
eFLINT - A DSL for Testing Normative Specifications

L. Thomas van Binsbergen
Centrum Wiskunde & Informatica

22 November, 2019

People

Giovanni Sileno Lu-Chi Liu Thomas van Binsbergen

Robert van Doesburg Tom van Engers

Tijs van der Storm

Marc Stevens

UvA and more CWI

Policy-CAD SSPDDP

People

Giovanni Sileno Lu-Chi Liu Thomas van Binsbergen

Robert van Doesburg Tom van Engers

Tijs van der Storm

Marc Stevens

UvA and more CWI

Policy-CAD

SSPDDP

People

Giovanni Sileno Lu-Chi Liu Thomas van Binsbergen

Robert van Doesburg Tom van Engers

Tijs van der Storm

Marc Stevens

UvA and more CWI

Policy-CAD

SSPDDP

Norms - Philosophy/Sociology

Normative sentences are “ought-to” types of statements

Examples: legal norms - social norms

As a resident of The Netherlands, you must have health insurance
CWI’s SWAT team has lunch together at noon
A player cannot score from an offside position

Deontic Potestative
duties, obligations powers, actions
permissions liabilities

Norms - Philosophy/Sociology

Normative sentences are “ought-to” types of statements

Examples: legal norms - social norms

As a resident of The Netherlands, you must have health insurance
CWI’s SWAT team has lunch together at noon
A player cannot score from an offside position

Deontic Potestative
duties, obligations powers, actions
permissions liabilities

Norms - Philosophy/Sociology

Normative sentences are “ought-to” types of statements

Examples: legal norms - social norms

As a resident of The Netherlands, you must have health insurance

CWI’s SWAT team has lunch together at noon
A player cannot score from an offside position

Deontic Potestative
duties, obligations powers, actions
permissions liabilities

Norms - Philosophy/Sociology

Normative sentences are “ought-to” types of statements

Examples: legal norms - social norms

As a resident of The Netherlands, you must have health insurance
CWI’s SWAT team has lunch together at noon

A player cannot score from an offside position

Deontic Potestative
duties, obligations powers, actions
permissions liabilities

Norms - Philosophy/Sociology

Normative sentences are “ought-to” types of statements

Examples: legal norms - social norms

As a resident of The Netherlands, you must have health insurance
CWI’s SWAT team has lunch together at noon
A player cannot score from an offside position

Deontic Potestative
duties, obligations powers, actions
permissions liabilities

Norms - Philosophy/Sociology

Normative sentences are “ought-to” types of statements

Examples: legal norms - social norms

As a resident of The Netherlands, you must have health insurance
CWI’s SWAT team has lunch together at noon
A player cannot score from an offside position

Deontic Potestative
duties, obligations powers, actions
permissions liabilities

Analyzing legal cases

sources of law understanding of the law

legal narrative, evidenceactions, observations

physical reality institutional reality

interpretation

assessment

qualification

Interpreting normative sources

What does the result of interpretation look like?

How do we write down an interpretation formally?

Interpreting normative sources

What does the result of interpretation look like?

How do we write down an interpretation formally?

Hohfeld’s fundamental legal conceptions

fundamental relation: duty-claim
between duty holder and claimant

fundamental relation: power-liability
between actor and recipient

What does the result of interpretation look like?

How do we write down an interpretation formally?

Hohfeld’s fundamental legal conceptions

fundamental relation: duty-claim
between duty holder and claimant

fundamental relation: power-liability
between actor and recipient

What does the result of interpretation look like?

How do we write down an interpretation formally?

Hohfeld’s fundamental legal conceptions

fundamental relation: duty-claim
between duty holder and claimant

fundamental relation: power-liability
between actor and recipient

What does the result of interpretation look like?

How do we write down an interpretation formally?

Hohfeld’s fundamental legal conceptions

fundamental relation: duty-claim
between duty holder and claimant

fundamental relation: power-liability
between actor and recipient

What does the result of interpretation look like?

How do we write down an interpretation formally?

Hohfeld’s fundamental legal conceptions

fundamental relation: duty-claim
between duty holder and claimant

fundamental relation: power-liability
between actor and recipient

What does the result of interpretation look like?

How do we write down an interpretation formally?

Hohfeld’s fundamental legal conceptions

fundamental relation: duty-claim
between duty holder and claimant

fundamental relation: power-liability
between actor and recipient

What does the result of interpretation look like?

How do we write down an interpretation formally?

