Reflections on the design and application of eFLINT

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
Itvanbinsbergen@acm.org

January 16, 2022
Programming Languages and the Law (ProLala)

UNIVERSITY OF AMSTERDAM
X

1/59

Contributors

L. Thomas van
Binsbergen Giovanni Sileno
Pos

nt Professor

o Milen Girma Mostafa Mohajeri
Lu-Chi Liu Kebede Parizi
PhD Candidate PhD Candidate PhDC

Candidate

Tom van Engers
Full Pre

Christopher
Esterhuyse

Damian Frolich
PhD Candidat

PhD Candidate

2/59

Regulated data exchange:
data exchange systems governed by regulations, agreements and policies

as an instance of

Regulated systems:
distributed software systems with embedded regulatory services derived from norm
specifications that monitor and/or enforce compliance

EFRO-funded: AMDEX Fieldlab — neutral data-exchange infrastructure

Investing in your future

Amsterdam i
Economic T European Union asar -
Board D European Regional m Provincie
L Development Fund Noord-Holland
*
ams 1’x UNIVERSITEIT VAN AMSTERDAM

3/59

Regulated data exchange:
data exchange systems governed by regulations, agreements and policies

as an instance of

Regulated systems:
distributed software systems with embedded regulatory services derived from norm
specifications that monitor and/or enforce compliance

NWO-funded: SSPDDP — Secure and scalable, policy-driven data exchange

X
WVU ggxmm AIR FRANCE KLM [ABN-AMRO ING

4/59

Regulated data exchange:
data exchange systems governed by regulations, agreements and policies

as an instance of

Regulated systems:
distributed software systems with embedded regulatory services derived from norm
specifications that monitor and/or enforce compliance

NWO-funded: DL4ALD — Data Logistics for Logistics Data

44 TKIDINALOG — THALES B sizdesign CLRNA evofenedesr X Gemeente
"™ - 2 X Amsterdam
NYO AIRFRANCE KLM ORACLE X

5/59

1. Relating normative and computational concepts

2. The eFLINT language
eFLINT 1.0
eFLINT 2.0

3. Reflections
Goals for eFLINT 3.0

6/59

Section 1

Relating normative and computational concepts

7/59

Foundational, normative & computational concepts

computational

state

parent(A, B) = true

8/59

Foundational, normative & computational concepts

computational

state

parent(A, B) = true

transitions

parent(A, B) = true

parent(A, B) = false

9/59

Foundational, normative & computational concepts

computational

state

parent(A, B) = true

transitions

parent(A, B) = true

parent(A, B) = false

mViolations of state and transition

10/59

Foundational, normative & computational concepts

deontic computational

state

prohibitions parent(4, B) = true

permissions transitions

parent(A, B) = true

obligations parent(A, B) = false

mViolations of state and transition

11/59

Foundational, normative & computational concepts

deontic computational

of state

prohibitions ¢~~ ~ | parent(A, B) = true
\

\

\
AY
\

.. . transitions
permissions of
Ay
.,
obligations parent(A, B) = false

1
1
1
1
1
1
1
1
|
9 parent(A, B) = true
1
1
1
1
1
1
1
1
1
1
1

mViolations of state and transition

12/59

Foundational, normative & computational concepts

deontic , computational
' of state
prohibitions ¢~ T = > 5y parent(A, B) = true
\ P
\ -

transitions

parent(A, B) = true

obligations parent(A, B) = false

mViolations of state and transition

13/59

Foundational, normative & computational concepts

deontic , computational
1
' of state
iemTTT
prohibitions ¢ - 1 o parent(A, B) = true
\ O'E,—",—’
! I
\ | -
\y, of)/
RN /’: ey e
permissions ¢ <of transitions
N 1
A ‘u\ parent(A, B) = true
II \\O: ~
! N< ~.
II : {: T=- _:*
obligations « . _ --- 1'—0— -7 parent(A, B) = false
1

mViolations of state and transition

14 /59

Foundational, normative & computational concepts

deontic , computational , potestative

' of state

prohibitions ¢~] of --- _ 2y parent(A, B) = true ! powers
\ L~ - - - .. |
\ -7 .7 1
\y, oﬂ/, :
permissions ¢ ,\KOf E transitions E
\;/\ N parent(A, B) = true '
1 ~ \O: ~ :
1 N ~o |
! Pt :
obligations « . _ --- ,'.o—f' -7 parent(A, B) = false X

