
JustAct: Actions
Universally Justified by

Partial, Dynamic Policies
Christopher Esterhuyse, Tim Müller, Thomas van Binsbergen

1

Data Exchange Systems

Data exchange systems share and process data

across organisational boundaries. They are

● inherently distributed, and

● subject to complex requirements.

Example: the Brane system, orchestrating the

sharing and processing of medical data.

2

The Role of Policy

Systems are subject to complex requirements like…

● The General Data Privacy Regulation (GDPR)

● Consortium-level agreements

● Resource-level sharing agreements

Policies capture these requirements. This affords…

● Static analysis (e.g., model-checking)

● Dynamic enforcement (e.g., monitoring)

3

Example Policy

Noteworthy:

● Built from expressions and rules

→ modular → (de)composable

● Models domain-specific concepts

→ complex and specific

but not ambiguous

4

/// Stelt dat áls de `totale-commons-waarde-aangeboden` is gegeven,
/// deze waarde direct herleidbaar moet zijn tot de waarde van de
/// aangeboden producten van die Deelnemer.
///
/// Afsprakenstelsel:
/// > Deze Eurowaarde moet direct herleidbaar zijn tot
/// de commerciële waarde van de als Commons
/// > aangeboden producten, diensten en/of data(gebruik)
/// in de Producten en Diensten Catalogus.
///
/// De aanbieder kan aansprakelijk worden gehouden door
/// elke (andere) Deelnemer.

Duty totale-commons-waarde-aangeboden-herleidbaar-van-commerciele-waarde
 Holder aanbieder
 Claimant deelnemer
 Related to totale-commons-waarde-aangeboden

 // De Duty geldt voor elke aanbieder met aangeboden waarde.
 Derived from (Foreach totale-commons-waarde-aangeboden, deelnemer :
 totale-commons-waarde-aangeboden-herleidbaar-van-commerciele-waarde(
 totale-commons-waarde-aangeboden.aanbieder,
 deelnemer,
 totale-commons-waarde-aangeboden
) When (totale-commons-waarde-aangeboden.waarde > 0
 && totale-commons-waarde-aangeboden.aanbieder != deelnemer))

 // De Duty is geschonden als er niet genoemt is dat de
 // waarde herleidbaar is tot deze Deelnemer's aangeboden producten.
 Violated when (Exists aanbod :
 aanbod-als-commons(aanbod)
 && aanbod.aanbieder == aanbieder
 && Not(totale-waarde-herleidbaar-tot-aanbod(
 totale-commons-waarde-aangeboden, aanbod))).

Example Policy

Noteworthy:

● Built from expressions and rules

→ modular → (de)composable

● Models domain-specific concepts

→ complex and specific

but not ambiguous

● There are several useful policy langs.

5

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
 not ctl-authorises(Owner, Accessor, Data).

Datalog¬

The Demands of Policy

Requirements can impose significant constraints on

the runtime system (e.g., data privacy regulations):

1. Policy must determine system behavior

2. Policies may change arbitrarily at runtime

3. Policies themselves may be sensitive

Each data exchange system strikes its own balance.

AMdEX project: develop generic tools for building

specialised data exchange systems.

6

The Contribution

Today, we present the JustAct framework, which

● Defines the relation between policy and

agents’ actions and communications, but

● Leaves undefined the policy language

and to the runtime implementation.

7

The Idea

The system consists of agents which are

autonomous: each independently decides …

● Which policies they create1 and share

● Which actions they take2

…

8

The Idea

The system consists of agents which are

autonomous: each independently decides …

● Which policies they create1 and share

● Which actions they take2

1 but not every agent can create every policy
2 but each action must be justified with a policy

9

Using the Framework

Precisely, our framework is…

1. A relational abstraction over the system

2. Requirements “realistically” satisfiable

3. Guarantees following from the requirements

Using the framework means adopting the

abstraction such that the requirements are satisfied.

10

Here is the abstraction, a relational ontology:

Using the Framework

Precisely, our framework is…

1. A relational abstraction over the system

2. Requirements “realistically” satisfiable

3. Guarantees following from the requirements

Using the framework means adopting the

abstraction such that the requirements are satisfied.

11

Concepts: 1/7

● Agents incrementally unfold the subset of

stated messages at runtime.

● The author of each message is evident.

12

amy:q

amy:m

amy:n

Concepts: 2/7

● Messages carry policies.

We suggest: extract sensitive to author

● Each message set carries one policy

We suggest: composed message-policies

● → Available policies grow with statements.

13

amy:q

amy:m

amy:n

p

Concepts: 3/7

● Not every policy is valid (“useful”).

