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Data Exchange Systems

Data exchange systems share and process data 

across organisational boundaries. They are

● inherently distributed, and

● subject to complex requirements.

Example: the Brane system, orchestrating the 

sharing and processing of medical data.
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The Role of Policy

Systems are subject to complex requirements like…

● The General Data Privacy Regulation (GDPR)

● Consortium-level agreements

● Resource-level sharing agreements

Policies capture these requirements. This affords…

● Static analysis (e.g., model-checking)

● Dynamic enforcement (e.g., monitoring)
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Example Policy

Noteworthy:

● Built from expressions and rules

→ modular → (de)composable

● Models domain-specific concepts

→ complex and specific

but not ambiguous
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/// Stelt dat áls de `totale-commons-waarde-aangeboden` is gegeven,
/// deze waarde direct herleidbaar moet zijn tot de waarde van de 
/// aangeboden producten van die Deelnemer.
///
/// Afsprakenstelsel:
/// > Deze Eurowaarde moet direct herleidbaar zijn tot
///   de commerciële waarde van de als Commons
/// > aangeboden producten, diensten en/of data(gebruik)
///   in de Producten en Diensten Catalogus.
///
/// De aanbieder kan aansprakelijk worden gehouden door
/// elke (andere) Deelnemer.

Duty totale-commons-waarde-aangeboden-herleidbaar-van-commerciele-waarde
  Holder aanbieder
  Claimant deelnemer
  Related to totale-commons-waarde-aangeboden

  // De Duty geldt voor elke aanbieder met aangeboden waarde.
  Derived from (Foreach totale-commons-waarde-aangeboden, deelnemer :
    totale-commons-waarde-aangeboden-herleidbaar-van-commerciele-waarde(
      totale-commons-waarde-aangeboden.aanbieder,
      deelnemer,
      totale-commons-waarde-aangeboden
    ) When (totale-commons-waarde-aangeboden.waarde > 0
            && totale-commons-waarde-aangeboden.aanbieder != deelnemer))

  // De Duty is geschonden als er niet genoemt is dat de
  // waarde herleidbaar is tot deze Deelnemer's aangeboden producten.
  Violated when (Exists aanbod :
    aanbod-als-commons(aanbod)
    && aanbod.aanbieder == aanbieder
    && Not(totale-waarde-herleidbaar-tot-aanbod(
                       totale-commons-waarde-aangeboden, aanbod))).



Example Policy

Noteworthy:

● Built from expressions and rules

→ modular → (de)composable

● Models domain-specific concepts

→ complex and specific

but not ambiguous

● There are several useful policy langs.
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% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
     not ctl-authorises(Owner, Accessor, Data).

Datalog¬



The Demands of Policy

Requirements can impose significant constraints on 

the runtime system (e.g., data privacy regulations):

1. Policy must determine system behavior

2. Policies may change arbitrarily at runtime

3. Policies themselves may be sensitive

Each data exchange system strikes its own balance.

AMdEX project: develop generic tools for building 

specialised data exchange systems.
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The Contribution

Today, we present the JustAct framework, which

● Defines the relation between policy and 

agents’ actions and communications, but

● Leaves undefined the policy language

and to the runtime implementation.
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The Idea

The system consists of agents which are 

autonomous: each independently decides …

● Which policies they create1 and share

● Which actions they take2

…
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The Idea

The system consists of agents which are 

autonomous: each independently decides …

● Which policies they create1 and share

● Which actions they take2

1 but not every agent can create every policy
2 but each action must be justified with a policy
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Using the Framework

Precisely, our framework is…

1. A relational abstraction over the system

2. Requirements “realistically” satisfiable

3. Guarantees following from the requirements

Using the framework means adopting the 

abstraction such that the requirements are satisfied.
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Here is the abstraction, a relational ontology:

Using the Framework

Precisely, our framework is…

1. A relational abstraction over the system

2. Requirements “realistically” satisfiable

3. Guarantees following from the requirements

Using the framework means adopting the 

abstraction such that the requirements are satisfied.
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Concepts: 1/7

● Agents incrementally unfold the subset of 

stated messages at runtime.

● The author of each message is evident.
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amy:q

amy:m

amy:n



Concepts: 2/7

● Messages carry policies.

We suggest: extract sensitive to author

● Each message set carries one policy

We suggest: composed message-policies

● → Available policies grow with statements.
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amy:q

amy:m

amy:n
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Concepts: 3/7

● Not every policy is valid (“useful”).

● We suggest: wrong message by wrong author 

reflected as invalidity
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amy:q

amy:m

amy:n
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● The set of actions grows at runtime.

● The author of each action is evident:

the author of the statement it enacts.

● Each action is justified by a message set.

