seller(Alicy
“huyer(Bob).

int (10)
t-id(Meat)

// test duties

7Holds (duty- to-deliver(seller = seller(Alice))

Holds (duty-to-pay buyer = buyer (Bab))

Run

response
ok

output

Step 0: initial state

Step 1: (*Alice"ref):seller
+("Alice"ref):seller

Step 2: (‘Bobref):buyer
+("Bob"ref):buyer

‘Step 3: 10:amount
+10:amount

Step 4: "Meat"asset-id
+"Meat":asset-id

Figure: eFLINT web-interface

|dea..! REPL-first languages

REPL-first is:

Designing and implementing your language as a sequential language from the get-go

The iterative execution of the definitional interpreter of a sequential language is the essential
building block of all language services related to interpretation

|dea..! REPL-first languages

REPL-first is:

Designing and implementing your language as a sequential language from the get-go

The iterative execution of the definitional interpreter of a sequential language is the essential
building block of all language services related to interpretation

® Command-line REPLs, notebooks, and servers (Onward!2020)

|dea..! REPL-first languages

REPL-first is:

Designing and implementing your language as a sequential language from the get-go

The iterative execution of the definitional interpreter of a sequential language is the essential
building block of all language services related to interpretation

® Command-line REPLs, notebooks, and servers (Onward!2020)
® Exploring interpreter as a bookkeeping device on top of definitional interpreter

® Enables generic back-end for exploratory programming (TFP2021)
® Back-in-time (omnisicient) debugging

|dea..! REPL-first languages

REPL-first is:

Designing and implementing your language as a sequential language from the get-go

The iterative execution of the definitional interpreter of a sequential language is the essential
building block of all language services related to interpretation

® Command-line REPLs, notebooks, and servers (Onward!2020)
® Exploring interpreter as a bookkeeping device on top of definitional interpreter

® Enables generic back-end for exploratory programming (TFP2021)
® Back-in-time (omnisicient) debugging

® Delta-operations as phrases to support live programming

|dea..! REPL-first languages

REPL-first is:

Designing and implementing your language as a sequential language from the get-go

The iterative execution of the definitional interpreter of a sequential language is the essential
building block of all language services related to interpretation

Command-line REPLs, notebooks, and servers (Onward!2020)
Exploring interpreter as a bookkeeping device on top of definitional interpreter

® Enables generic back-end for exploratory programming (TFP2021)
® Back-in-time (omnisicient) debugging

Delta-operations as phrases to support live programming

Fluid, bidirectional moves between GUl-actions and code for GUl-interfaces!

Y mage: Fluid Moves Between Code and Graphical Work in Computational Notebooks. Mary Beth Kery et al.

Exploring interpreter algorithm

The reachability graph for a configuration v € T of a language (P,T,~°, /) contains all the
configurations «/ that are reachable by executing programs p € P using /. Nodes are
configurations, edges are labelled with programs

Exploring interpreter algorithm

The reachability graph for a configuration v € T of a language (P,T,~°, /) contains all the
configurations «/ that are reachable by executing programs p € P using /. Nodes are
configurations, edges are labelled with programs

An exploring interpreter for a language (P,T,~°, 1) is an algorithm constructing a subgraph of
the reachability graph from 7° by performing one of the following actions:

Exploring interpreter algorithm

The reachability graph for a configuration v € T of a language (P,T,~°, /) contains all the
configurations «/ that are reachable by executing programs p € P using /. Nodes are
configurations, edges are labelled with programs

An exploring interpreter for a language (P,T,~°, 1) is an algorithm constructing a subgraph of
the reachability graph from 7° by performing one of the following actions:

Algorithm

. execute(p): take 7' = Ip(y) and (p given as input, v current configuration):
® add +/ to the set of nodes (if new), and
® add (v, p,7’) to the set of edges (if new).
¢ revert(y): take 7 as the current configuration (with ~ given as input and in the graph).

e display: produce a structured representation of the current graph, distinguishing the
current configuration in the graph from the other configurations.

REPL-first languages

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
ltvanbinsbergen@acm.org

March 10, 2021

