
Multiverse Recursive Descent Grammar Exploration

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
ltvanbinsbergen@acm.org

June 21, 2024

1 / 58

My presentation today

I would characterise my presentation today as follows:

• Recursive Descent Parsing as a case study for Multiverse Debugging

.

• Helping me get out of my rabbit hole.

• A personal confirmation I still nurture a parsing bug.

2 / 58

My presentation today

I would characterise my presentation today as follows:

• Recursive Descent Parsing as a case study for Multiverse Debugging.

• Helping me get out of my rabbit hole.

• A personal confirmation I still nurture a parsing bug.

3 / 58

My presentation today

I would characterise my presentation today as follows:

• Recursive Descent Parsing as a case study for Multiverse Debugging.

• Helping me get out of my rabbit hole.

• A personal confirmation I still nurture a parsing bug.

4 / 58

My presentation today

I would characterise my presentation today as follows:

• Recursive Descent Parsing as a case study for Multiverse Debugging.

• Helping me get out of my rabbit hole.

• A personal confirmation I still nurture a parsing bug.

5 / 58

A General Framework for Multiverse Debugging

Figure: DOI: https://doi.org/10.1145/3623476.3623526

Language-parameteric debugging framework for non-deterministic/concurrent executions.

6 / 58

https://doi.org/10.1145/3623476.3623526

Interactive execution models

Incremental programming : build towards a larger program by submitting program fragments
one-by-one and receive immediate feedback. E.g., Python, Jupyter, REPLs in general..

↪→ compare with Stepwise debugging : step through the execution of a program to observe
evolution of state and effects, halting at selected ‘breakpoints’

Exploratory programming : build towards a larger program by attempting, comparing and
revisiting alternative extensions

↪→ Omniscient/Back-in-time debugging :
record and revisit previous, selected execution points to observe state and effects

↪→ Multiverse debugging : (exhaustive) exploration of concurrent executions
(with state reductions and temporal breakpoints)

7 / 58

Interactive execution models

Incremental programming : build towards a larger program by submitting program fragments
one-by-one and receive immediate feedback. E.g., Python, Jupyter, REPLs in general..

↪→ compare with Stepwise debugging : step through the execution of a program to observe
evolution of state and effects, halting at selected ‘breakpoints’

Exploratory programming : build towards a larger program by attempting, comparing and
revisiting alternative extensions

↪→ Omniscient/Back-in-time debugging :
record and revisit previous, selected execution points to observe state and effects

↪→ Multiverse debugging : (exhaustive) exploration of concurrent executions
(with state reductions and temporal breakpoints)

8 / 58

Interactive execution models

Incremental programming : build towards a larger program by submitting program fragments
one-by-one and receive immediate feedback. E.g., Python, Jupyter, REPLs in general..

↪→ compare with Stepwise debugging : step through the execution of a program to observe
evolution of state and effects, halting at selected ‘breakpoints’

Exploratory programming : build towards a larger program by attempting, comparing and
revisiting alternative extensions

↪→ Omniscient/Back-in-time debugging :
record and revisit previous, selected execution points to observe state and effects

↪→ Multiverse debugging : (exhaustive) exploration of concurrent executions
(with state reductions and temporal breakpoints)

9 / 58

Interactive execution models

Incremental programming : build towards a larger program by submitting program fragments
one-by-one and receive immediate feedback. E.g., Python, Jupyter, REPLs in general..

↪→ compare with Stepwise debugging : step through the execution of a program to observe
evolution of state and effects, halting at selected ‘breakpoints’

Exploratory programming : build towards a larger program by attempting, comparing and
revisiting alternative extensions

↪→ Omniscient/Back-in-time debugging :
record and revisit previous, selected execution points to observe state and effects

↪→ Multiverse debugging : (exhaustive) exploration of concurrent executions
(with state reductions and temporal breakpoints)

10 / 58

Interactive execution models

Incremental programming : build towards a larger program by submitting program fragments
one-by-one and receive immediate feedback. E.g., Python, Jupyter, REPLs in general..

