
Reflections on the design and application of eFLINT

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
ltvanbinsbergen@acm.org

January 16, 2022
Programming Languages and the Law (ProLaLa)

1 / 59

Contributors

2 / 59

Regulated data exchange:
data exchange systems governed by regulations, agreements and policies

as an instance of

Regulated systems:
distributed software systems with embedded regulatory services derived from norm
specifications that monitor and/or enforce compliance

EFRO-funded: AMDEX Fieldlab – neutral data-exchange infrastructure

3 / 59

Regulated data exchange:
data exchange systems governed by regulations, agreements and policies

as an instance of

Regulated systems:
distributed software systems with embedded regulatory services derived from norm
specifications that monitor and/or enforce compliance

NWO-funded: SSPDDP – Secure and scalable, policy-driven data exchange

4 / 59

Regulated data exchange:
data exchange systems governed by regulations, agreements and policies

as an instance of

Regulated systems:
distributed software systems with embedded regulatory services derived from norm
specifications that monitor and/or enforce compliance

NWO-funded: DL4LD – Data Logistics for Logistics Data

5 / 59

Overview

1. Relating normative and computational concepts

2. The eFLINT language
eFLINT 1.0
eFLINT 2.0

3. Reflections
Goals for eFLINT 3.0

6 / 59

Section 1

Relating normative and computational concepts

7 / 59

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

8 / 59

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

9 / 59

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

10 / 59

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

11 / 59

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

12 / 59

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

13 / 59

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

14 / 59

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

15 / 59

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

16 / 59

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

17 / 59

Normative relations between actors

• A deontic term is associated with several actors:

– The holder of the prohibition, obligation or prohibition
– Zero or more claimants to the prohibition or obligation
– The actor who assigned the prohibition, obligation or permission

• A potestative term is associated with several actors

– The performing actor
– One or more recipients being affected by the power
– The actor who assigned the power

18 / 59

Normative reasoning – scenarios

s0 sk si−1 si

Types of reasoning

A concrete scenario describes a single trace in the transition system

• Static ex-ante/ex-post assessment, of a given scenario (trace) {eFLINT 1.0}
• Dynamic assessment, of a given action (transition) {eFLINT 2.0 }

• ex-post: execute corresponding transition and report on findings
• ex-ante: try the transition and decide based on report whether to perform the action

• We are not (yet) reasoning with abstract scenarios (e.g. planning/property checking)

19 / 59

Section 2

The eFLINT language

20 / 59

Example – knowledge representation

(Toy Article 1) a natural person is a legal parent of another natural person if:

• they are a natural parent, or
• they are an adoptive parent

Fact person Identified by String

Placeholder parent For person

Placeholder child For person

Fact natural -parent Identified by parent * child

Fact adoptive -parent Identified by parent * child

Fact legal -parent Identified by parent * child

Holds when adoptive -parent(parent ,child)

|| natural -parent(parent ,child)

21 / 59

Example – powers and duties

(Toy Article 2) a child has the power to ask a legal parent for help with their homework,
resulting in a duty for the parent to help.

Act ask -for -help

Actor child

Recipient parent

Creates help -with -homework(parent ,child)

Holds when legal -parent(parent ,child)

Duty help -with -homework

Holder parent

Claimant child

Violated when homework -due(child)

Fact homework -due Identified by child

Act help

Actor parent

Recipient child

Terminates help -with -homework(parent ,child)

Holds when help -with -homework(parent ,child)

22 / 59

Example – scenario

Fact person Identified by Alice , Bob , Chloe , David

Listing 1: Domain specification

+natural -parent(Alice , Bob).

+adoptive -parent(Chloe , David).