mViolations of state and transition

15 /59

Foundational, normative & computational concepts

deontic , computational
1
' of state
SO R
prohibitions ¢ - 1 o parent(A, B) = true
\ O'E,—",—’
\\ fI/,
y\' O,)I &
permissions ¢ of transitions
A4 1
A ‘u\ parent(A, B) = true
PR \O: . .
! N< ~.
II : {: T _:*
obllgatlons “~ -- 1'—0— -7 parent(A, B) = false
1

mViolations of state and transition

potestative

powers

m Powers have (normative)
consequences

16 /59

Foundational, normative & computational concepts

deontic , computational , potestative
1 1
' of state
LT T TNl !
prohibitions ¢~ of .---= parent(A, B) = true ! powers
v .- .- , -
\ R -
N -
’ p] - | .
M0 b€ ' m Powers have (normative)
.. [NV transitions !
4
permissions ¢ ‘of ! consequences
VR parent(A, B) = true I .)
SN of s ' e Deontic and potestative
N R ! terms are first-class
. . ! ! P 1
obllgatlons R - ,'.o—f— -7 parent(A, B) = false X
e !
1

mViolations of state and transition

17/59

Normative relations between actors

® A deontic term is associated with several actors:

— The holder of the prohibition, obligation or prohibition
— Zero or more claimants to the prohibition or obligation
— The actor who assigned the prohibition, obligation or permission

® A potestative term is associated with several actors

— The performing actor
— One or more recipients being affected by the power
— The actor who assigned the power

18/59

Normative reasoning — scenarios

Types of reasoning

A concrete scenario describes a single trace in the transition system
e Static ex-ante/ex-post assessment, of a given scenario (trace) {eFLINT 1.0}

® Dynamic assessment, of a given action (transition) {eFLINT 2.0 }

® ex-post: execute corresponding transition and report on findings
® ex-ante: try the transition and decide based on report whether to perform the action

® We are not (yet) reasoning with abstract scenarios (e.g. planning/property checking)

19/59

Section 2

The eFLINT language

20 /59

Example — knowledge representation

(Toy Article 1) a natural person is a legal parent of another natural person if:
® they are a natural parent, or
® they are an adoptive parent
Fact person Identified by String

Placeholder parent For person
Placeholder child For person

Fact natural-parent Identified by parent * child
Fact adoptive-parent Identified by parent * child

Fact legal-parent Identified by parent * child

Holds when adoptive-parent (parent,child)
|| natural-parent (parent,child)

21/59

Example — powers and duties

(Toy Article 2) a child has the power to ask a legal parent for help with their homework,
resulting in a duty for the parent to help.

Act ask-for-help

Actor child
Recipient parent
Creates help-with-homework (parent,child)

Holds when legal-parent(parent,child)

Duty help-with-homework
Holder parent
Claimant child
Violated when homework-due(child)

Fact homework-due Identified by child

Act help
Actor parent
Recipient <child
Terminates help-with-homework (parent,child)
Holds when help-with-homework (parent,child)

22/59

Example — scenario

Fact person Identified by Alice, Bob, Chloe, David
Listing 1: Domain specification

+natural -parent (Alice, Bob).

+adoptive -parent (Chloe, David).

Listing 2: Initial state

ask-for-help(Bob, Alice). // action permitted, creates duty
+homework -due (Bob) . // homework deadline passed
?Violated (help-with-homework (Alice,Bob)). // query confirms duty is violated
help (Alice,Bob). // action terminates duty

Listing 3: Scenario

23/59

eFLINT online!

frames

Fact person Identified by String
Placeholder parent For person
Placeholder child For person

Fact natural-parent Identified by parent * child
Fact adoptive-parent Identified by parent * child
Fact legal-parent Identified by parent * child
Holds when adoptive-parent (parent, child)
| natural-parent (parent, chi

Act ask-for-help
Actor ild

parent
Creates help-with-homework(parent, child)
Holds when legal-parent (parent, child]

Fact homework-due Identified by child
Duty help-with-homework

Holder parent

Clainant child

Violated when homework-due(child)
Act help

Actor parent
Recipient

child
Terminates help-with-honework(parent, child)
Holds when help-with-homework (parent child)

domains

lrm person Identified by Alice, Bob, Chloe, David

initial state

natural-parent (Alice, Bab).
‘adoptive-parent (Chloe, David).