↪→ compare with Stepwise debugging : step through the execution of a program to observe
evolution of state and effects, halting at selected ‘breakpoints’

Exploratory programming : build towards a larger program by attempting, comparing and
revisiting alternative extensions

↪→ Omniscient/Back-in-time debugging :
record and revisit previous, selected execution points to observe state and effects

↪→ Multiverse debugging : (exhaustive) exploration of concurrent executions
(with state reductions and temporal breakpoints)

11 / 58

Interactive programming models

Commonality

A transition relation state
action−−−→ state ′ describes a tree of executions and reachable states.

Figure: doi: https://doi.org/10.1145/3410257 12 / 58

https://doi.org/10.1145/3410257

Context-free grammars and non-determinism

Observation: The generation of a sentence by a grammar can be seen as a particular execution
of a non-deterministic program.

Similarly: A complete, generalised parser attempts to find all executions that generate a
particular sentence (the input sentence of the parser).

Question: In what ways can an omniscient, exploratory, multiverse debugger for grammars
assist the grammar engineering process?

Today

• A theoretical framework for multiverse grammar exploration based on the execution
threads encountered in recursive-descent parsers

• A prototype implementation of a tool that supports sentence generation, deterministic
parsing, error-recovery, deterministic error diagnosis, ...

• TODO: error diagnosis in complete parsing, evaluation: does anyone want this?

13 / 58

Context-free grammars and non-determinism

Observation: The generation of a sentence by a grammar can be seen as a particular execution
of a non-deterministic program.

Similarly: A complete, generalised parser attempts to find all executions that generate a
particular sentence (the input sentence of the parser).

Question: In what ways can an omniscient, exploratory, multiverse debugger for grammars
assist the grammar engineering process?

Today

• A theoretical framework for multiverse grammar exploration based on the execution
threads encountered in recursive-descent parsers

• A prototype implementation of a tool that supports sentence generation, deterministic
parsing, error-recovery, deterministic error diagnosis, ...

• TODO: error diagnosis in complete parsing, evaluation: does anyone want this?

14 / 58

Context-free grammars and non-determinism

Observation: The generation of a sentence by a grammar can be seen as a particular execution
of a non-deterministic program.

Similarly: A complete, generalised parser attempts to find all executions that generate a
particular sentence (the input sentence of the parser).

Question: In what ways can an omniscient, exploratory, multiverse debugger for grammars
assist the grammar engineering process?

Today

• A theoretical framework for multiverse grammar exploration based on the execution
threads encountered in recursive-descent parsers

• A prototype implementation of a tool that supports sentence generation, deterministic
parsing, error-recovery, deterministic error diagnosis, ...

• TODO: error diagnosis in complete parsing, evaluation: does anyone want this?

15 / 58

Context-free grammars and non-determinism

Observation: The generation of a sentence by a grammar can be seen as a particular execution
of a non-deterministic program.

Similarly: A complete, generalised parser attempts to find all executions that generate a
particular sentence (the input sentence of the parser).

Question: In what ways can an omniscient, exploratory, multiverse debugger for grammars
assist the grammar engineering process?

Today

• A theoretical framework for multiverse grammar exploration based on the execution
threads encountered in recursive-descent parsers

• A prototype implementation of a tool that supports sentence generation, deterministic
parsing, error-recovery, deterministic error diagnosis, ...

• TODO: error diagnosis in complete parsing, evaluation: does anyone want this?
16 / 58

Syntax Analysis – conventional

Definition

A grammar G is a set of productions of the form (X , α) with:

• X ∈ N, referred to as the left-hand side, with N the set of nonterminals

• α ∈ (N ∪ T)∗, referred to as the right-hand side

• T ∩ N = ∅, with T the set of terminals

Definition

The relations α → β (derivation steps) and α 99K τ (left-most derivations) are defined as the
smallest set such that:

• X → α if and only if (X , α) ∈ G

• τXα → τβα if and only if X → β and τ ∈ T (G)∗ (the terminal symbols occuring in G)

• α0 99K τ if and only if there is a sequence α0 → α1, α1 → α2, . . . , αn−1 → τ with n ≥ 0

17 / 58

Syntax Analysis – conventional

Definition

A grammar G is a set of productions of the form (X , α) with:

• X ∈ N, referred to as the left-hand side, with N the set of nonterminals

• α ∈ (N ∪ T)∗, referred to as the right-hand side

• T ∩ N = ∅, with T the set of terminals

Definition

The relations α → β (derivation steps) and α 99K τ (left-most derivations) are defined as the
smallest set such that:

• X → α if and only if (X , α) ∈ G

• τXα → τβα if and only if X → β and τ ∈ T (G)∗ (the terminal symbols occuring in G)

• α0 99K τ if and only if there is a sequence α0 → α1, α1 → α2, . . . , αn−1 → τ with n ≥ 0

18 / 58

Example – sentence generation

Definition

The language L(G) described by grammar G is the set of all sentences τ with X 99K τ
(and X ∈ N a nominated start nonterminal).

X → A ; | B

A → a A | ϵ

B → B b | ϵ

X → A;

→ aA;

→ aaA;

→ aaaA;

→ aaa;

X → B

→ Bb

→ b

Recursive-Descent Parsing: choose alternates based on next token expectation from input

19 / 58

Example – sentence generation

Definition

The language L(G) described by grammar G is the set of all sentences τ with X 99K τ
(and X ∈ N a nominated start nonterminal).

X → A ; | B

A → a A | ϵ

B → B b | ϵ

X → A;

→ aA;

→ aaA;

→ aaaA;

→ aaa;

X → B

→ Bb

→ b

Recursive-Descent Parsing: choose alternates based on next token expectation from input

20 / 58

Example – sentence generation

Definition

The language L(G) described by grammar G is the set of all sentences τ with X 99K τ
(and X ∈ N a nominated start nonterminal).

X → A ; | B

A → a A | ϵ

B → B b | ϵ

X → A;

→ aA;

→ aaA;

→ aaaA;

→ aaa;

X → B

→ Bb

→ b

Recursive-Descent Parsing: choose alternates based on next token expectation from input

21 / 58

Example – sentence generation

Definition

The language L(G) described by grammar G is the set of all sentences τ with X 99K τ
(and X ∈ N a nominated start nonterminal).

X → A ; | B

A → a A | ϵ

B → B b | ϵ

X → A;

→ aA;

→ aaA;

→ aaaA;

→ aaa;

X → B

→ Bb

→ b

Recursive-Descent Parsing: choose alternates based on next token expectation from input

22 / 58

Example – Recursive Descent Parsing (RDP)

X → A ; | B

A → a A | ϵ

B → B b | ϵ

Input: [] [b ,b]
Next action:descend(X ,B)

Stack: [(X ′ → ·X , 0)]

Common problems in RD-Parsing

• Left-recursion: choosing the same alternative without progress

• Non-predictive: alternates have (indirect) common prefixes

• Non-determinism cannot be avoid in general case (without solving the parse problem)

23 / 58

Example – Recursive Descent Parsing (RDP)

X → A ; | B

A → a A | ϵ

B → B b | ϵ

Input: [] [b ,b]
Next action: descend(B,Bb)

Stack: [(X ′ → ·X , 0), (X → ·B, 0)]

Common problems in RD-Parsing

• Left-recursion: choosing the same alternative without progress

• Non-predictive: alternates have (indirect) common prefixes

• Non-determinism cannot be avoid in general case (without solving the parse problem)

24 / 58

Example – Recursive Descent Parsing (RDP)

X → A ; | B

A → a A | ϵ

B → B b | ϵ

Input: [] [b ,b]
Next action: descend(B,Bb)

Stack: [(X ′ → ·X , 0), (X → ·B, 0), (B → ·Bb, 0)]

Common problems in RD-Parsing

• Left-recursion: choosing the same alternative without progress

• Non-predictive: alternates have (indirect) common prefixes

• Non-determinism cannot be avoid in general case (without solving the parse problem)

25 / 58

Example – Recursive Descent Parsing (RDP)

X → A ; | B

A → a A | ϵ

B → B b | ϵ

Input: [] [b ,b]
Next action: descend(B, ϵ)

Stack: [(X ′ → ·X , 0), (X → ·B, 0), (B → ·Bb, 0), (B → ·Bb, 0)]