Its extracted policy must be valid.

→ Valid policies determine justified actions.
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amy:q

amy:m

amy:n
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amy:mConcepts: 4/7



Concepts: 5/7

● Each policy is a model of the domain

(e.g., policies = deterministic logic programs).

● → All agents agree on a given action’s 
○ effects

○ justificaction and validity
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amy:q

amy:m

amy:n

access(amy,data1).

greet(amy,bob).

p✓

amy:m



A priori agreement to empower the admin.

A Usage Example
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Model of domain relations in extract({s
1
})

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
     not ctl-authorises(Owner, Accessor, Data).



A priori agreement to empower the admin.

Administrator authorises a particular data-access.

A Usage Example
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Model of domain relations in extract({s
1
,s

2
})

% Statement 's2' by 'administrator'
ctl-authorises(administrator, amy, x-rays).

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
     not ctl-authorises(Owner, Accessor, Data).



A priori agreement to empower the admin.

Administrator authorises a particular data-access.

Amy accesses X-rays

A Usage Example
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Model of domain relations in extract({s
1
,s

2
,s

3
})

% Statement 's2' by 'administrator'
ctl-authorises(administrator, amy, x-rays).

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
     not ctl-authorises(Owner, Accessor, Data).



A priori agreement to empower the admin.

Administrator authorises a particular data-access.

Amy accesses X-rays

A Usage Example
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Model of domain relations in extract({s
1
,s

2
,s

3
})

% Statement 's2' by 'administrator'
ctl-authorises(administrator, amy, x-rays).

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

Model of framework-level relations
% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
     not ctl-authorises(Owner, Accessor, Data).



A priori agreement to empower the admin.

Administrator authorises a particular data-access.

Amy accesses X-rays

A Usage Example
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Model of domain relations in extract({s
1
,s

2
,s

3
})

% Statement 's2' by 'administrator'
ctl-authorises(administrator, amy, x-rays).

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

← Amy can enact this,
as justified by {s

1
,s

2
,s

3
}

All observers agree:
● That it is permitted
● On the effects

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
     not ctl-authorises(Owner, Accessor, Data).



A priori agreement to empower the admin.

Amy accesses X-rays

A Usage Example
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Model of domain relations in extract({s
1
,s

3
})

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

Model of framework-level relations
% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
     not ctl-authorises(Owner, Accessor, Data).



Amy accesses X-rays

A Usage Example
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% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

← Amy can enact this
as justified by {s

3
} ?



Concepts: 5/7
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amy:q

amy:m

amy:n

access(amy,data1).

greet(amy,bob).

p✓

amy:m



Concepts: 6/7

● Agreements are special statements.

That a statement is an agreement is evident.

● Each action is based on some agreement.

The agreement must be in the justification.

● → Agreements determine justifications
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amy:q

amy:m

amy:n

access(amy,data1).

greet(amy,bob).

p✓

amy:m



A Usage Example
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Model of domain relations in extract({s
3
})

Model of framework-level relations

Amy accesses X-rays

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

← Amy can enact this
but {s

3
} is invalid



A Usage Example
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Model of domain relations in extract({s
1
,s

2
,s

3
})

A priori agreement to empower the admin.

Administrator authorises a particular data-access.

Amy accesses X-rays

% Statement 's2' by 'administrator'
ctl-authorises(administrator, amy, x-rays).

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
     not ctl-authorises(Owner, Accessor, Data).



A Usage Example
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A priori agreement to empower the admin.

Amy impersonates the administrator?

Amy accesses X-rays

% Statement 's2’' by 'amy'
ctl-authorises(administrator, amy, x-rays).

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
     not ctl-authorises(Owner, Accessor, Data).



A Usage Example

29

Model of domain relations in extract({s
1
,s’

2
,s

3
})

A priori agreement to empower the admin.

Amy impersonates the administrator?

Amy accesses X-rays

% Statement 's2’' by 'amy'
ctl-authorises(administrator, amy, x-rays).

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
     not ctl-authorises(Owner, Accessor, Data).



A Usage Example
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The consortium “takes back” the agreement?

Administrator authorises a particular data-access.

Amy accesses X-rays

% Statement 's2' by 'administrator'
ctl-authorises(administrator, amy, x-rays).

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
     not ctl-authorises(Owner, Accessor, Data).



Concepts: 6/7
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amy:q

amy:m

amy:n

access(amy,data1).

greet(amy,bob).

p✓

amy:m

05:00



● Actions and agreements are contextualised 

by time (instants). Each action must be 

contemporary with its basis agreement.

● → Changing the time effectively changes the 

agreements, i.e., this models mutability.