Examples

Knowledge representation: Vehicles | Departments | Count Votes | Cast Votes
GPCE2020 paper examples: Help with homework | GDPR

Various: W)l (v2) | Buy (v3) | Permit Applications | Permit

Load fle: Nofile selected.

scenario

(v2) | Multiple taxpayers | Voting

ask-for-help(8ob, Alice).

+homework-due(Bob) . // homework deadline passed
?Violated (help-with-homework(Alice,Bob)) .
help(ALice, Bob) .

[N

R —

response

* Duty violated at step 2
("Alice":person, "Bob":person) :help-with-homework

]
c
s
]
=1

24/59

eFLINT 2.0

1. Extensions to the eFLINT syntax

® The Extends keyword to modularly extend existing declarations
Enables rule-based formalisation of articles and proper separation across files
® The syncs with keyword to trigger multiple transitions simultaneously
Enables the qualification of one action as an instance of another

25 /59

Modular GDPR specification

Dynamic generation of access control policies from social policies

L. Thomas van Binsbcrgcn"a, Milen G. Kebede?®, Joshua Baughh, Tom van Engers®,
Dannis G. van Vuurden®

Unformatics Institute, University of Amsterdam, 1090GH Amsterdam, The Netherlands
" Princess Maxima Center for Pediatric Oncology, Department of Newro-oncology, Utrecht, The Netherlands

Act collect-personal-data
Actor controller
Recipient subject
Related to data, processor, purpose
Where subject-of (subject, data)
Creates processes(processor, data, controller, purpose)

26 /59

Article 5 — processing conditions

Article 5
Principles relating to processing of personal data
1. Personal data shall be:

(@) processed lawfully, fairly and in a transparent manner in relation to the data subject (lawfulness, fairness and
transparency);

=

collected for specified, explicit and legitimate purposes and not further processed in a manner that is incompatible
with those purposes; further processing for archiving purposes in the public interest, scientific or historical research
purposes or statistical purposes shall in accordance with Article 89(1), not be considered to be incompatible with
the initial purposes (purpose limitation’);

adequate, relevant and limited to what is necessary in relation to the purposes for which they are processed (data
minimisation);

=

accurate and, where necessary, kept up to date; every reasonable step must be taken to ensure that personal data that
are inaccurate, having regard to the purposes for which they are processed, are erased or rectified without delay
(‘accuracy);

Fact minimal -for-purpose Identified by processes

Extend Act collect-personal-data Conditioned by minimal -for-purpose(data, purpose)
Listing 4: Member (1c)

Fact accurate-for-purpose Identified by data * purpose

Extend Act collect-personal-data Conditioned by accurate-for-purpose(data, purpose)
Listing 5: Member (1d)

27 /59

Article 6 — legal processing

Article 6
Lawfulness of processing

1. Processing shall be lawful only if and to the extent that at least one of the following applies:
(a) the data subject has given consent to the processing of his or her personal data for one or more specific purposes;

(b) processing is necessary for the performance of a contract to which the data subject is party or in order to take steps
at the request of the data subject prior to entering into a contract;

(c) processing is necessary for compliance with a legal obligation to which the controller is subject;

Fact consent Identified by subject * controller * purpose * data
Extend Act collect-personal-data
Holds when consent(subject, controller, purpose, data)

Listing 6: Member (1a)
Fact has-legal-obligation Identified by processes

Extend Act collect-personal-data
Holds when has-legal-obligation(controller, purpose)

Listing 7: Member (1c) 2859

The DIPG case — Compliance questions

According to the GDPR and the DIPG regulatory document:
1. What conditions need to be fulfilled by a member before making data available?

.
I l Accumulated 3 =xs
s Personal Data ses

DIPG Registry

2. What conditions need to be fulfilled when accessing data from the registry?

y -

I Access Request

.

