Multiverse Recursive Descent Grammar Exploration

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
Itvanbinsbergen@acm.org

June 21, 2024

1/58

My presentation today

| would characterise my presentation today as follows:

2/58

My presentation today

| would characterise my presentation today as follows:

® Recursive Descent Parsing as a case study for Multiverse Debugging.

—4

3/58

My presentation today

| would characterise my presentation today as follows:
® Recursive Descent Parsing as a case study for Multiverse Debugging.

® Helping me get out of my rabbit hole.

—4

4/58

My presentation today

| would characterise my presentation today as follows:
® Recursive Descent Parsing as a case study for Multiverse Debugging.

® Helping me get out of my rabbit hole.

® A personal confirmation | still nurture a parsing bug.

—4

5/58

A General Framework for Multiverse Debugging

Temporal Breakpoints for Multiverse Debugging

Matthias Pasquier Ciprian Teodorov Frédéric Jouault
ERTOSGENER Lab-STICC CNRS UMR 6285 LERIA, University of Angers
Angers, France ENSTA Bretagne ESEO
matthias.pasquier@ertosgener.com Brest, France Angers, France
ciprian.teodorov@ensta-bretagne.fr frederic.jouault@eseo.fr
Matthias Brun Luka Le Roux Loic Lagadec
LERIA, University of Angers Lab-STICC CNRS UMR 6285 Lab-STICC CNRS UMR 6285
ESEO ENSTA Bretagne ENSTA Bretagne
Angers, France Brest, France Brest, France
matthias.brun@eseo.fr luka.le_roux@ensta-bretagne.fr loic.lagadec@ensta-bretagne.fr

Figure: DOI: https://doi.org/10.1145/3623476.3623526

Language-parameteric debugging framework for non-deterministic/concurrent executions. J

6/58

https://doi.org/10.1145/3623476.3623526

Interactive execution models

Incremental programming: build towards a larger program by submitting program fragments
one-by-one and receive immediate feedback. E.g., Python, Jupyter, REPLs in general..

7/58

Interactive execution models

Incremental programming: build towards a larger program by submitting program fragments
one-by-one and receive immediate feedback. E.g., Python, Jupyter, REPLs in general..

— compare with Stepwise debugging: step through the execution of a program to observe
evolution of state and effects, halting at selected ‘breakpoints’

8/58

Interactive execution models

Incremental programming: build towards a larger program by submitting program fragments
one-by-one and receive immediate feedback. E.g., Python, Jupyter, REPLs in general..

— compare with Stepwise debugging: step through the execution of a program to observe
evolution of state and effects, halting at selected ‘breakpoints’

Exploratory programming: build towards a larger program by attempting, comparing and
revisiting alternative extensions

9/58

Interactive execution models

Incremental programming: build towards a larger program by submitting program fragments
one-by-one and receive immediate feedback. E.g., Python, Jupyter, REPLs in general..

— compare with Stepwise debugging: step through the execution of a program to observe
evolution of state and effects, halting at selected ‘breakpoints’

Exploratory programming: build towards a larger program by attempting, comparing and
revisiting alternative extensions

— Omniscient/Back-in-time debugging:
record and revisit previous, selected execution points to observe state and effects

10/58

Interactive execution models

Incremental programming: build towards a larger program by submitting program fragments
one-by-one and receive immediate feedback. E.g., Python, Jupyter, REPLs in general..

— compare with Stepwise debugging: step through the execution of a program to observe
evolution of state and effects, halting at selected ‘breakpoints’

Exploratory programming: build towards a larger program by attempting, comparing and
revisiting alternative extensions

— Omniscient/Back-in-time debugging:
record and revisit previous, selected execution points to observe state and effects

— Multiverse debugging: (exhaustive) exploration of concurrent executions
(with state reductions and temporal breakpoints)

11/58

Interactive programming models

.. . ti . .
A transition relation state ———s state’ describes a tree of executions and reachable states.