Listing 2: Initial state

ask -for -help(Bob , Alice). // action permitted , creates duty

+homework -due(Bob). // homework deadline passed

?Violated(help -with -homework(Alice ,Bob)). // query confirms duty is violated

help(Alice ,Bob). // action terminates duty

Listing 3: Scenario

23 / 59

24 / 59

eFLINT 2.0

1. Extensions to the eFLINT syntax

• The Extends keyword to modularly extend existing declarations
Enables rule-based formalisation of articles and proper separation across files

• The Syncs with keyword to trigger multiple transitions simultaneously
Enables the qualification of one action as an instance of another

25 / 59

Modular GDPR specification

Act collect -personal -data

Actor controller

Recipient subject

Related to data , processor , purpose

Where subject -of(subject , data)

Creates processes(processor , data , controller , purpose)

26 / 59

Article 5 – processing conditions

Fact minimal -for -purpose Identified by processes

Extend Act collect -personal -data Conditioned by minimal -for -purpose(data , purpose)

Listing 4: Member (1c)

Fact accurate -for -purpose Identified by data * purpose

Extend Act collect -personal -data Conditioned by accurate -for -purpose(data , purpose)

Listing 5: Member (1d)

27 / 59

Article 6 – legal processing

Fact consent Identified by subject * controller * purpose * data

Extend Act collect -personal -data

Holds when consent(subject , controller , purpose , data)

Listing 6: Member (1a)

Fact has -legal -obligation Identified by processes

Extend Act collect -personal -data

Holds when has -legal -obligation(controller , purpose)

Listing 7: Member (1c) 28 / 59

The DIPG case – Compliance questions

According to the GDPR and the DIPG regulatory document:

1. What conditions need to be fulfilled by a member before making data available?

2. What conditions need to be fulfilled when accessing data from the registry?

29 / 59

Compliance Question 1

DIPG Regulatory document – Article 4(2):

Members should transfer data to the DIPG registry in a coded form only

Fact coded Identified by dataset

Act make -data -available

Actor institution

Recipient dcog

Related to dataset

Conditioned by coded(dataset)

Holds when member(institution)

30 / 59

Compliance Question 1

Extend Act make -data -available Syncs with (Foreach donor:

collect -personal -data(controller = institution

,subject = donor

,data = dataset

,processor = "DCOG"

,purpose = "DIPGResearch ")

When subject -of(donor , dataset))

An institution can make a dataset available when (for each donor (subject) in the dataset):

• The institution is a member (DIPG Regulatory Document – Article 4(2))

• Data is coded (DIPG Regulatory Document – Article 4(2))

• Consent is given by the donor for data processing
by the DCOG for the purpose of DIPGResearch (GDPR – Article 6)

• Data should be accurate for the purpose DIPGResearch (GDPR – Article 5)

31 / 59

Section 3

Reflections

32 / 59

Bounded vs open-ended domains

Static analyses

• eFLINT 1.0 enabled automated assessment of concrete scenarios in finite domain

• Future work: applying model checking, and/or property-based testing

Dynamic enforcement

• eFLINT 2.0 enabled dynamic interpretation, qualification and assessment

• Norms and scenario established at runtime, based on the contents of the knowledge base

Design decision: when enumerating instances, check domain of type, then knowledge base
?(Forall person: Not(homework -due(person)))

// opt1: Fact person Identified by Alice , Bob , Chloe , David

// opt2: Fact person Identified by String.

+person(Alice). +person(Bob). +person(Chloe). +person(David).

Design decision: the effects of actions can manifest independent of conditions

33 / 59

Bounded vs open-ended domains

Static analyses

• eFLINT 1.0 enabled automated assessment of concrete scenarios in finite domain

• Future work: applying model checking, and/or property-based testing

Dynamic enforcement

• eFLINT 2.0 enabled dynamic interpretation, qualification and assessment

• Norms and scenario established at runtime, based on the contents of the knowledge base

Design decision: when enumerating instances, check domain of type, then knowledge base
?(Forall person: Not(homework -due(person)))

// opt1: Fact person Identified by Alice , Bob , Chloe , David

// opt2: Fact person Identified by String.

+person(Alice). +person(Bob). +person(Chloe). +person(David).

Design decision: the effects of actions can manifest independent of conditions

34 / 59

Bounded vs open-ended domains

Static analyses

• eFLINT 1.0 enabled automated assessment of concrete scenarios in finite domain

• Future work: applying model checking, and/or property-based testing

Dynamic enforcement

• eFLINT 2.0 enabled dynamic interpretation, qualification and assessment

• Norms and scenario established at runtime, based on the contents of the knowledge base

Design decision: when enumerating instances, check domain of type, then knowledge base
?(Forall person: Not(homework -due(person)))

// opt1: Fact person Identified by Alice , Bob , Chloe , David

// opt2: Fact person Identified by String.