II Selected Dataset

Members

DIPG Registry

29 /59

Compliance Question 1

DIPG Regulatory document — Article 4(2):
Members should transfer data to the DIPG registry in a coded form only

Fact coded Identified by dataset

Act make-data-available
Actor institution
Recipient dcog
Related to dataset
Conditioned by coded(dataset)
Holds when member (institution)

30/59

Compliance Question 1

Extend Act make-data-available Syncs with (Foreach donor:
collect-personal-data(controller institution

,subject = donor

,data = dataset

,processor = "DCOG"

,purpose = "DIPGResearch")
When subject-of (donor, dataset))

An institution can make a dataset available when (for each donor (subject) in the dataset):

The institution is a member (DIPG Regulatory Document — Article 4(2))
Data is coded (DIPG Regulatory Document — Article 4(2))

® Consent is given by the donor for data processing
by the DCOG for the purpose of DIPGResearch (GDPR - Article 6)

Data should be accurate for the purpose DIPGResearch (GDPR — Article 5)

31/59

Section 3

Reflections

32/59

Static analyses

Bounded vs open-ended domains

® cFLINT 1.0 enabled automated assessment of concrete scenarios in finite domain

® Future work: applying model checking, and/or property-based testing

Dynamic enforcement
® eFLINT 2.0 enabled dynamic interpretation, qualification and assessment

® Norms and scenario established at runtime, based on the contents of the knowledge base

33/59

Bounded vs open-ended domains

Static analyses

® cFLINT 1.0 enabled automated assessment of concrete scenarios in finite domain

® Future work: applying model checking, and/or property-based testing

Dynamic enforcement
® eFLINT 2.0 enabled dynamic interpretation, qualification and assessment

® Norms and scenario established at runtime, based on the contents of the knowledge base

Design decision: when enumerating instances, check domain of type, then knowledge base
?(Forall person: Not(homework-due(person)))
// optl: Fact person Identified by Alice, Bob, Chloe, David

// opt2: Fact person Identified by String.
+person(Alice). +person(Bob). +person(Chloe). +person(David).

34/59

Bounded vs open-ended domains

Static analyses

® cFLINT 1.0 enabled automated assessment of concrete scenarios in finite domain

® Future work: applying model checking, and/or property-based testing

Dynamic enforcement

® eFLINT 2.0 enabled dynamic interpretation, qualification and assessment

® Norms and scenario established at runtime, based on the contents of the knowledge base

Design decision: when enumerating instances, check domain of type, then knowledge base
?(Forall person: Not(homework-due(person)))
// optl: Fact person Identified by Alice, Bob, Chloe, David

// opt2: Fact person Identified by String.
+person(Alice). +person(Bob). +person(Chloe). +person(David).

Design decision: the effects of actions can manifest independent of conditions
35 /59

eFLINT 2.0 — Enabling dynamic assessment

1. Extensions to the eFLINT syntax

® Declarations and statements can be mixed freely

Enables dynamic scenario and dynamic policy construction in eflint actors
® The Extends keyword to modularly extend existing declarations

Enables rule-based formalisation of articles and proper separation across files
® The syncs with keyword to trigger multiple transitions simultaneously

Enables the qualification of one action as an instance of another

36/59

eFLINT 2.0 — Enabling dynamic assessment

1. Extensions to the eFLINT syntax

® Declarations and statements can be mixed freely
Enables dynamic scenario and dynamic policy construction in eflint actors
® The Extends keyword to modularly extend existing declarations
Enables rule-based formalisation of articles and proper separation across files
® The syncs with keyword to trigger multiple transitions simultaneously
Enables the qualification of one action as an instance of another
® gpen and Closed modifiers in a (fact-)type declaration
Akin to dynamic binding; enables externalised state, and a means to open terms

37/59

eFLINT 2.0 — Enabling dynamic assessment

1. Extensions to the eFLINT syntax

® Declarations and statements can be mixed freely
Enables dynamic scenario and dynamic policy construction in eflint actors
® The Extends keyword to modularly extend existing declarations
Enables rule-based formalisation of articles and proper separation across files
® The syncs with keyword to trigger multiple transitions simultaneously
Enables the qualification of one action as an instance of another
® gpen and Closed modifiers in a (fact-)type declaration
Akin to dynamic binding; enables externalised state, and a means to open terms

2. Changes to eFLINT semantics:

® Actions manifest their effects, independent of conditions
Violations are still reported

38/59

eFLINT 2.0 — Enabling dynamic assessment

1. Extensions to the eFLINT syntax

® Declarations and statements can be mixed freely
Enables dynamic scenario and dynamic policy construction in eflint actors
® The Extends keyword to modularly extend existing declarations
Enables rule-based formalisation of articles and proper separation across files
® The syncs with keyword to trigger multiple transitions simultaneously
Enables the qualification of one action as an instance of another
® gpen and Closed modifiers in a (fact-)type declaration
Akin to dynamic binding; enables externalised state, and a means to open terms

