
Domain-Specific Languages and Normative Reasoning

L. Thomas van Binsbergen

Complex Cyber Infrastructure, University of Amsterdam
ltvanbinsbergen@acm.org

September 23, 2021
SAE Digital Data Steering Group

1 / 62

Overview

1. Regulated systems
Relating normative and computational concepts
DSLs and model-driven engineering

2. The eFLINT language
eFLINT 1.0
eFLINT 2.0

3. Reflections

2 / 62

Section 1

Regulated systems

3 / 62

Regulated data exchange:
data exchange systems governed by regulations, agreements and policies

as an instance of

Regulated systems:
distributed software systems with embedded regulatory services derived from norm
specifications that monitor and/or enforce compliance

4 / 62

NWO-funded: SSPDDP – Secure and scalable, policy-driven data exchange

NWO-funded: DL4LD – Data Logistics for Logistics Data

EFRO-funded: AMDEX Fieldlab – neutral data-exchange infrastructure

5 / 62

Towards regulated systems

Monolithic programs

Service-oriented architectures
distribution

Autonomous systems

AI

Social software systems

AI

distribution

Regulated (software) systems

norms + enforcement

6 / 62

Towards regulated systems

Monolithic programs Service-oriented architectures
distribution

Autonomous systems

AI

Social software systems

AI

distribution

Regulated (software) systems

norms + enforcement

7 / 62

Towards regulated systems

Monolithic programs Service-oriented architectures
distribution

Autonomous systems

AI

Social software systems

AI

distribution

Regulated (software) systems

norms + enforcement

8 / 62

Towards regulated systems

Monolithic programs Service-oriented architectures
distribution

Autonomous systems

AI

Social software systems

AI

distribution

Regulated (software) systems

norms + enforcement

9 / 62

Towards regulated systems

Monolithic programs Service-oriented architectures
distribution

Autonomous systems

AI

Social software systems

AI

distribution

Regulated (software) systems

norms + enforcement

10 / 62

Regulated system = application services + regulatory services

Users

Application
Services

Enforcement
Services

Normative
Services

Users

input/output input/output

queries
monitors & notifies

penalizes, rewards & notifies

monitors & notifies

regulatory servicesapplication services

11 / 62

Dynamic enforcement examples – sharing agreement

(Article 1) A member of the consortium
has the right to request a risk assessment
computation from the broker for any (po-
tential) client

(Article 2) The data broker has the power
to oblige members of the consortium to
share information about any client the
member does business with

Bank1 Agreement Broker Enforcer Bank2

permission(request-compute(C))?

true {member of consortium}

request-compute(C)

share-data(C,Info1)

request-data(C)

request-data(C,B2)

timeout(share-data(B2,C))

demand-data(C)

share-data(C,Info2)

share-data(B2,C)

terminated(share-data(B2,C))

compute-result(C,Res)

12 / 62

Regulated systems – points to address

Formalization of applicable norms: reusable, modular and dynamically updateable

Different methods of embedding and enforcing norms:
• Static ex-ante: verify and apply norms during software production

e.g. correct-by-construction arguments, model checking

• Dynamic ex-ante: apply rules at run-time, guaranteeing compliance
enables decisions (behavioral, normative) that depend on input

• Embedded ex-post enforcement: specified responses to violations
enables (regulated) non-compliant behavior, e.g. based on risk assessment by agent

• External ex-post enforcement: external responses to violations
e.g. auditing, conformance checking
enables (human-)intervention in running system

Production of diagnostic reports and/or audit trails to enable evaluation and reflection

13 / 62

Regulated systems – points to address

Derivation of regulatory services from formalization of norms

Interfacing between application and regulatory services:
• Monitoring (communicated and silent) behavior of services

difficulties: fallible and subject to manipulation

• Regulatory services responding to queries about normative positions
e.g. do I have permission to...? or the obligation to... ?