+person(Alice). +person(Bob). +person(Chloe). +person(David).

Design decision: the effects of actions can manifest independent of conditions
35 / 59

eFLINT 2.0 – Enabling dynamic assessment

1. Extensions to the eFLINT syntax

• Declarations and statements can be mixed freely
Enables dynamic scenario and dynamic policy construction in eflint actors

• The Extends keyword to modularly extend existing declarations
Enables rule-based formalisation of articles and proper separation across files

• The Syncs with keyword to trigger multiple transitions simultaneously
Enables the qualification of one action as an instance of another

• Open and Closed modifiers in a (fact-)type declaration
Akin to dynamic binding; enables externalised state, and a means to open terms

2. Changes to eFLINT semantics:

• Actions manifest their effects, independent of conditions
Violations are still reported

• Iteration of unbounded types based on knowledge base contents
Enables reusing specifications for both static and dynamic assessment

• Types can be replaced and extended
Enables reusing high-level specifications across varying application and execution contexts

36 / 59

eFLINT 2.0 – Enabling dynamic assessment

1. Extensions to the eFLINT syntax

• Declarations and statements can be mixed freely
Enables dynamic scenario and dynamic policy construction in eflint actors

• The Extends keyword to modularly extend existing declarations
Enables rule-based formalisation of articles and proper separation across files

• The Syncs with keyword to trigger multiple transitions simultaneously
Enables the qualification of one action as an instance of another

• Open and Closed modifiers in a (fact-)type declaration
Akin to dynamic binding; enables externalised state, and a means to open terms

2. Changes to eFLINT semantics:

• Actions manifest their effects, independent of conditions
Violations are still reported

• Iteration of unbounded types based on knowledge base contents
Enables reusing specifications for both static and dynamic assessment

• Types can be replaced and extended
Enables reusing high-level specifications across varying application and execution contexts

37 / 59

eFLINT 2.0 – Enabling dynamic assessment

1. Extensions to the eFLINT syntax

• Declarations and statements can be mixed freely
Enables dynamic scenario and dynamic policy construction in eflint actors

• The Extends keyword to modularly extend existing declarations
Enables rule-based formalisation of articles and proper separation across files

• The Syncs with keyword to trigger multiple transitions simultaneously
Enables the qualification of one action as an instance of another

• Open and Closed modifiers in a (fact-)type declaration
Akin to dynamic binding; enables externalised state, and a means to open terms

2. Changes to eFLINT semantics:

• Actions manifest their effects, independent of conditions
Violations are still reported

• Iteration of unbounded types based on knowledge base contents
Enables reusing specifications for both static and dynamic assessment

• Types can be replaced and extended
Enables reusing high-level specifications across varying application and execution contexts

38 / 59

eFLINT 2.0 – Enabling dynamic assessment

1. Extensions to the eFLINT syntax

• Declarations and statements can be mixed freely
Enables dynamic scenario and dynamic policy construction in eflint actors

• The Extends keyword to modularly extend existing declarations
Enables rule-based formalisation of articles and proper separation across files

• The Syncs with keyword to trigger multiple transitions simultaneously
Enables the qualification of one action as an instance of another

• Open and Closed modifiers in a (fact-)type declaration
Akin to dynamic binding; enables externalised state, and a means to open terms

2. Changes to eFLINT semantics:

• Actions manifest their effects, independent of conditions
Violations are still reported

• Iteration of unbounded types based on knowledge base contents
Enables reusing specifications for both static and dynamic assessment

• Types can be replaced and extended
Enables reusing high-level specifications across varying application and execution contexts

39 / 59

eFLINT 2.0 – Enabling dynamic assessment

1. Extensions to the eFLINT syntax

• Declarations and statements can be mixed freely
Enables dynamic scenario and dynamic policy construction in eflint actors

• The Extends keyword to modularly extend existing declarations
Enables rule-based formalisation of articles and proper separation across files

• The Syncs with keyword to trigger multiple transitions simultaneously
Enables the qualification of one action as an instance of another

• Open and Closed modifiers in a (fact-)type declaration
Akin to dynamic binding; enables externalised state, and a means to open terms

2. Changes to eFLINT semantics:

• Actions manifest their effects, independent of conditions
Violations are still reported