Formal Language for the Interpretation of Norms (FLINT)

Robert van Doesburg / Tijs van der Storm / eFLINT

Commonalities

Judgements characterize the relevant sub-set of the world

certain facts are postulated (to hold true or false)
other facts are derived (from other judgements)

Transition rules determine the availability of actions and their effects

Challenges

Language design: appeal, scope, fit-for-purpose ...

Policy design: consistency, composition, qualification ...

Policy analysis: exploration, testing, verification, reasoning, planning ...

System compliance: testing, verification, “by construction” ...

Formal Language for the Interpretation of Norms (FLINT)

Robert van Doesburg / Tijs van der Storm / eFLINT

Commonalities

Judgements characterize the relevant sub-set of the world

certain facts are postulated (to hold true or false)
other facts are derived (from other judgements)

Transition rules determine the availability of actions and their effects

Challenges

Language design: appeal, scope, fit-for-purpose ...

Policy design: consistency, composition, qualification ...

Policy analysis: exploration, testing, verification, reasoning, planning ...

System compliance: testing, verification, “by construction” ...

Language design - overview

1 World: values, types, expressions

2 Norms: duties, acts, transitions

3 Pragmatics: refinement, scripts, testing

Facts

Fact-type declarations associate a type with a fact identifier:

1 Fact c i t i z e n
2 Fact c and i d a t e I d e n t i f i e d by Atom
3 Fact a dm i n i s t r a t o r I d e n t i f i e d by Atom
4 Fact v o t e r I d e n t i f i e d by c i t i z e n
5 Fact w inne r I d e n t i f i e d by cand i d a t e
6 Fact vo te I d e n t i f i e d by (v o t e r ∗ c and i d a t e)

Type expressions

Types are essentially record-types:

x ∈ vars ::= . . .
s ∈ atoms ::= . . .
i ∈ Z ::= . . .
τ ∈ types ::= atoms

| atom set(s1, . . . , sn)
| Z
| int set(i1, . . . , in)
| fields(x1, . . . , xn)

• Field names are variables (possibly decorated fact identifiers)

Instances

1 A l i c e
2 7
3
4 A l i c e : c i t i z e n
5 Chloe : c and i d a t e
6 Admin : a dm i n i s t r a t o r
7
8 (A l i c e : c i t i z e n) : v o t e r
9

10 ((A l i c e : c i t i z e n) : vo t e r , Ch loe : c and i d a t e) : vo te

example instances

The state of the world at any particular moment is a set of instances σ,
containing those instances that hold true at that moment

Instances

1 A l i c e
2 7
3
4 A l i c e : c i t i z e n
5 Chloe : c and i d a t e
6 Admin : a dm i n i s t r a t o r
7
8 (A l i c e : c i t i z e n) : v o t e r
9

10 ((A l i c e : c i t i z e n) : vo t e r , Ch loe : c and i d a t e) : vo te

example instances

The state of the world at any particular moment is a set of instances σ,
containing those instances that hold true at that moment

Expressions

• Expressions evaluate to atoms, integers, Booleans or instances of fact-types

1 c i t i z e n
2 c i t i z e n (A l i c e)
3
4 v o t e r (c i t i z e n (A l i c e))
5 v o t e r (A l i c e)
6 v o t e r (c i t i z e n = c i t i z e n (A l i c e))
7
8 vote (v o t e r (A l i c e) , Chloe)
9 vo te (v o t e r = vo t e r (A l i c e) , c and i d a t e = Chloe)

10 vote (c and i d a t e = Chloe , v o t e r = vo t e r (A l i c e))
11
12 vote (v o t e r = vo t e r (A l i c e))
13 vote (c and i d a t e = cand ida te , v o t e r = vo t e r (A l i c e))
14 vote ()

variables and constructors

Operators

1 Holds (v o t e r (A l i c e))
2
3 vote [v o t e r]
4 vo te [c and i d a t e]
5
6 vote [c and i d a t e] When Holds (vo te)
7 vo te [c and i d a t e] When vote

operators

Quantifiers and aggregators

Quantifiers bind variables to all instances of the variable’s type:

1 (E x i s t s c and i d a t e : vo te (v o t e r (A l i c e) , c and i d a t e))
2
3 (F o r a l l c i t i z e n : vo te (v o t e r (c i t i z e n) , Chloe))

Foreach can only be used in combination with an aggregator:

1 Count (Foreach vote : vo te When Holds (vo te) && vote [c and i d a t e] = cand i d a t e)

Derived facts

Derivation expression as a predicate (type-components are bound):

1 Fact has voted I d e n t i f i e d by v o t e r
2 Holds when (E x i s t s c and i d a t e : vo te (vo te r , c and i d a t e))