A Principled Approach to REPL Interpreters

L. Thomas van Binsbergen Mauricio Verano Merino Pierre Jeanjean
Centrum Wiskunde & Informatica Eindhoven University of Technology Inria, University of Rennes, CRNS,
Amsterdam, The Netherlands Eindhoven, The Netherlands IRISA
Itvanbinsbergen@acm.org m.verano.merino@tue.nl Rennes, France

pierre.jeanjean@inria.fr

Tijs van der Storm Benoit Combemale Olivier Barais
Centrum Wiskunde & Informatica University of Rennes, Inria, CNRS, University of Rennes, Inria, CNRS,
Amsterdam, The Netherlands IRISA IRISA
University ofGroningen Rennes, France Rennes, France
Groningen, The Netherlands benoit.combemale@irit.fr olivier.barais@irisa.fr

storm@cwi.nl

Figure: doi: https://doi.org/10.1145/3410257 12/58

https://doi.org/10.1145/3410257

Context-free grammars and non-determinism

Observation: The generation of a sentence by a grammar can be seen as a particular execution
of a non-deterministic program.

13/58

Context-free grammars and non-determinism

Observation: The generation of a sentence by a grammar can be seen as a particular execution
of a non-deterministic program.

Similarly: A complete, generalised parser attempts to find all executions that generate a
particular sentence (the input sentence of the parser).

14 /58

Context-free grammars and non-determinism

Observation: The generation of a sentence by a grammar can be seen as a particular execution
of a non-deterministic program.

Similarly: A complete, generalised parser attempts to find all executions that generate a
particular sentence (the input sentence of the parser).

Question: In what ways can an omniscient, exploratory, multiverse debugger for grammars
assist the grammar engineering process?

15/58

Context-free grammars and non-determinism

Observation: The generation of a sentence by a grammar can be seen as a particular execution
of a non-deterministic program.

Similarly: A complete, generalised parser attempts to find all executions that generate a
particular sentence (the input sentence of the parser).

Question: In what ways can an omniscient, exploratory, multiverse debugger for grammars
assist the grammar engineering process?

Today

® A theoretical framework for multiverse grammar exploration based on the execution
threads encountered in recursive-descent parsers

® A prototype implementation of a tool that supports sentence generation, deterministic
parsing, error-recovery, deterministic error diagnosis, ...

® TODO: error diagnosis in complete parsing, evaluation: does anyone want this?

1 g
16/58

Syntax Analysis — conventional

Definition

A grammar G is a set of productions of the form (X, a) with:
® X € N, referred to as the left-hand side, with N the set of nonterminals
® o€ (NUT)* referred to as the right-hand side
e TNN =, with T the set of terminals

17/58

Syntax Analysis — conventional

Definition

A grammar G is a set of productions of the form (X, a) with:
® X € N, referred to as the left-hand side, with N the set of nonterminals
® o€ (NUT)* referred to as the right-hand side
e TNN =, with T the set of terminals

The relations o — 3 (derivation steps) and a --» 7 (left-most derivations) are defined as the
smallest set such that:

e X — «if and only if (X,a) € G
® 7Xa — 1B« if and only if X — 3 and 7 € T(G)* (the terminal symbols occuring in G)

® g --» 7 if and only if there is a sequence ag — @1, a1 = @2, ..., ap_1 — 7 with n >0

18/58

Example — sentence generation

Definition

The language L(G) described by grammar G is the set of all sentences 7 with X' --» 7
(and X € N a nominated start nonterminal).

X—A; | B
A—aA | e
B—Bb | ¢

19/58

Example — sentence generation

Definition

The language L(G) described by grammar G is the set of all sentences 7 with X' --» 7
(and X € N a nominated start nonterminal).

X — A;

X—A; | B — aA;
A—aA | e — aaA;
B—Bb | € — aaaA;
— aaa;

20/58

Example — sentence generation

Definition

The language L(G) described by grammar G is the set of all sentences 7 with X' --» 7
(and X € N a nominated start nonterminal).

X — A;
X—A; | B — aA; X — B
A—aA | e — aaA; — Bb
B—Bb | € — aaaA; — b
— aaa;

21/58

Example — sentence generation

Definition

The language L(G) described by grammar G is the set of all sentences 7 with X' --» 7
(and X € N a nominated start nonterminal).