• Iteration of unbounded types based on knowledge base contents
Enables reusing specifications for both static and dynamic assessment

• Types can be replaced and extended
Enables reusing high-level specifications across varying application and execution contexts

40 / 59

eFLINT actors

inference

eFLINT actor

Actor

changes in norms

query (e.g. permission?)

query (e.g. verification)

notification
(e.g. violation / new duty)

notification
(e.g. of action)

41 / 59

Normative reasoning – information flow

DSL design

normative
concepts

computational
concepts

formal
language

interpretation

natural
language

spec

application context

integration spec∗ observations

qualification

scenario

assessment

execution
context

reportpriorities

enforcement

enforcement decision

offline

offline/online

42 / 59

State of development

1. haskell-implementation

• Reference implementation of eFLINT DSL
• eflint-repl: interpreter (debugging, running scenarios and tests)
• eflint-server: TCP server (dynamic assessment)
• Formal syntax / semi-formal operational semantics

2. java-implementation

• TCP client
• HTTP server
• rudimentary EDSL for accessing eflint-server

3. scala-implementation

• eFLINT actors in the actor-oriented Akka framework

4. Development environments

• Jupyter notebooks
• Various experimental web-applications
• FLINT editor

43 / 59

State of development

1. haskell-implementation

• Reference implementation of eFLINT DSL
• eflint-repl: interpreter (debugging, running scenarios and tests)
• eflint-server: TCP server (dynamic assessment)
• Formal syntax / semi-formal operational semantics

2. java-implementation

• TCP client
• HTTP server
• rudimentary EDSL for accessing eflint-server

3. scala-implementation

• eFLINT actors in the actor-oriented Akka framework

4. Development environments

• Jupyter notebooks
• Various experimental web-applications
• FLINT editor

44 / 59

State of development

1. haskell-implementation

• Reference implementation of eFLINT DSL
• eflint-repl: interpreter (debugging, running scenarios and tests)
• eflint-server: TCP server (dynamic assessment)
• Formal syntax / semi-formal operational semantics

2. java-implementation

• TCP client
• HTTP server
• rudimentary EDSL for accessing eflint-server

3. scala-implementation

• eFLINT actors in the actor-oriented Akka framework

4. Development environments

• Jupyter notebooks
• Various experimental web-applications
• FLINT editor

45 / 59

State of development

1. haskell-implementation

• Reference implementation of eFLINT DSL
• eflint-repl: interpreter (debugging, running scenarios and tests)
• eflint-server: TCP server (dynamic assessment)
• Formal syntax / semi-formal operational semantics

2. java-implementation

• TCP client
• HTTP server
• rudimentary EDSL for accessing eflint-server

3. scala-implementation

• eFLINT actors in the actor-oriented Akka framework

4. Development environments

• Jupyter notebooks
• Various experimental web-applications
• FLINT editor 46 / 59

Goals for eFLINT 3.0

Language design

• Clear separation between:
• Computational concepts: actions, events, synchronisation
• Normative concepts: prohibition, obligation, permission, power

• (eFLINT 2.0 can serve as a core/inner language to eFLINT 3.0)

• A module system, introducing namespaces and a versioning mechanism

• Modular, rule-based specification as the default through implicit extensions

Language engineering

• Additional static analyses to detect inconsistencies and possible errors

• Detailed reports as part of reasoning output to improve explainability

• User-friendly programming environment for writing and testing specifications

• Interoperability, e.g. with linked data / semantic web

47 / 59

FAQ

eFLINT is just defining a transition system with some extra conditions lying on top

– PL expert

Law is subject to interpretation and has (deliberate) open terms

– Legal expert

eFLINT is still too difficult to use

– Legal expert

48 / 59

Takeaway messages

At the University of Amsterdam, we are experimenting with approaches to enforcing
laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

We are currently working on a prototype to demonstrate our approach in data exchange
systems such as the Amsterdam Data Exchange (AMdEX)

These experiments highlight the importance of software engineering concepts such as
modularity, reuse, version control, overriding/overloading mechanisms and inheritance

The next phase is to improve the practicality and usability of eFLINT through higher-
level abstractions, (domain-specific) editors, static analyses, and explainability

49 / 59

Takeaway messages

At the University of Amsterdam, we are experimenting with approaches to enforcing
laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