2. Changes to eFLINT semantics:

® Actions manifest their effects, independent of conditions
Violations are still reported

® |teration of unbounded types based on knowledge base contents
Enables reusing specifications for both static and dynamic assessment

39/59

eFLINT 2.0 — Enabling dynamic assessment

1. Extensions to the eFLINT syntax

® Declarations and statements can be mixed freely
Enables dynamic scenario and dynamic policy construction in eflint actors
® The Extends keyword to modularly extend existing declarations
Enables rule-based formalisation of articles and proper separation across files
® The syncs with keyword to trigger multiple transitions simultaneously
Enables the qualification of one action as an instance of another
® gpen and Closed modifiers in a (fact-)type declaration
Akin to dynamic binding; enables externalised state, and a means to open terms

2. Changes to eFLINT semantics:

® Actions manifest their effects, independent of conditions
Violations are still reported
® |teration of unbounded types based on knowledge base contents
Enables reusing specifications for both static and dynamic assessment
® Types can be replaced and extended

Enables reusing high-level specifications across varying application and execution contexts
40/59

eFLINT actors

eFLINT actor query (e.g. verification)

inference

notification
(e.g. violation / new duty)

notification Y
(e.g. of action)

Actor

query (e.g. permission?)

changes in norms

\J

41/59

Normative reasoning — information flow

|| normative
| |concepts | [T -
! \ offline/online '
1 |
LS T formal

w | DSL design —)| | !
‘ ,,/,,,, anguage ‘
| |

|
'| computational P i !

P : interpretation ! execution

I'| concepts - ! | context ‘
| |
I / ! ‘
‘ natural ‘ |

language ‘
| . I I
‘ offline ! . Vi e |
———————————————————————————— - -~ |assessment ‘
: |
‘ ’ priorities ‘ ’ report ‘ I
| |
r = - - - |
‘ enforcement ! ‘

|
|

|
|

|

l enforcement decision ‘

State of development

1. haskell-implementation

® Reference implementation of eFLINT DSL

® eflint-repl: interpreter (debugging, running scenarios and tests)
® eflint-server: TCP server (dynamic assessment)

® Formal syntax / semi-formal operational semantics

43/59

State of development

1. haskell-implementation

® Reference implementation of eFLINT DSL

® eflint-repl: interpreter (debugging, running scenarios and tests)
® eflint-server: TCP server (dynamic assessment)

® Formal syntax / semi-formal operational semantics

2. java-implementation

® TCP client
® HTTP server
® rudimentary EDSL for accessing eflint-server

44 /59

State of development

1. haskell-implementation

Reference implementation of eFLINT DSL
eflint-repl: interpreter (debugging, running scenarios and tests)
eflint-server: TCP server (dynamic assessment)

[
[]
[]
® Formal syntax / semi-formal operational semantics
2. java-implementation

® TCP client
® HTTP server
® rudimentary EDSL for accessing eflint-server

3. scala-implementation

® c¢FLINT actors in the actor-oriented Akka framework

45 /59

State of development

1. haskell-implementation

Reference implementation of eFLINT DSL
eflint-repl: interpreter (debugging, running scenarios and tests)
eflint-server: TCP server (dynamic assessment)

[
[]
[]
® Formal syntax / semi-formal operational semantics
2. java-implementation

® TCP client
® HTTP server
® rudimentary EDSL for accessing eflint-server

3. scala-implementation
® c¢FLINT actors in the actor-oriented Akka framework
4. Development environments

® Jupyter notebooks
® Various experimental web-applications
® FLINT editor 46 /59

Goals for eFLINT 3.0

Language design

® (Clear separation between:

® Computational concepts: actions, events, synchronisation
® Normative concepts: prohibition, obligation, permission, power

® (eFLINT 2.0 can serve as a core/inner language to eFLINT 3.0)
® A module system, introducing namespaces and a versioning mechanism

® Modular, rule-based specification as the default through implicit extensions

Language engineering

® Additional static analyses to detect inconsistencies and possible errors
® Detailed reports as part of reasoning output to improve explainability

® User-friendly programming environment for writing and testing specifications

® Interoperability, e.g. with linked data / semantic web

47/59

FAQ

eFLINT is just defining a transition system with some extra conditions lying on top