• Application services verifying facts on behalf of regulatory services
e.g. verifying credentials or certificates

• Regulatory services communicating changes in normative positions
e.g. gaining/losing powers, holding/satisfying obligations, violations

Challenges: different interpretations of norms and different qualifications of situations

14 / 62

Subsection 1

Relating normative and computational concepts

15 / 62

laws & regulations understanding of the law

facts, scenarioactions, objects

physical reality institutional reality

interpretation

assessment

qualification

“If the facts are against you, argue the law. If the law is against you, argue the facts.
If the law and the facts are against you, pound the table ...” -Carl Sandburg

16 / 62

Normative reasoning – information flow

DSL design

normative
concepts

computational
concepts

formal
language

interpretation

natural
language

spec

application

integration spec∗ observations

qualification

scenario

assessment

context
(open terms)

reportpriorities

judge

enforcement decision

offline

offline/online

17 / 62

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Implicit vs explicit
permissions

18 / 62

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Implicit vs explicit
permissions

19 / 62

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Implicit vs explicit
permissions

20 / 62

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Implicit vs explicit
permissions

21 / 62

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Implicit vs explicit
permissions

22 / 62

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Implicit vs explicit
permissions

23 / 62

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Implicit vs explicit
permissions

24 / 62

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Implicit vs explicit
permissions

25 / 62

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Implicit vs explicit
permissions

26 / 62

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Implicit vs explicit
permissions

27 / 62

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Implicit vs explicit
permissions

28 / 62

Normative relations between actors

• A deontic term is associated with several actors:

– The holder of the prohibition, obligation or prohibition
– Zero or more claimants to the prohibition or obligation
– The actor who assigned the prohibition, obligation or permission

• A potestative term is associated with several actors

– The performing actor
– One or more recipients being affected by the power
– The actor who assigned the power

29 / 62

Subsection 2

DSLs and model-driven engineering

30 / 62

Domain-specific languages

Domain-specific languages empower domain-experts to producing programs, specifi-
cations, or models without having to rely on software engineers

DSLs have constructs and syntax (sometimes visual) relevant to their domain

Figure: MySQL Figure: PlantUML Figure: DOT

31 / 62

Model-driven engineering

Generate implementations from mod-
els of the desired system:

• Specify the essence, abstracting
away from implementation
details

• Visualisation, inspection, and
checking of model in isolation

• Applied by low-code/no-code
platforms

Figure: by Johan den Haan, CTO at Mendix
32 / 62

Model-driven experimentation with regulated system

Users

Application
Services

Enforcement
Services

Normative
Services

Users

input/output input/output

queries
monitors & notifies

penalizes, rewards & notifies

monitors & notifies

regulatory servicesapplication services

33 / 62

Our languages for model-driven experimentation

eFLINT – formalization of norms from a variety of sources
declarative reasoning about facts, actions and duties

reactive component for integration in software systems

including actor-based implementation
published @ SPLASH 2020

AgentScriptCC – specification of services as agents
reactive BDI agents,

compiled to actor-based implementation,

used for both application and enforcement services

published @ SPLASH 2020

Actor-oriented programming in the Akka framework:
https://akka.io/

actor systems modelling social software systems

34 / 62

https://akka.io/

eFLINT actors

inference

eFLINT actor

Actor

changes in norms

query (e.g. permission?)

query (e.g. verification)

notification
(e.g. violation / new duty)

notification
(e.g. of action)

35 / 62

Regulated systems for Know Your Customer case study

repository of
reusable norm
specifications

application
specific specs

regulatory
services

application
services

policy construction (offline)

distributed system (online)

Internal Policy
Sharing
Agreement

Consent Ontology Rectification

GDPR composition

Internal Policy
Sharing
Agreement

GDPR composition

SA G1 ... G nP1 ... P n

initialization initializationinitialization

M0 M1 M2

event request/response event event

Client1

Client n

Employee1

Employee n

Bank1

Bank n
Broker

36 / 62

Section 2

The eFLINT language

37 / 62

Subsection 1

eFLINT 1.0

38 / 62

Example – knowledge representation

(Toy Article 1) a natural person is a legal parent of another natural person if:

• they are a natural parent, or
• they are an adoptive parent

Fact person Identified by String

Placeholder parent For person

Placeholder child For person

Fact natural -parent Identified by parent * child

Fact adoptive -parent Identified by parent * child

Fact legal -parent Identified by parent * child

Holds when adoptive -parent(parent ,child)

|| natural -parent(parent ,child)

39 / 62

Example – powers and duties

(Toy Article 2) a child has the power to ask a legal parent for help with their homework,
resulting in a duty for the parent to help.