X — A;
X—A; | B — aA; X — B
A—aA | e — aaA; — Bb
B—Bb | € — aaaA; — b
— aaa;

Recursive-Descent Parsing: choose alternates based on next token expectation from input

22/58

Example — Recursive Descent Parsing (RDP)

. Input: [[[b.b]

X—A; | B Next action:descend(X, B)
A—aA| e

B—Bb| e

Stack: [(X" — -X,0)]

23/58

Example — Recursive Descent Parsing (RDP)

) Input: [[[b.b]
XA | B Next action: descend(B, Bb)
A—aA e
B—Bb| e

Stack: [(X' — -X,0), (X — -B,0)]

24 /58

Example — Recursive Descent Parsing (RDP)

) Input: [[[b.b]
¥—Ai| B Next action: descend(B, Bb)
A—aA e
B—Bb | ¢

Stack: [(X' — -X,0), (X — -B,0), (B — -Bb,0)]

25 /58

Example — Recursive Descent Parsing (RDP)

_ Input: [][b ,b]

X — A; ‘ B Next action: descend(B76)
A—aA | e

B—Bb| e

Stack: [(X' — -X,0), (X — -B,0), (B — -Bb,0), (B — -Bb,0)]

26 /58

Example — Recursive Descent Parsing (RDP)

. Input: [[[b.b]
X—A;| B Next action: ascend
A—aA| e
B—Bb | ¢

Stack: [(X’ — -X,0), (X — -B,0), (B — -Bb,0), (B — -Bb,0), (B —-,0)]

27/58

Example — Recursive Descent Parsing (RDP)

) Input: [[[b.b]
XA | B Next action: ~ match(b)
A—aA e
B—Bb| e

Stack: [(X' — -X,0), (X — -B,0), (B — -Bb,0), (B — B - b,0)]

28/58

Example — Recursive Descent Parsing (RDP)

. Input: [b][b]
X—A; | B Next action: ascend
A—aA| e
B—Bb | ¢

Stack: [(X' — -X,0), (X — -B,0), (B — -Bb,0), (B — Bb-,0)]

29 /58

Example — Recursive Descent Parsing (RDP)

) Input: [b][b]
¥—Ai| B Next action: match(b)
A—aA e
B—Bb | ¢

Stack: [(X' — -X,0), (X — -B,0), (B — B - b,0)]

30/58

Example — Recursive Descent Parsing (RDP)

. Input: [b, b][]
X—A; | B Next action: ascend
A—aA| e
B—Bb | ¢

Stack: [(X' — -X,0), (X — -B,0), (B — Bb-,0)]

31/58

Example — Recursive Descent Parsing (RDP)

. Input: [b, b][]
X—A; | B Next action: ascend
A—aA| e
B—Bb | ¢

Stack: [(X' — -X,0), (X — B-,0)]

32/58

Example — Recursive Descent Parsing (RDP)

. Input: [b, b][]
X—A; | B Next action: accept
A—aA| e
B—Bb | ¢

Stack: [(X" — X-,0)]

33/58

Example — Recursive Descent Parsing (RDP)

. Input: [b, b][]
X—A; | B Next action: accept
A—aA| e
B—Bb | ¢

Stack: [(X" — X-,0)]

Common problems in RD-Parsing
® | eft-recursion: choosing the same alternative without progress

® Non-predictive: alternates have (indirect) common prefixes
® Non-determinism cannot be avoid in general case (without solving the parse problem)

34/58

Syntax Analysis — Alternative

Definition — Syntax of Actions

a: action ::= match(t) | descend(X,«a) | ascend | accept

Constraints: t€ T,X € N,a € (T UN)*

35/58

Syntax Analysis — Alternative

Definition — Syntax of Actions

a: action ::= match(t) | descend(X,«a) | ascend | accept

Constraints: t € T,X € N,a € (T UN)*

Definition — Semantics of Actions

A configuration ~y is a structure (S, i) with:
® S a call-stack; a sequence of items denoted [(X — a - 3, k), S’] with k >0

® /> 0 an index into some input sentence 7.

The semantics of actions is captured by the transition relation v = /.