We are currently working on a prototype to demonstrate our approach in data exchange
systems such as the Amsterdam Data Exchange (AMdEX)

These experiments highlight the importance of software engineering concepts such as
modularity, reuse, version control, overriding/overloading mechanisms and inheritance

The next phase is to improve the practicality and usability of eFLINT through higher-
level abstractions, (domain-specific) editors, static analyses, and explainability

50 / 59

Takeaway messages

At the University of Amsterdam, we are experimenting with approaches to enforcing
laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

We are currently working on a prototype to demonstrate our approach in data exchange
systems such as the Amsterdam Data Exchange (AMdEX)

These experiments highlight the importance of software engineering concepts such as
modularity, reuse, version control, overriding/overloading mechanisms and inheritance

The next phase is to improve the practicality and usability of eFLINT through higher-
level abstractions, (domain-specific) editors, static analyses, and explainability

51 / 59

Takeaway messages

At the University of Amsterdam, we are experimenting with approaches to enforcing
laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

We are currently working on a prototype to demonstrate our approach in data exchange
systems such as the Amsterdam Data Exchange (AMdEX)

These experiments highlight the importance of software engineering concepts such as
modularity, reuse, version control, overriding/overloading mechanisms and inheritance

The next phase is to improve the practicality and usability of eFLINT through higher-
level abstractions, (domain-specific) editors, static analyses, and explainability

52 / 59

Takeaway messages

At the University of Amsterdam, we are experimenting with approaches to enforcing
laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

We are currently working on a prototype to demonstrate our approach in data exchange
systems such as the Amsterdam Data Exchange (AMdEX)

These experiments highlight the importance of software engineering concepts such as
modularity, reuse, version control, overriding/overloading mechanisms and inheritance

The next phase is to improve the practicality and usability of eFLINT through higher-
level abstractions, (domain-specific) editors, static analyses, and explainability

53 / 59

Reflections on the design and application of eFLINT

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
ltvanbinsbergen@acm.org

January 16, 2022
Programming Languages and the Law (ProLaLa)

54 / 59

laws & regulations understanding of the law

facts, scenarioactions, objects

physical reality institutional reality

interpretation

assessment

qualification

“If the facts are against you, argue the law. If the law is against you, argue the facts.
If the law and the facts are against you, pound the table ...” -Carl Sandburg

55 / 59

Regulated systems for a banking case study

repository of
reusable norm
specifications

application
specific specs

regulatory
services

application
services

policy construction (offline)

distributed system (online)

Internal Policy
Sharing
Agreement

Consent Ontology Rectification

GDPR composition

Internal Policy
Sharing
Agreement

GDPR composition

SA G1 ... G nP1 ... P n

initialization initializationinitialization

M0 M1 M2

event request/response event event

Client1

Client n

Employee1

Employee n

Bank1

Bank n
Broker

56 / 59

eFLINT integration – overview (GDPR example)

M

Specialized specification

Reusable specification

OntologyConsent Rectification

composition

specialization

I1 ... In

initialization

online

offline

57 / 59

eFLINT integration – example

Reusable GDPR concepts

Fact controller

Fact subject

Fact data

Fact subject -of

Identified by subject * data

Specialisation to application

Fact bank // exactly one

Fact client // exactly one

Fact controller

Derived from bank

Fact subject

Derived from client

Fact data

Identified by Int

Event data -change

Terminates data

Creates data(data + 1)

Fact subject -of

Derived from

subject -of(client ,processed)

,subject -of(client ,data)

Fact processed

...

Instantiation at run-time

+bank(GNB).

+client(Alice).

+data (0).

Derived after instantiation

+controller(GNB).

+subject(Alice).

+subject -of(Alice ,0).

58 / 59

Two approaches to enforcing norms

Embedding eFLINT specifications as eFLINT actors, akin to ‘policy decision point’:

inference

eFLINT actor

Actor

changes in norms

query (e.g. permission?)

query (e.g. verification)

notification
(e.g. violation / new duty)

notification
(e.g. of action)

Generating system-level policies, akin to ‘policy administration point’

59 / 59

	Relating normative and computational concepts
	The eFLINT language
	eFLINT 1.0
	eFLINT 2.0

	Reflections
	Goals for eFLINT 3.0