Common problems in RD-Parsing

• Left-recursion: choosing the same alternative without progress

• Non-predictive: alternates have (indirect) common prefixes

• Non-determinism cannot be avoid in general case (without solving the parse problem)

26 / 58

Example – Recursive Descent Parsing (RDP)

X → A ; | B

A → a A | ϵ

B → B b | ϵ

Input: [] [b ,b]
Next action: ascend

Stack: [(X ′ → ·X , 0), (X → ·B, 0), (B → ·Bb, 0), (B → ·Bb, 0), (B → ·, 0)]

Common problems in RD-Parsing

• Left-recursion: choosing the same alternative without progress

• Non-predictive: alternates have (indirect) common prefixes

• Non-determinism cannot be avoid in general case (without solving the parse problem)

27 / 58

Example – Recursive Descent Parsing (RDP)

X → A ; | B

A → a A | ϵ

B → B b | ϵ

Input: [] [b ,b]
Next action: match(b)

Stack: [(X ′ → ·X , 0), (X → ·B, 0), (B → ·Bb, 0), (B → B · b, 0)]

Common problems in RD-Parsing

• Left-recursion: choosing the same alternative without progress

• Non-predictive: alternates have (indirect) common prefixes

• Non-determinism cannot be avoid in general case (without solving the parse problem)

28 / 58

Example – Recursive Descent Parsing (RDP)

X → A ; | B

A → a A | ϵ

B → B b | ϵ

Input: [b] [b]
Next action: ascend

Stack: [(X ′ → ·X , 0), (X → ·B, 0), (B → ·Bb, 0), (B → Bb·, 0)]

Common problems in RD-Parsing

• Left-recursion: choosing the same alternative without progress

• Non-predictive: alternates have (indirect) common prefixes

• Non-determinism cannot be avoid in general case (without solving the parse problem)

29 / 58

Example – Recursive Descent Parsing (RDP)

X → A ; | B

A → a A | ϵ

B → B b | ϵ

Input: [b] [b]
Next action: match(b)

Stack: [(X ′ → ·X , 0), (X → ·B, 0), (B → B · b, 0)]

Common problems in RD-Parsing

• Left-recursion: choosing the same alternative without progress

• Non-predictive: alternates have (indirect) common prefixes

• Non-determinism cannot be avoid in general case (without solving the parse problem)

30 / 58

Example – Recursive Descent Parsing (RDP)

X → A ; | B

A → a A | ϵ

B → B b | ϵ

Input: [b, b] []
Next action: ascend

Stack: [(X ′ → ·X , 0), (X → ·B, 0), (B → Bb·, 0)]

Common problems in RD-Parsing

• Left-recursion: choosing the same alternative without progress

• Non-predictive: alternates have (indirect) common prefixes

• Non-determinism cannot be avoid in general case (without solving the parse problem)

31 / 58

Example – Recursive Descent Parsing (RDP)

X → A ; | B

A → a A | ϵ

B → B b | ϵ

Input: [b, b] []
Next action: ascend

Stack: [(X ′ → ·X , 0), (X → B·, 0)]

Common problems in RD-Parsing

• Left-recursion: choosing the same alternative without progress

• Non-predictive: alternates have (indirect) common prefixes

• Non-determinism cannot be avoid in general case (without solving the parse problem)

32 / 58

Example – Recursive Descent Parsing (RDP)

X → A ; | B

A → a A | ϵ

B → B b | ϵ

Input: [b, b] []
Next action: accept

Stack: [(X ′ → X·, 0)]

Common problems in RD-Parsing

• Left-recursion: choosing the same alternative without progress

• Non-predictive: alternates have (indirect) common prefixes

• Non-determinism cannot be avoid in general case (without solving the parse problem)

33 / 58

Example – Recursive Descent Parsing (RDP)

X → A ; | B

A → a A | ϵ

B → B b | ϵ

Input: [b, b] []
Next action: accept

Stack: [(X ′ → X·, 0)]

Common problems in RD-Parsing

• Left-recursion: choosing the same alternative without progress

• Non-predictive: alternates have (indirect) common prefixes

• Non-determinism cannot be avoid in general case (without solving the parse problem)

34 / 58

Syntax Analysis – Alternative

Definition – Syntax of Actions

a : action ::= match(t) | descend(X , α) | ascend | accept

Constraints: t ∈ T ,X ∈ N, α ∈ (T ∪ N)∗

Definition – Semantics of Actions

A configuration γ is a structure ⟨S , i⟩ with:
• S a call-stack; a sequence of items denoted [(X → α · β, k),S ′] with k ≥ 0

• i ≥ 0 an index into some input sentence I.