Concepts: 7/7
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amy:q

amy:m

amy:n

access(amy,data1).

greet(amy,bob).

p✓

amy:m

05:00



A Usage Example
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The consortium “takes back” the agreement?

Administrator authorises a particular data-access.

Amy accesses X-rays

% Statement 's2' by 'administrator'
ctl-authorises(administrator, amy, x-rays).

% Statement 's3' authored by 'amy'
ctl-accesses(amy, x-rays).

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
     not ctl-authorises(Owner, Accessor, Data).

% Statement 's11' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
     not ctl-authorises(Owner, Accessor, Data).



Characteristics

In systems implementing the framework…

● Agents can make statements and take actions 
autonomously, lossily, asynchronously.

● It suffices for the relevant policies to reach 
the relevant actors.

● Only agreements must be synchronised.

● All agents (e.g., an auditor) can decide 
whether a given action is permitted.
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amy:m
✓

amy:m

amy:n



Work continues to develop and use the framework:

1. We develop policy languages for this
a. We adapt existing languages (see PLNL!)

2. We experiment with implementations. 

3. We automate agent work:
a. Policy analysis and search via ASP

4. Extend framework to explicitly treat privacy.

Looking Forward
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End.
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amy:q

amy:m

amy:n

access(amy,data1).

greet(amy,bob).
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amy:m
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Graveyard
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A priori agreement to empower the admin.

Administrator authorises a particular data-access.

Anton “the antagonist” considers misbehaving.

A Usage Example
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Model of domain relations in extract({s
1
,s

2
,s

4
})

% Statement 's4' authored by 'anton'
ctl-authorises(administrator, anton, x-rays).

% Statement 's2' by 'administrator'
ctl-authorises(administrator, amy, x-rays).

% Statement 's5' authored by 'anton'
owns(anton, x-rays).

Model of domain relations in extract({s
1
,s

2
,s

4
,s

5
})

% Statement 's1' by 'consortium' (contents of agreement at time 1)
owns(administrator, Data) :- ctl-accesses(Accessor, Data).
error :- ctl-accesses(Accessor, Data), owns(Owner, Data),
     not ctl-authorises(Owner, Accessor, Data).



A priori agreement to empower the admin.

Hospitals h
1
 and h

2
 condition their authorisations.

A Usage Example
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Model of domain relations in extract(s
6-8

)

% Statement 's6' authored by 'administrator'
ctl-authorises(administrator, bob, x-rays)

:- ctl-authorises(h1, bob, x-rays),
   ctl-authorises(h2, bob, x-rays).

% Statement 's8' authored by 'h2'
ctl-authorises(h2, Accessor, x-rays)
  :- ctl-accesses(Accessor, x-rays),
 not ctl-accesses(anton   , x-rays).

% Statement 's7' authored by 'h1'
ctl-authorises(h1, Accessor, x-rays)
:- ctl-authorises(h2, Accessor, x-rays).



A priori agreement to empower the admin.

Hospitals h
1
 and h

2
 condition their authorisations.

Bob accesses data (justifiably!)

A Usage Example
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Model of domain relations in extract(s
6-8

)

% Statement 's6' authored by 'administrator'
ctl-authorises(administrator, bob, x-rays)

:- ctl-authorises(h1, bob, x-rays),
   ctl-authorises(h2, bob, x-rays).

% Statement 's8' authored by 'h2'
ctl-authorises(h2, Accessor, x-rays)
  :- ctl-accesses(Accessor, x-rays),
 not ctl-accesses(anton   , x-rays).

% Statement 's7' authored by 'h1'
ctl-authorises(h1, Accessor, x-rays)
:- ctl-authorises(h2, Accessor, x-rays).

% Statement 's9' authored by 'bob'
ctl-accesses(bob, x-rays).

Model of domain relations in extract({s
6
,s

7
,s

8
,s

9
})



A priori agreement to empower the admin.

Hospitals h
1
 and h

2
 condition their authorisations.

Anton accesses data (unjustifiably!)

A Usage Example
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Model of domain relations in extract(s
6-8

)

% Statement 's6' authored by 'administrator'
ctl-authorises(administrator, bob, x-rays)

:- ctl-authorises(h1, bob, x-rays),
   ctl-authorises(h2, bob, x-rays).

% Statement 's8' authored by 'h2'
ctl-authorises(h2, Accessor, x-rays)
  :- ctl-accesses(Accessor, x-rays),
 not ctl-accesses(anton   , x-rays).

% Statement 's7' authored by 'h1'
ctl-authorises(h1, Accessor, x-rays)
:- ctl-authorises(h2, Accessor, x-rays).

Model of domain relations in extract({s
6
,s

7
,s

8
,s

10
})

% Statement 's10' authored by 'anton'
ctl-accesses(anton, x-rays).