1 P r e d i c a t e vo te conc luded When (E x i s t s c and i d a t e : w inne r (c and i d a t e))
2 P r e d i c a t e v o t e r s done When (F o r a l l c i t i z e n : ! v o t e r () | | has voted (v o t e r ()))

Derivation expression computes the set of instances that hold true:

1 Fact number o f v o t e s I d e n t i f i e d by I n t
2 De r i v ed from Count (Foreach vote : vo te When Holds (vo te))

• Derived facts cannot be postulated

Derived facts

Derivation expression as a predicate (type-components are bound):

1 Fact has voted I d e n t i f i e d by v o t e r
2 Holds when (E x i s t s c and i d a t e : vo te (vo te r , c and i d a t e))

1 P r e d i c a t e vo te conc luded When (E x i s t s c and i d a t e : w inne r (c and i d a t e))
2 P r e d i c a t e v o t e r s done When (F o r a l l c i t i z e n : ! v o t e r () | | has voted (v o t e r ()))

Derivation expression computes the set of instances that hold true:

1 Fact number o f v o t e s I d e n t i f i e d by I n t
2 De r i v ed from Count (Foreach vote : vo te When Holds (vo te))

• Derived facts cannot be postulated

Derived facts

Derivation expression as a predicate (type-components are bound):

1 Fact has voted I d e n t i f i e d by v o t e r
2 Holds when (E x i s t s c and i d a t e : vo te (vo te r , c and i d a t e))

1 P r e d i c a t e vo te conc luded When (E x i s t s c and i d a t e : w inne r (c and i d a t e))
2 P r e d i c a t e v o t e r s done When (F o r a l l c i t i z e n : ! v o t e r () | | has voted (v o t e r ()))

Derivation expression computes the set of instances that hold true:

1 Fact number o f v o t e s I d e n t i f i e d by I n t
2 De r i v ed from Count (Foreach vote : vo te When Holds (vo te))

• Derived facts cannot be postulated

Language design - overview

1 World: values, types, expressions

2 Norms: duties, acts, transitions

3 Pragmatics: refinement, scripts, testing

Recall Hohfeld’s conceptions

fundamental relation: duty-claim
between duty holder and claimant

fundamental relation: power-liability
between actor and recipient

How do we write down an interpretation formally?

Duties

A duty indicate that its holder ought to perform some action:

1 Duty c a s t vo te duty Ho lde r v o t e r C la imant a dm i n i s t r a t o r

• A duty-type declaration is a fact-type declaration with a record-type

Acts

Actions modify the world by adding or removing instances from σ:

1 Act c a s t vo te
2 Actor v o t e r
3 R e c i p i e n t a dm i n i s t r a t o r
4 Re l a t ed to c and i d a t e
5 Cond i t i oned by v o t e r && ! has voted ()
6 C r ea t e s vo te ()
7 Terminates c a s t vo te duty ()

• An act-type declaration is a fact-type declaration with a record-type

Transitions

A transition is a state σ, an instance a of an act, and the sets T and C of instances
terminated and created by the act, if and only if:

1 a holds true in σ

2 the pre-condition of a holds in σ

3 T is the result of evaluating the terminating post-conditions of a in σ

4 C is the result of evaluating the creating post-conditions of a in σ

σ
〈a,T ,C 〉

More acts

Derived facts may have to be recomputed after an action is performed:

1 Act c a s t vo te
2 Actor v o t e r
3 R e c i p i e n t a dm i n i s t r a t o r
4 Re l a t ed to c and i d a t e
5 Cond i t i oned by v o t e r && ! has voted ()
6 C r ea t e s vo te ()
7 Terminates c a s t vo te duty ()

• σ′ may be incomplete and inconsistent w.r.t. derivation expressions

σ σ′ σ′′
〈a,T ,C 〉

Completing the example (1)

1 Act enab l e vo te
2 Actor a dm i n i s t r a t o r
3 R e c i p i e n t c i t i z e n
4 Cond i t i oned by ! v o t e r () && ! vote conc luded ()
5 C r ea t e s v o t e r () ,
6 c a s t vo te duty (v o t e r = vo t e r ()) ,
7 (Foreach cand i d a t e : c a s t vo te (v o t e r = vo t e r ()))

Completing the example (2)

Placeholders can be introduced for types:

1 P l a c e h o l d e r o t h e r c and i d a t e For c and i d a t e

1 Act d e c l a r e w inne r
2 Actor a dm i n i s t r a t o r
3 R e c i p i e n t c and i d a t e
4 Cond i t i oned by
5 ! vo te conc luded ()
6 && vo t e r s done ()
7 && (F o r a l l o t h e r c and i d a t e :
8 Count (Foreach vote : vo te [v o t e r]
9 When vote && vote [c and i d a t e] == othe r c and i d a t e) <

