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READ: Identify entry points, i.e. the alternatives in syntactic root
EVAL: Connect entry points with evaluation function in DSL interpreter
PRINT: Specify function to convert evaluation result to string
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Formal model based on structural operational semantics

A language L is a structure (P,T,~°, ) with:
P a set of programs,
I a set of configurations (containing semantic entities, attributes, algebraic effects, etc..),
~° an initial configuration with 7% € I' and

| a definitional interpreter assigning to each program p € P a function /,: [ —T.

interpreter : program x config — config

Sufficiently general to capture at least all (deterministic) languages that can have their
semantics expressed as a transition function (e.g. using small-step or big-step semantics)
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A language L is a structure (P,T,~°, ) with:
P a set of programs,

I a set of configurations (containing semantic entities, attributes, algebraic effects, etc..),
~° an initial configuration with 7% € I' and

| a definitional interpreter assigning to each program p € P a function /,: [ —T.

interpreter : program x config — config

Sufficiently general to capture at least all (deterministic) languages that can have their
semantics expressed as a transition function (e.g. using small-step or big-step semantics)

Note that the interpreter can be applied repeatedly, i.e. that effects can be composed
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Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which p1; p> is a (syntactically) valid program iff p;
and py are valid programs and iff p1; po is equivalent to ‘doing’ p; and then p»

[p1; p2] = [p2] © [p1]

A language (P,T,~°, 1) is sequential if there is an operator ® such that for every p;, pr € P
and v € T it holds that p; ® po € P and that I5,gp,(7) = (Ip, © Ip;)(7)
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REPLization in Onward!2020

Distinguish between REPL language and base language (e.g. JShell vs Java)
Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)
2. Implement definitional interpreter by choosing ' and in terms of base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

[p1 @ p2]l = [p2] o [P

e The effect of one phrase on the next is determined by its modifications to v € [



Onward!2020 (feature model)
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Onward!2020 (feature table)
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Onward!2020 (MiniJava case study)

) Ju pyter Minidava Example Last Checkpoint: an hour ago (autosaved)

File Edit View Insert Cell Kernel Widgets Help
B+ % @@ B 4 & MNRin B C W Code RN
Id [1]: class A {
int a;

public int ma() {
a = 4;
return a;

out[1]:

Id [2]: A oa;
oa = new A();

out[2]:

Id [3]: oa.ma();
Out[3]: 4

Id [4]:

Logout
Trusted | MiniJava ©
Validate

Execution Graph

cell-1

cell-2

cell-3

-1520434513

Config eval((Phrase)‘<Expression e> ;‘, Config c)
= catchExceptions(collectBindings(
setOutput(createBinding(eval(c, e)))));

Config eval((Phrase)‘<Statement s>, Config c)

= catchExceptions(collectBindings(
setOutput(exec(s, c))));

Config eval((Phrase)‘<ClassDecl cd>*, Config c)
= catchExceptions(collectBindings(
declareClass(cd, ¢)));

Config eval((Phrase)‘<VarDecl vd>*, Config c)
= catchExceptions(collectBindings(
declareVariables(vd, c)));

Config eval((Phrase)‘<MethodDecl md>", Config c)
= catchExceptions(collectBindings(
declareGlobalMethod(md, c)));

Config eval((Phrase)‘<Phrase p1> <Phrase p2>*, Config c)
= eval(p2, eval(pl, c));

Figure: Interpreter for extended MiniJava




Onward!2020 (QL case study)

form taxOfficeExample {
"Did you sell a house in 2010?"
hasSoldHouse: boolean

"Did you buy a house in 2010?" . . V]
hasBoughtHouse: boolean Did you sell a house in 20107

"Did you enter a loan?" Did you buy a house in 201020

hasMaintLoan: boolean Did you enter a loan?()

if (hasSoldHouse) { What was the selling price?