The semantics of actions is captured by the transition relation γ
a−→ γ′.

A (complete) parsing thread is a (longest) sequence ⟨[(X ′ → ·X , 0)], 0⟩ a0−→ . . .
an−→ ⟨S ,m⟩

(for some m and X ′ ∈ N,X ′ ̸∈ N(G)). A thread is successful if S = [].

35 / 58

Syntax Analysis – Alternative

Definition – Syntax of Actions

a : action ::= match(t) | descend(X , α) | ascend | accept

Constraints: t ∈ T ,X ∈ N, α ∈ (T ∪ N)∗

Definition – Semantics of Actions

A configuration γ is a structure ⟨S , i⟩ with:
• S a call-stack; a sequence of items denoted [(X → α · β, k),S ′] with k ≥ 0

• i ≥ 0 an index into some input sentence I.

The semantics of actions is captured by the transition relation γ
a−→ γ′.

A (complete) parsing thread is a (longest) sequence ⟨[(X ′ → ·X , 0)], 0⟩ a0−→ . . .
an−→ ⟨S ,m⟩

(for some m and X ′ ∈ N,X ′ ̸∈ N(G)). A thread is successful if S = [].

36 / 58

Evolution of RDP Programs in transition system ΓS

Ii = t s = t

⟨[(X → α · sβ, k),S], i⟩ match(t)−−−−−→ ⟨[(X → αt · β, k), S], i + 1⟩
match

s = X (X , δ) ∈ G

⟨[(Y → α · sβ, k), S], i⟩ descend(X ,δ)−−−−−−−−→ ⟨[(X → ·δ, i), (Y → α · Xβ, k),S], i⟩
descend

[(Y → α · Xβ, k ′),S ′] = S

⟨[(X → α·, k), S], i⟩ ascend−−−−→ ⟨[(Y → αX · β, k ′), S ′], i⟩
ascend

|I | = i

⟨[(X ′ → X·, 0)], i⟩ accept−−−−→ ⟨[], i⟩
accept

37 / 58

Evolution of RDP Programs in transition system ΓG

s = t

⟨[(X → α · sβ, k),S], i⟩ match(t)−−−−−→ ⟨[(X → αt · β, k), S], i + 1⟩
match

s = X (X , δ) ∈ G

⟨[(Y → α · sβ, k), S], i⟩ descend(X ,δ)−−−−−−−−→ ⟨[(X → ·δ, i), (Y → α · Xβ, k),S], i⟩
descend

[(Y → α · Xβ, k ′),S ′] = S

⟨[(X → α·, k), S], i⟩ ascend−−−−→ ⟨[(Y → αX · β, k ′), S ′], i⟩
ascend

⟨[(X ′ → X·, 0)], i⟩ accept−−−−→ ⟨[], i⟩
accept

38 / 58

Demo 1 – guided sentence generation

39 / 58

Syntax Analysis – Claims

For every derivation there is exactly one successful thread in ΓG and vice versa.

For every parse tree of I there is exactly one successful thread in ΓS and vice versa.

A parser synthesises a successful thread for a sentence I if there is one.

A complete parser synthesises all successful threads for a sentence I.

A general parser does the above for any context-free grammars (no restrictions).

40 / 58

Syntax Analysis – Claims

For every derivation there is exactly one successful thread in ΓG and vice versa.

For every parse tree of I there is exactly one successful thread in ΓS and vice versa.

A parser synthesises a successful thread for a sentence I if there is one.

A complete parser synthesises all successful threads for a sentence I.

A general parser does the above for any context-free grammars (no restrictions).

41 / 58

Syntax Analysis – Claims

For every derivation there is exactly one successful thread in ΓG and vice versa.

For every parse tree of I there is exactly one successful thread in ΓS and vice versa.