— PL expert

Law is subject to interpretation and has (deliberate) open terms

— Legal expert

eFLINT is still too difficult to use
— Legal expert

48 /59

Takeaway messages

At the University of Amsterdam, we are experimenting with approaches to enforcing
laws, regulations, agreements and contracts in (distributed) systems

49 /59

Takeaway messages

At the University of Amsterdam, we are experimenting with approaches to enforcing
laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

50 /59

Takeaway messages

At the University of Amsterdam, we are experimenting with approaches to enforcing
laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

We are currently working on a prototype to demonstrate our approach in data exchange
systems such as the Amsterdam Data Exchange (AMdEX)

51/59

Takeaway messages

At the University of Amsterdam, we are experimenting with approaches to enforcing
laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

We are currently working on a prototype to demonstrate our approach in data exchange
systems such as the Amsterdam Data Exchange (AMdEX)

These experiments highlight the importance of software engineering concepts such as
modularity, reuse, version control, overriding/overloading mechanisms and inheritance

52/59

Takeaway messages

At the University of Amsterdam, we are experimenting with approaches to enforcing
laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

We are currently working on a prototype to demonstrate our approach in data exchange
systems such as the Amsterdam Data Exchange (AMdEX)

These experiments highlight the importance of software engineering concepts such as
modularity, reuse, version control, overriding/overloading mechanisms and inheritance

The next phase is to improve the practicality and usability of eFLINT through higher-
level abstractions, (domain-specific) editors, static analyses, and explainability

53/59

Reflections on the design and application of eFLINT

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
Itvanbinsbergen@acm.org

January 16, 2022
Programming Languages and the Law (ProLala)

UNIVERSITY OF AMSTERDAM
X

54 /59

rphysical veality-------------- r stitutional-reakity- - - -----------

laws & regulations 1 understanding of the law

interpretation

I
I
I
I
I
l
| assessment
I
I
I
I
I
I
I

“If the facts are against you, argue the law. If the law is against you, argue the facts.

If the law and the facts are against you, pound the table ...” -Carl Sandburg 5550

policy construction (offline)

repository of

reusable norm
specifications

Regulated systems for a banking case study

l Consent

H Ontology

Sharing
Agreement

application
specific specs

T~

’ GDPR composition ‘

Sharing
Agreement

regulatory
services : ’ P_n ‘ M1 SA M2 Gl

| request/response. _ _ event|_ _ _ _ _ _ _ _ event|_ _ _ _ _ _ _ _ _
application Employeel
services roker

distributed system (online)

HRectiﬁcation i

eFLINT integration — overview (GDPR example)

Ontology Rectification

omposition

’ Reusable specification ‘

lspecialization

’Specialized specification ‘ i
orriine

./ Nnitialization - -

M h]] online

57 /59

eFLINT integration

Reusable GDPR concepts

Fact controller
Fact subject

Fact data
Fact subject-of
Identified by subject * data

Specialisation to application

Fact bank //exactly one
Fact client //exactly omne

Fact controller
Derived from bank
Fact subject

Derived from client

Fact data
Identified by Int

Event data-change
Terminates data
Creates data(data + 1)

Fact subject-of
Derived from
subject-of (client ,processed)
,subject-of (client ,data)

Fact processed

Instantiation at run-time
+bank (GNB) .

+client (Alice).
+data (0) .

Derived after instantiation
+controller (GNB).

+subject (Alice) .
+subject -of (Alice ,0) .

58 /59

Two approaches to enforcing norms

Embedding eFLINT specifications as eFLINT actors, akin to ‘policy decision point’:

FLINT actor query (e.g. verification)
inference
Inotification
(e.g. of action
& Actor
query (e.g. permission?) i
chan, —

Generating system-level policies, akin to ‘policy administration point’

Dynamic generation of access control policies from social policies

L. Thomas van Binsbergen'?, Milen G. Kebede?, Joshua Baugh®, Tom van Engers®,
Dannis G. van Vuurden®

“Unformatics Institute, University of Amsterdam, 1090GH . The
b Princess Maxima Center for Pediatric Oncology, Department of Newro-oncology, Utrechi, The Netherlands

59 /59

	Relating normative and computational concepts
	The eFLINT language
	eFLINT 1.0
	eFLINT 2.0

	Reflections
	Goals for eFLINT 3.0