Act ask -for -help

Actor child

Recipient parent

Creates help -with -homework(parent ,child)

Holds when legal -parent(parent ,child)

Duty help -with -homework

Holder parent

Claimant child

Violated when homework -due(child)

Fact homework -due Identified by child

Act help

Actor parent

Recipient child

Terminates help -with -homework(parent ,child)

Holds when help -with -homework(parent ,child)

40 / 62

Example – scenario

Fact person Identified by Alice , Bob , Chloe , David

Listing 1: Domain specification

+natural -parent(Alice , Bob).

+adoptive -parent(Chloe , David).

Listing 2: Initial state

ask -for -help(Bob , Alice). // permitted: Alice is Bob ’s legal

parent

+homework -due(Bob). // homework deadline passed

?Violated(help -with -homework(Alice ,Bob)). // query confirms duty is violated

help(Alice ,Bob). // duty terminated

Listing 3: Scenario

41 / 62

42 / 62

Subsection 2

eFLINT 2.0

43 / 62

REPLization of eFLINT

1. eFLINT 2.0: REPLization applied to eFLINT 1.0

• the different kinds of declarations and statements can be mixed freely
• dynamic scenario construction and assessment; dynamic policy construction
• enables implementation of ‘eFLINT actors’

2. Extensions to the eFLINT syntax

• The Extends keyword to modularly extend existing declarations
Enables rule-based formalisation of articles

• The Syncs with keyword to trigger multiple actions simultaneously
Enables the qualification of one action as an instance of another

44 / 62

REPLization of eFLINT

1. eFLINT 2.0: REPLization applied to eFLINT 1.0

• the different kinds of declarations and statements can be mixed freely
• dynamic scenario construction and assessment; dynamic policy construction
• enables implementation of ‘eFLINT actors’

2. Extensions to the eFLINT syntax

• The Extends keyword to modularly extend existing declarations
Enables rule-based formalisation of articles

• The Syncs with keyword to trigger multiple actions simultaneously
Enables the qualification of one action as an instance of another

45 / 62

eFLINT actors

inference

eFLINT actor

Actor

changes in norms

query (e.g. permission?)

query (e.g. verification)

notification
(e.g. violation / new duty)

notification
(e.g. of action)

46 / 62

The DIPG case – Compliance questions

According to the GDPR and the DIPG regulatory document:

1. What conditions need to be fulfilled by a member before making data available?

2. What conditions need to be fulfilled when accessing data from the registry?

47 / 62

Modular GDPR specification

Figure: ICTH2021

Act collect -personal -data

Actor controller

Recipient subject

Related to data , processor , purpose

Where subject -of(subject , data)

Creates processes(processor , data , controller , purpose)

48 / 62

Article 5 – processing conditions

Fact minimal -for -purpose Identified by processes

Extend Act collect -personal -data Conditioned by minimal -for -purpose(data , purpose)

Listing 4: Member (1c)

Fact accurate -for -purpose Identified by data * purpose

Extend Act collect -personal -data Conditioned by accurate -for -purpose(data , purpose)

Listing 5: Member (1d)

49 / 62

Article 6 – legal processing

Fact consent Identified by subject * controller * purpose * data

Extend Act collect -personal -data

Holds when consent(subject , controller , purpose , data)

Listing 6: Member (1a)

Fact has -legal -obligation Identified by processes

Extend Act collect -personal -data

Holds when has -legal -obligation(controller , purpose)

Listing 7: Member (1c) 50 / 62

Compliance Question 1

DIPG Regulatory document – Article 4(2):

Members should transfer data to the DIPG registry in a coded form only

Fact coded Identified by dataset

Act make -data -available

Actor institution

Recipient dcog

Related to dataset

Conditioned by coded(dataset)

Holds when member(institution)