A parser synthesises a successful thread for a sentence I if there is one.

A complete parser synthesises all successful threads for a sentence I.

A general parser does the above for any context-free grammars (no restrictions).

42 / 58

Syntax Analysis – Claims

For every derivation there is exactly one successful thread in ΓG and vice versa.

For every parse tree of I there is exactly one successful thread in ΓS and vice versa.

A parser synthesises a successful thread for a sentence I if there is one.

A complete parser synthesises all successful threads for a sentence I.

A general parser does the above for any context-free grammars (no restrictions).

43 / 58

Syntax Analysis – Claims

For every derivation there is exactly one successful thread in ΓG and vice versa.

For every parse tree of I there is exactly one successful thread in ΓS and vice versa.

A parser synthesises a successful thread for a sentence I if there is one.

A complete parser synthesises all successful threads for a sentence I.

A general parser does the above for any context-free grammars (no restrictions).

44 / 58

Common solutions to problems with RD-Parsing

Recall: Common problems in RD-Parsing

• Left-recursion: choosing the same alternative without progress

• Non-predictive: alternates have (indirect) common prefixes

• Non-determinism cannot be avoid in general case (without solving the parse problem)

Common solutions to pruning undesirable paths

• Left-recursion removal: preserves language, modifies set of threads

• Alternative: make at most | I | recursive calls

• Left-factoring: preserves language, modifies set of threads

• k−lookahead: sound, reduces set of threads

• Accepting only predictive, LL(k)−grammars: not general

45 / 58

Lookahead Strategies Re-imagined

Defining – Language-Preserving Pruning Strategies

A pruning strategy defines additional conditions (on top of ΓG), removing transitions γ
a−→ γ′.

A pruning strategy is language preserving if it reduces the set of threads whilst preserving, for
every sentence in the language, at least one successful thread yielding that sentence.

A pruning strategy is sound if it reduces the set of threads without removing successful threads.

Note: left-biased choice not language-preserving, lookahead is.

Definition – Ambiguity Reduction Strategies

A perfect disambiguation strategy is a language-preserving pruning strategy that preserves
exactly one successful thread for every sentence in the language.

Note: many practical disambiguation strategies are not perfect (e.g., follow-restriction)

46 / 58

Lookahead Strategies Re-imagined

Defining – Language-Preserving Pruning Strategies

A pruning strategy defines additional conditions (on top of ΓG), removing transitions γ
a−→ γ′.

A pruning strategy is language preserving if it reduces the set of threads whilst preserving, for
every sentence in the language, at least one successful thread yielding that sentence.

A pruning strategy is sound if it reduces the set of threads without removing successful threads.

Note: left-biased choice not language-preserving, lookahead is.

Definition – Ambiguity Reduction Strategies

A perfect disambiguation strategy is a language-preserving pruning strategy that preserves
exactly one successful thread for every sentence in the language.

Note: many practical disambiguation strategies are not perfect (e.g., follow-restriction)

47 / 58

Pruning Examples

Definition – one token lookahead pruning

Remove ⟨S , k⟩ descend(X ,α)−−−−−−−−→ γ′ for any S , k , γ′,X , α if it holds that every shortest sub-thread

γ′
a1−→ . . .

an−→ γn that ends with

• an = match(t) has t ̸= Ik , or

• γn = ⟨[(X ′ → X·, 0)], k ′⟩ has k ′ ̸=| I |.

Definition – left-recursion termination

Remove ⟨S , k⟩ descend(X ,α)−−−−−−−−→ γ′ for any S , k , γ′,X , α when S has | I | or more items of the
form (Y → . . . ·X . . . , k) for any Y .

i.e., | I | descend actions have already been performed on X without progress.
Note: this pruning strategy is unsound for some grammars.

48 / 58

Pruning Examples

Definition – one token lookahead pruning

Remove ⟨S , k⟩ descend(X ,α)−−−−−−−−→ γ′ for any S , k , γ′,X , α if it holds that every shortest sub-thread

γ′
a1−→ . . .

an−→ γn that ends with

• an = match(t) has t ̸= Ik , or

• γn = ⟨[(X ′ → X·, 0)], k ′⟩ has k ′ ̸=| I |.