A (complete) parsing thread is a (longest) sequence ([(X" — -X,0)],0) 2% ... 2% (S, m)
(for some m and X' € N, X' ¢ N(G)). A thread is successful if S =].

36 /58

Evolution of RDP Programs in transition system [

M, (X = at- B, k), S],i+1)

MATCH
(X = a-sB, k), S], i)

. . DESCEND
TS (X = 6, 0), (Y = XB,K),),)

((Y = a-sB,k),S], i)

(Y = a-XB,K),ST=S
([(X = o, k), L) =55 ([(Y > aX - 5, k), ST 1)

ASCEND

T =i
(X7 = X, 0)], i) 25 (i)

ACCEPT

37/58

Evolution of RDP Programs in transition system [

s=t

AN, ([(X — at- B, k), S],i+1)

MATCH

([(X = «a-sB,k),S],i)

s=X (X,0)eG

(Y = a-sB,k),S], i) 29X 1% 5 .6,1), (Y = a- XB, k), S, i)

DESCEND

(Y = a-XB,k),S|=S

d ASCEND
([(X = a-, k), S], i) =% ([(Y — aX -3, k'), S, i)

ACCEPT
([— x-,0)], 1) 225 ([],)

38/58

Demo 1 — guided sentence generation

39/58

Syntax Analysis — Claims

For every derivation there is exactly one successful thread in I ¢ and vice versa.

40/58

Syntax Analysis — Claims

For every derivation there is exactly one successful thread in I ¢ and vice versa.

For every parse tree of T there is exactly one successful thread in T's and vice versa.

41/58

Syntax Analysis — Claims

For every derivation there is exactly one successful thread in I ¢ and vice versa.

For every parse tree of T there is exactly one successful thread in T's and vice versa.

A parser synthesises a successful thread for a sentence I if there is one.

42/58

Syntax Analysis — Claims

For every derivation there is exactly one successful thread in I ¢ and vice versa.

For every parse tree of T there is exactly one successful thread in T's and vice versa.

A parser synthesises a successful thread for a sentence I if there is one.

A complete parser synthesises all successful threads for a sentence T.

43/58

Syntax Analysis — Claims

For every derivation there is exactly one successful thread in I ¢ and vice versa.

For every parse tree of T there is exactly one successful thread in T's and vice versa.

A parser synthesises a successful thread for a sentence I if there is one.
A complete parser synthesises all successful threads for a sentence T.

A general parser does the above for any context-free grammars (no restrictions).

44 /58

Common solutions to problems with RD-Parsing

Recall: Common problems in RD-Parsing

® | eft-recursion: choosing the same alternative without progress
¢ Non-predictive: alternates have (indirect) common prefixes

¢ Non-determinism cannot be avoid in general case (without solving the parse problem)

Common solutions to pruning undesirable paths
® | eft-recursion removal: preserves language, modifies set of threads
® Alternative: make at most | Z | recursive calls
® | eft-factoring: preserves language, modifies set of threads

® k—|ookahead: sound, reduces set of threads

® Accepting only predictive, LL(k)—grammars: not general

45/58

Lookahead Strategies Re-imagined

Defining — Language-Preserving Pruning Strategies

A pruning strategy defines additional conditions (on top of '), removing transitions 7y 5.

A pruning strategy is language preserving if it reduces the set of threads whilst preserving, for
every sentence in the language, at least one successful thread yielding that sentence.

A pruning strategy is sound if it reduces the set of threads without removing successful threads.

Note: left-biased choice not language-preserving, lookahead is.

46 /58

Lookahead Strategies Re-imagined

Defining — Language-Preserving Pruning Strategies

A pruning strategy defines additional conditions (on top of '), removing transitions 7y 5.

A pruning strategy is language preserving if it reduces the set of threads whilst preserving, for
every sentence in the language, at least one successful thread yielding that sentence.

A pruning strategy is sound if it reduces the set of threads without removing successful threads.

Note: left-biased choice not language-preserving, lookahead is.

Definition — Ambiguity Reduction Strategies

A perfect disambiguation strategy is a language-preserving pruning strategy that preserves
exactly one successful thread for every sentence in the language.