● We suggest: wrong message by wrong author

reflected as invalidity

14

amy:q

amy:m

amy:n

p✓

● The set of actions grows at runtime.

● The author of each action is evident:

the author of the statement it enacts.

● Each action is justified by a message set.

Its extracted policy must be valid.

→ Valid policies determine justified actions.

15

amy:q

amy:m

amy:n

p✓

amy:mConcepts: 4/7

Concepts: 5/7

● Each policy is a model of the domain

(e.g., policies = deterministic logic programs).

● → All agents agree on a given action’s
○ effects

○ justificaction and validity

16

amy:q

amy:m

amy:n

access(amy,data1).

greet(amy,bob).

p✓

amy:m

A priori agreement to empower the admin.

A Usage Example

17

Model of domain relations in extract({s
1
})

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
 not ctl-authorises(Owner, Accessor, Data).

A priori agreement to empower the admin.

Administrator authorises a particular data-access.

A Usage Example

18

Model of domain relations in extract({s
1
,s

2
})

% Statement 's2' by 'administrator'
ctl-authorises(administrator, amy, x-rays).

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
 not ctl-authorises(Owner, Accessor, Data).

A priori agreement to empower the admin.

Administrator authorises a particular data-access.

Amy accesses X-rays

A Usage Example

19

Model of domain relations in extract({s
1
,s

2
,s

3
})

% Statement 's2' by 'administrator'
ctl-authorises(administrator, amy, x-rays).

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
 not ctl-authorises(Owner, Accessor, Data).

A priori agreement to empower the admin.

Administrator authorises a particular data-access.

Amy accesses X-rays

A Usage Example

20

Model of domain relations in extract({s
1
,s

2
,s

3
})

% Statement 's2' by 'administrator'
ctl-authorises(administrator, amy, x-rays).

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

Model of framework-level relations
% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
 not ctl-authorises(Owner, Accessor, Data).

A priori agreement to empower the admin.

Administrator authorises a particular data-access.

Amy accesses X-rays

A Usage Example

21

Model of domain relations in extract({s
1
,s

2
,s

3
})

% Statement 's2' by 'administrator'
ctl-authorises(administrator, amy, x-rays).

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

← Amy can enact this,
as justified by {s

1
,s

2
,s

3
}

All observers agree:
● That it is permitted
● On the effects

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
 not ctl-authorises(Owner, Accessor, Data).

A priori agreement to empower the admin.

Amy accesses X-rays

A Usage Example

22

Model of domain relations in extract({s
1
,s

3
})

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

Model of framework-level relations
% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
 not ctl-authorises(Owner, Accessor, Data).

Amy accesses X-rays

A Usage Example

23

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

← Amy can enact this
as justified by {s

3
} ?

Concepts: 5/7

24

amy:q

amy:m

amy:n

access(amy,data1).

greet(amy,bob).

p✓

amy:m

Concepts: 6/7

● Agreements are special statements.

That a statement is an agreement is evident.

● Each action is based on some agreement.

The agreement must be in the justification.

● → Agreements determine justifications

25

amy:q

amy:m

amy:n

access(amy,data1).

greet(amy,bob).

p✓

amy:m

A Usage Example

26

Model of domain relations in extract({s
3
})

Model of framework-level relations

Amy accesses X-rays

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

← Amy can enact this
but {s

3
} is invalid

A Usage Example

27

Model of domain relations in extract({s
1
,s

2
,s

3
})

A priori agreement to empower the admin.

Administrator authorises a particular data-access.

Amy accesses X-rays

% Statement 's2' by 'administrator'
ctl-authorises(administrator, amy, x-rays).

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
 not ctl-authorises(Owner, Accessor, Data).

A Usage Example

28

A priori agreement to empower the admin.

Amy impersonates the administrator?

Amy accesses X-rays

% Statement 's2’' by 'amy'
ctl-authorises(administrator, amy, x-rays).

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
 not ctl-authorises(Owner, Accessor, Data).

A Usage Example

29

Model of domain relations in extract({s
1
,s’

2
,s

3
})

A priori agreement to empower the admin.

Amy impersonates the administrator?

Amy accesses X-rays

% Statement 's2’' by 'amy'
ctl-authorises(administrator, amy, x-rays).

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
 not ctl-authorises(Owner, Accessor, Data).

A Usage Example

30

The consortium “takes back” the agreement?

Administrator authorises a particular data-access.

Amy accesses X-rays

% Statement 's2' by 'administrator'
ctl-authorises(administrator, amy, x-rays).

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
 not ctl-authorises(Owner, Accessor, Data).

Concepts: 6/7

31

amy:q

amy:m

amy:n

access(amy,data1).

greet(amy,bob).

p✓

amy:m

05:00

● Actions and agreements are contextualised

by time (instants). Each action must be

contemporary with its basis agreement.