Definition – left-recursion termination

Remove ⟨S , k⟩ descend(X ,α)−−−−−−−−→ γ′ for any S , k , γ′,X , α when S has | I | or more items of the
form (Y → . . . ·X . . . , k) for any Y .

i.e., | I | descend actions have already been performed on X without progress.
Note: this pruning strategy is unsound for some grammars.

49 / 58

Action-lookahead

Definition – k-actions lookahead

Remove γ0
descend(X ,α)−−−−−−−−→ γ1 if all (subsequent) threads of k actions or less cannot transition

(considering any collection of additional pruning strategies).

With this strategy, a descend action is only possible if all subsequent threads are of a length
i > k or at least one successful thread has been identified.

50 / 58

Demo 2

Demo 2 with the different pruning strategies applied.

51 / 58

Deterministic parse error diagnosis

The parse error diagnosis problem:
Given a stack-trace and an input sentence location, answer the following:
Did I expect to be at a different grammar location or a different input sentence loca-
tion? Does the grammar or input require modification?

Suggested protocol for using RDP-Debugging tool:

1. Configure tool to use same lookahead strategy as employed parser

2. Run on grammar and input until parse error.

3. Observe stack-trace and input location.

4. Weaken input sentence constraints (move from ΓS to ΓG semantics).

5. Experiment with additional or dropped tokens (error recovery, next slide).

6. Jump back to last transition that still matched expectation (omniscient debugging).

7. Weaken the applied set of lookahead/pruning strategies.

8. Explore alternative paths to better understand divergence from expectation.

52 / 58

Deterministic parse error diagnosis

The parse error diagnosis problem:
Given a stack-trace and an input sentence location, answer the following:
Did I expect to be at a different grammar location or a different input sentence loca-
tion? Does the grammar or input require modification?

Suggested protocol for using RDP-Debugging tool:

1. Configure tool to use same lookahead strategy as employed parser

2. Run on grammar and input until parse error.

3. Observe stack-trace and input location.

4. Weaken input sentence constraints (move from ΓS to ΓG semantics).

5. Experiment with additional or dropped tokens (error recovery, next slide).

6. Jump back to last transition that still matched expectation (omniscient debugging).

7. Weaken the applied set of lookahead/pruning strategies.

8. Explore alternative paths to better understand divergence from expectation.
53 / 58

Error Recovery – Additional Rules

Definition – Additional Syntax of Actions

a : action ::= . . . | drop

Additional Rules for a System Γerr

s = t

⟨[(X → α · sβ, k),S], i⟩ match(t)−−−−−→ ⟨[(X → αt · β, k), S], i⟩
match-any

⟨S , i⟩ drop−−→ ⟨S , i + 1⟩
drop

54 / 58

Non-deterministic parse error diagnosis?

Observation: Deterministic parsing is akin to finding any state which errors or accepts
(assuming lookahead is sufficient to cancel all non-determinism).

Observation: Non-deterministic parsing akin to finding all states that error or accept.

Problem: due to non-determinism and ambiguity, parser can find many error threads!
(possibly infinitely or exponentially many)

Question: how can multiverse debugging be used for diagnosing errors in complete parsing?

55 / 58

Conclusion

Where I am today

• A theoretical framework for multiverse grammar exploration based on the execution
threads encountered in recursive-descent parsers

• A prototype implementation of a tool that supports sentence generation, deterministic
parsing, error-recovery, deterministic error diagnosis, ...

• The underlying reachability graph can be modified on the fly by the user

• TODO: error diagnosis in complete parsing, evaluation: does anyone want this?

Case study conclusions

• Pruning strategies can be applied in other case studies to reduce search space

• Not all actions available to the user should be available to the breakpoint finder

• We’d like to have a find all <breakpoint> command (for non-deterministic parsing)

56 / 58

Multiverse Recursive Descent Grammar Exploration

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
ltvanbinsbergen@acm.org

June 21, 2024

57 / 58

Image Credits

Man digging a hole and virus images by https://www.vectorportal.com.
CC BY license: https://creativecommons.org/licenses/by/4.0/

58 / 58

https://www.vectorportal.com
https://creativecommons.org/licenses/by/4.0/