"What was the selling price?" .

sellingPrice: integer Private debts for the sold house:
"Private debts for the sold house:" .

privateDebt: integer Value residue:
"Value residue:" .

valueResidue: integer =
sellingPrice - privateDebt

Figure: Rendering

Figure: QL form



Onward!2020 (eFLINT case study)

+seller("Alice")

+buyer("Bob")
+duty-to-deliver(seller("Alice"),buyer("Bob"))
+duty-to-pay(buyer("Bob"),seller("Alice"))

),amount(18))

+deliver(seller("Alice"),buyer("Bob"),asset-id("Meat"))
query successful
query successful

actions & events:

1. deliver(seller("Alice"),buyer("Bob"),asset-id("Meat")) (ENABLED)
2. pay(buyer("Bob"),seller("Alice"),amount(10)) (ENABLED)

3. suspend-delivery(seller("Alice"),buyer("Bob")) (DISABLED)

4. tick() (ENABLED)

#9 > :4

-clock(®)
+clock(1)
#10 > :4

violations:
violated duty!: duty-to-pay(buyer("Bob"),seller("Alice"))
-clock(1)
+clock(2)
+suspend-delivery(seller("Alice"),buyer("Bob"))
#11 > suspend-delivery(Alice,Bob)
violations:
violated duty!: duty-to-pay(buyer(”"Bob"),seller("Alice"))
#12 > :revert 9
#9 > suspend-delivery(Alice,Bob)
not a compliant action
#9 >

Figure: eFLINT command-line REPL

frames

Fact seller
Fact buyer

Fact anount  Identified by

Fact asset-id Identified by Strin

Duty duty-to-deliver
Holder seller
Clainant buyer

olds when seller &
Viotated when clock >

Duty duty-to-pay
Holder buye;
Clainant seller
Holds when seller & buyer
Violated when clock >= 2 * week

te
M G ()
Holds when asset-id

ct pay
Actor buyer

s duty-to-pay()

duty-to-deliver()
ot when Viotated (duty-ro-pay()

scenario

// initialize contract
+seller(Alicy
“huyer(Bob).

int (10)
t-id(Meat)

// test duties

7Holds (duty- to-deliver(seller = seller(Alice))

Holds (duty-to-pay buyer = buyer (Bab))

Run

response
ok

output

Step 0: initial state

Step 1: (*Alice"ref):seller
+("Alice"ref):seller

Step 2: (‘Bobref):buyer
+("Bob"ref):buyer

‘Step 3: 10:amount
+10:amount

Step 4: "Meat"asset-id
+"Meat":asset-id

Figure: eFLINT web-interface
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|dea..! REPL-first languages

REPL-first is:

Designing and implementing your language as a sequential language from the get-go

The iterative execution of the definitional interpreter of a sequential language is the essential
building block of all language services related to interpretation

Command-line REPLs, notebooks, and servers (Onward!2020)
Exploring interpreter as a bookkeeping device on top of definitional interpreter

® Enables generic back-end for exploratory programming (TFP2021)
® Back-in-time (omnisicient) debugging

Delta-operations as phrases to support live programming

Fluid, bidirectional moves between GUl-actions and code for GUl-interfaces!

Y mage: Fluid Moves Between Code and Graphical Work in Computational Notebooks. Mary Beth Kery et al.
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Exploring interpreter algorithm

The reachability graph for a configuration v € T of a language (P,T,~°, /) contains all the
configurations «/ that are reachable by executing programs p € P using /. Nodes are
configurations, edges are labelled with programs

An exploring interpreter for a language (P,T,~°, 1) is an algorithm constructing a subgraph of
the reachability graph from 7° by performing one of the following actions:

Algorithm

. execute(p): take 7' = Ip(y) and (p given as input, v current configuration):
® add +/ to the set of nodes (if new), and
® add (v, p,7’) to the set of edges (if new).
¢ revert(y): take 7 as the current configuration (with ~ given as input and in the graph).

e display: produce a structured representation of the current graph, distinguishing the
current configuration in the graph from the other configurations.
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