Note: many practical disambiguation strategies are not perfect (e.g., follow-restriction)

47/58

Pruning Examples

Definition — one token lookahead pruning

Remove <5,k> descend(X,a)

~' for any S, k,~', X, a if it holds that every shortest sub-thread
A2 2% ~, that ends with
® a, = match(t) has t # Zy, or

® v, = ([(X¥ — X-,0)],k') has k' #| T |.

48 /58

Pruning Examples

Definition — one token lookahead pruning

descend(X, .
Remove (S, k) M ~' for any S, k,~', X, a if it holds that every shortest sub-thread
[Ehl

A2 2% ~, that ends with
® a, = match(t) has t # Zy, or

® v, = ([(X¥ — X-,0)],k') has k' #| T |.

Definition — left-recursion termination

descend(X,a)
S

Remove (S, k) v for any S, k,~', X, when S has | Z | or more items of the
form (Y — ...-X ... k) for any Y.

i.e., | Z | descend actions have already been performed on X without progress.
Note: this pruning strategy is unsound for some grammars.

49 /58

Action-lookahead

Definition — k-actions lookahead

descend(X, . . e
Remove o & ~1 if all (subsequent) threads of k actions or less cannot transition

(considering any collection of additional pruning strategies).

With this strategy, a descend action is only possible if all subsequent threads are of a length
i > k or at least one successful thread has been identified.

50 /58

Demo 2 with the different pruning strategies applied.

51/58

Deterministic parse error diagnosis

The parse error diagnosis problem:
Given a stack-trace and an input sentence location, answer the following:
Did | expect to be at a different grammar location or a different input sentence loca-
tion? Does the grammar or input require modification?

52/58

Deterministic parse error diagnosis

The parse error diagnosis problem:

Suggested protocol for using RDP-Debugging tool:
1.

© N o a s WD

Given a stack-trace and an input sentence location, answer the following:
Did | expect to be at a different grammar location or a different input sentence loca-
tion? Does the grammar or input require modification?

Configure tool to use same lookahead strategy as employed parser

Run on grammar and input until parse error.

Observe stack-trace and input location.

Weaken input sentence constraints (move from I's to ['¢ semantics).

Experiment with additional or dropped tokens (error recovery, next slide).

Jump back to last transition that still matched expectation (omniscient debugging).
Weaken the applied set of lookahead/pruning strategies.

Explore alternative paths to better understand divergence from expectation.

Error Recovery — Additional Rules

Definition — Additional Syntax of Actions

a: action::= ... | drop

Additional Rules for a System I,

s=t

MATCH-ANY
match(t)
—

([(X = a-sB,k),S],i) ([(X — at- B, k),S], i)

pre DROP

(S,i) —>(S,i+1)

54 /58

Non-deterministic parse error diagnosis?

Observation: Deterministic parsing is akin to finding any state which errors or accepts
(assuming lookahead is sufficient to cancel all non-determinism).

Observation: Non-deterministic parsing akin to finding all states that error or accept.

Problem: due to non-determinism and ambiguity, parser can find many error threads!
(possibly infinitely or exponentially many)

Question: how can multiverse debugging be used for diagnosing errors in complete parsing?

55 /58

Conclusion

Where | am today

® A theoretical framework for multiverse grammar exploration based on the execution
threads encountered in recursive-descent parsers

® A prototype implementation of a tool that supports sentence generation, deterministic
parsing, error-recovery, deterministic error diagnosis, ...

® The underlying reachability graph can be modified on the fly by the user

® TODO: error diagnosis in complete parsing, evaluation: does anyone want this?

Case study conclusions

® Pruning strategies can be applied in other case studies to reduce search space
® Not all actions available to the user should be available to the breakpoint finder

® We'd like to have a find all <breakpoint> command (for non-deterministic parsing)

56 /58

Multiverse Recursive Descent Grammar Exploration

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
Itvanbinsbergen@acm.org

June 21, 2024

57/58

Image Credits

Man digging a hole and virus images by https://www.vectorportal.com.
CC BY license: https://creativecommons.org/licenses/by/4.0/

58 /58

https://www.vectorportal.com
https://creativecommons.org/licenses/by/4.0/