10 Count (Foreach vote : vo te [v o t e r]
11 When vote && vote [c and i d a t e] == cand i d a t e)
12 When o th e r c and i d a t e != cand i d a t e)
13 C r ea t e s w inne r (c and i d a t e)

Language design - overview

1 World: values, types, expressions

2 Norms: duties, acts, transitions

3 Pragmatics: refinement, scripts, testing

Refinement

A refinement of a policy description replaces all simple, infinite types with finite types:

1 Fact c i t i z e n I d e n t i f i e d by [John , Frank , Peter , Chloe , Hannah]
2 Fact c and i d a t e I d e n t i f i e d by [Mary , David]
3 Fact a dm i n i s t r a t o r I d e n t i f i e d by Admin

and also identifies an initial state (implicit Foreach):

1 a dm i n i s t r a t o r .
2 c i t i z e n .
3 c and i d a t e .
4 d e c l a r e w inne r (Admin , c and i d a t e) .
5 enab l e vo te (Admin , c i t i z e n) .

• A refinement enables exploring the reachable states manually

Scripts

• Scripts are basic programs for stepping through reachability graphs

Action call !<EXPR>. evaluates to an enabled act and executes it (or fails)

Query ?<EXPR>. fails if expression does not evaluate to True in the current state

Scripts

• Scripts are basic programs for stepping through reachability graphs

Action call !<EXPR>. evaluates to an enabled act and executes it (or fails)

Query ?<EXPR>. fails if expression does not evaluate to True in the current state

Scripts

• Scripts are basic programs for stepping through reachability graphs

Action call !<EXPR>. evaluates to an enabled act and executes it (or fails)

Query ?<EXPR>. fails if expression does not evaluate to True in the current state

Scripts - positive test

1 ! enab l e vo te (c i t i z e n = John) .
2 ! enab l e vo te (c i t i z e n = Frank) .
3 ! enab l e vo te (c i t i z e n = Pete r) .
4 ! c a s t vo te (v o t e r = vo t e r (John) , c and i d a t e = Mary) .
5 ! c a s t vo te (v o t e r = vo t e r (Frank) , c and i d a t e = Mary) .
6 ! c a s t vo te (v o t e r = vo t e r (Pe te r) , c and i d a t e = David) .
7 ! d e c l a r e w inne r () .
8 ? w inne r (Mary) .
9 ?(F o r a l l c and i d a t e : ! w inne r () When cand i d a t e != Mary) .

Scripts - negative test

1 ! enab l e vo te (c i t i z e n = John) .
2 ! enab l e vo te (c i t i z e n = Frank) .
3 ! enab l e vo te (c i t i z e n = Pete r) .
4 ! c a s t vo te (v o t e r = vo t e r (Frank) , c and i d a t e = Mary) .
5 ! c a s t vo te (v o t e r = vo t e r (Pe te r) , c and i d a t e = David) .
6 ! enab l e vo te (c i t i z e n = Hannah) .
7 ! c a s t vo te (v o t e r = vo t e r (Hannah) , c and i d a t e = David) .
8 ! d e c l a r e w inne r () .

Scripts - negative test 2

1 ! enab l e vo te (c i t i z e n = John) .
2 ! enab l e vo te (c i t i z e n = Frank) .
3 ! enab l e vo te (c i t i z e n = Pete r) .
4 ! c a s t vo te (v o t e r = vo t e r (Frank) , c and i d a t e = Mary) .
5 ! c a s t vo te (v o t e r = vo t e r (Pe te r) , c and i d a t e = David) .
6 ! enab l e vo te (c i t i z e n = Hannah) .
7 ! c a s t vo te (v o t e r = vo t e r (Hannah) , c and i d a t e = David) .
8 ! c a s t vo te (v o t e r = vo t e r (John) , c and i d a t e = Mary) .
9 ! d e c l a r e w inne r () .

Language design - overview

1 World: values, types, expressions

2 Norms: duties, acts, transitions

3 Pragmatics: refinement, scripts, testing

Reflection

Curb your enthusiasm Thomas...

Challenges

Language design: appeal, scope, fit-for-purpose ...

Policy design: consistency, composition, qualification ...

Policy analysis: exploration, testing, verification, reasoning, planning ...

System compliance: testing, verification, “by construction” ...

eFLINT - A DSL for Testing Normative Specifications

L. Thomas van Binsbergen
Centrum Wiskunde & Informatica

22 November, 2019