● → Changing the time effectively changes the

agreements, i.e., this models mutability.

Concepts: 7/7

32

amy:q

amy:m

amy:n

access(amy,data1).

greet(amy,bob).

p✓

amy:m

05:00

A Usage Example

33

The consortium “takes back” the agreement?

Administrator authorises a particular data-access.

Amy accesses X-rays

% Statement 's2' by 'administrator'
ctl-authorises(administrator, amy, x-rays).

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
 not ctl-authorises(Owner, Accessor, Data).

% Statement 's11' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
 not ctl-authorises(Owner, Accessor, Data).

Characteristics

In systems implementing the framework…

● Agents can make statements and take actions
autonomously, lossily, asynchronously.

● It suffices for the relevant policies to reach
the relevant actors.

● Only agreements must be synchronised.

● All agents (e.g., an auditor) can decide
whether a given action is permitted.

34

amy:m
✓

amy:m

amy:n

Work continues to develop and use the framework:

1. We develop policy languages for this
a. We adapt existing languages (see PLNL!)

2. We experiment with implementations.

3. We automate agent work:
a. Policy analysis and search via ASP

4. Extend framework to explicitly treat privacy.

Looking Forward

35

End.

36

amy:q

amy:m

amy:n

access(amy,data1).

greet(amy,bob).

p✓

amy:m

05:00

Graveyard

37

A priori agreement to empower the admin.

Administrator authorises a particular data-access.

Anton “the antagonist” considers misbehaving.

A Usage Example

38

Model of domain relations in extract({s
1
,s

2
,s

4
})

% Statement 's4' authored by 'anton'
ctl-authorises(administrator, anton, x-rays).

% Statement 's2' by 'administrator'
ctl-authorises(administrator, amy, x-rays).

% Statement 's5' authored by 'anton'
owns(anton, x-rays).

Model of domain relations in extract({s
1
,s

2
,s

4
,s

5
})

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
 not ctl-authorises(Owner, Accessor, Data).

A priori agreement to empower the admin.

Hospitals h
1
 and h

2
 condition their authorisations.

A Usage Example

39

Model of domain relations in extract(s
6-8

)

% Statement 's6' authored by 'administrator'
ctl-authorises(administrator, bob, x-rays)

:- ctl-authorises(h1, bob, x-rays),
 ctl-authorises(h2, bob, x-rays).

% Statement 's8' authored by 'h2'
ctl-authorises(h2, Accessor, x-rays)
 :- ctl-accesses(Accessor, x-rays),
 not ctl-accesses(anton , x-rays).

% Statement 's7' authored by 'h1'
ctl-authorises(h1, Accessor, x-rays)
:- ctl-authorises(h2, Accessor, x-rays).

A priori agreement to empower the admin.

Hospitals h
1
 and h

2
 condition their authorisations.

Bob accesses data (justifiably!)

A Usage Example

40

Model of domain relations in extract(s
6-8

)

% Statement 's6' authored by 'administrator'
ctl-authorises(administrator, bob, x-rays)

:- ctl-authorises(h1, bob, x-rays),
 ctl-authorises(h2, bob, x-rays).

% Statement 's8' authored by 'h2'
ctl-authorises(h2, Accessor, x-rays)
 :- ctl-accesses(Accessor, x-rays),
 not ctl-accesses(anton , x-rays).

% Statement 's7' authored by 'h1'
ctl-authorises(h1, Accessor, x-rays)
:- ctl-authorises(h2, Accessor, x-rays).

% Statement 's9' authored by 'bob'
ctl-accesses(bob, x-rays).

Model of domain relations in extract({s
6
,s

7
,s

8
,s

9
})

A priori agreement to empower the admin.

Hospitals h
1
 and h

2
 condition their authorisations.

Anton accesses data (unjustifiably!)

A Usage Example

41

Model of domain relations in extract(s
6-8

)

% Statement 's6' authored by 'administrator'
ctl-authorises(administrator, bob, x-rays)

:- ctl-authorises(h1, bob, x-rays),
 ctl-authorises(h2, bob, x-rays).

% Statement 's8' authored by 'h2'
ctl-authorises(h2, Accessor, x-rays)
 :- ctl-accesses(Accessor, x-rays),
 not ctl-accesses(anton , x-rays).

% Statement 's7' authored by 'h1'
ctl-authorises(h1, Accessor, x-rays)
:- ctl-authorises(h2, Accessor, x-rays).

Model of domain relations in extract({s
6
,s

7
,s

8
,s

10
})

% Statement 's10' authored by 'anton'
ctl-accesses(anton, x-rays).