51 / 62

Compliance Question 1

Extend Act make -data -available Syncs with (Foreach donor:

collect -personal -data(controller = institution

,subject = donor

,data = dataset

,processor = "DCOG"

,purpose = "DIPGResearch ")

When subject -of(donor , dataset))

An institution can make a dataset available when (for each donor (subject) in the dataset):

• The institution is a member (DIPG Regulatory Document – Article 4(2))

• Data is coded (DIPG Regulatory Document – Article 4(2))

• Consent is given by the donor for the processing of their personal data by the DCOG for
the purpose of DIPGResearch (GDPR – Article 6)

• Data should be accurate for the purpose DIPGResearch (GDPR – Article 5)

52 / 62

Section 3

Reflections

53 / 62

Bounded vs open-ended domains

Static analyses

• eFLINT 1.0 enabled automated scenarios assessment in finite domain

• Future work: applying model checking, and/or property-based testing

Dynamic enforcement

• eFLINT 2.0 enabled dynamic interpretation, qualification and assessment

• Domain and scenario established at runtime, based on the contents of the knowledge base

Design decision:
When enumerating instances, first check domain of type, then knowledge base

// opt1: Fact person Identified by Alice , Bob , Chloe , David

// opt2: +person(Alice). +person(Bob). +person(Chloe). +person(David).

?(Forall person: !homework -due(person))

54 / 62

Two approaches to enforcing social policies

Embedding eFLINT specifications as eFLINT actors, akin to ‘policy decision point’:

inference

eFLINT actor

Actor

changes in norms

query (e.g. permission?)

query (e.g. verification)

notification
(e.g. violation / new duty)

notification
(e.g. of action)

Generating system-level policies, akin to ‘policy administration point’

55 / 62

Potential benefits from standardisation

DSL design

normative
concepts

computational
concepts

formal
language

interpretation

natural
language

spec

application

integration spec∗ observations

qualification

scenario

assessment

context
(open terms)

reportpriorities

judge

enforcement decision

offline

offline/online

56 / 62

Standardisation efforts

Amsterdam Data Exchange (AMdEX)

• Project running till June 2023, initiative > 2023

• Standardisation of: specification (of interpretations) and assessment reports

Legal Engineering and TNO and UvA

• All aspects of legal engineering are in scope

• Standardisation of: specifications, scenarios (cases), reports, decisions, ...

57 / 62

Takeaway messages

At the Complex Cyber Infrastructure group, we are experimenting with approaches to
enforcing laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

We are currently working on a prototype to demonstrate our approach in data exchange
systems such as the Amsterdam Data Exchange (AMdEX)

Regulated (data exchange) systems involve several information processing steps that
can benefit from standardisation

58 / 62

Takeaway messages

At the Complex Cyber Infrastructure group, we are experimenting with approaches to
enforcing laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

We are currently working on a prototype to demonstrate our approach in data exchange
systems such as the Amsterdam Data Exchange (AMdEX)

Regulated (data exchange) systems involve several information processing steps that
can benefit from standardisation

59 / 62

Takeaway messages

At the Complex Cyber Infrastructure group, we are experimenting with approaches to
enforcing laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

We are currently working on a prototype to demonstrate our approach in data exchange
systems such as the Amsterdam Data Exchange (AMdEX)

Regulated (data exchange) systems involve several information processing steps that
can benefit from standardisation

60 / 62

Takeaway messages

At the Complex Cyber Infrastructure group, we are experimenting with approaches to
enforcing laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

We are currently working on a prototype to demonstrate our approach in data exchange
systems such as the Amsterdam Data Exchange (AMdEX)

Regulated (data exchange) systems involve several information processing steps that
can benefit from standardisation

61 / 62

Domain-Specific Languages and Normative Reasoning

L. Thomas van Binsbergen

Complex Cyber Infrastructure, University of Amsterdam
ltvanbinsbergen@acm.org

September 23, 2021
SAE Digital Data Steering Group

62 / 62

	Regulated systems
	Relating normative and computational concepts
	DSLs and model-driven engineering

	The eFLINT language
	eFLINT 1.0
	eFLINT 2.0

	Reflections

