
Towards a DSL for formalising laws and regulations
intermediate findings and results

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
ltvanbinsbergen@acm.org

September 9, 2021
Strumenta, Virtual Meetup

1 / 69

Overview

1. Regulated systems
Relating normative and computational concepts

2. The eFLINT language
eFLINT 1.0
eFLINT 2.0
Goals for eFLINT 3.0

3. Reflections

2 / 69

Section 1

Regulated systems

3 / 69

Towards regulated systems

Monolithic programs

Service-oriented architectures
distribution

Autonomous systems

AI

Social software systems

AI

distribution

Regulated (software) systems

norms + enforcement

4 / 69

Towards regulated systems

Monolithic programs Service-oriented architectures
distribution

Autonomous systems

AI

Social software systems

AI

distribution

Regulated (software) systems

norms + enforcement

5 / 69

Towards regulated systems

Monolithic programs Service-oriented architectures
distribution

Autonomous systems

AI

Social software systems

AI

distribution

Regulated (software) systems

norms + enforcement

6 / 69

Towards regulated systems

Monolithic programs Service-oriented architectures
distribution

Autonomous systems

AI

Social software systems

AI

distribution

Regulated (software) systems

norms + enforcement

7 / 69

Towards regulated systems

Monolithic programs Service-oriented architectures
distribution

Autonomous systems

AI

Social software systems

AI

distribution

Regulated (software) systems

norms + enforcement

8 / 69

Regulated system = application services + regulatory services

Users

Application
Services

Enforcement
Services

Normative
Services

Users

input/output input/output

queries
monitors & notifies

penalizes, rewards & notifies

monitors & notifies

regulatory servicesapplication services

9 / 69

Dynamic enforcement examples – sharing agreement

(Article 1) A member of the consortium
has the right to request a risk assessment
computation from the broker for any (po-
tential) client

(Article 2) The data broker has the power
to oblige members of the consortium to
share information about any client the
member does business with

Bank1 Agreement Broker Enforcer Bank2

permission(request-compute(C))?

true {member of consortium}

request-compute(C)

share-data(C,Info1)

request-data(C)

request-data(C,B2)

timeout(share-data(B2,C))

demand-data(C)

share-data(C,Info2)

share-data(B2,C)

terminated(share-data(B2,C))

compute-result(C,Res)

10 / 69

Our approach to model-driven experimentation

eFLINT – formalization of norms from a variety of sources
declarative reasoning about facts, actions and duties

reactive component for integration in software systems

including actor-based implementation
published @ SPLASH 2020

AgentScriptCC – specification of services as agents
reactive BDI agents,

compiled to actor-based implementation

published @ SPLASH 2020

Actor-oriented programming in the Akka framework:
https://akka.io/

actor systems modelling social software systems

11 / 69

https://akka.io/

Subsection 1

Relating normative and computational concepts

12 / 69

laws & regulations understanding of the law

facts, scenarioactions, objects

physical reality institutional reality

interpretation

assessment

qualification

“If the facts are against you, argue the law. If the law is against you, argue the facts.
If the law and the facts are against you, pound the table ...” -Carl Sandburg

13 / 69

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Explicit permissions cause
conflicts

14 / 69

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Explicit permissions cause
conflicts

15 / 69

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Explicit permissions cause
conflicts

16 / 69

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Explicit permissions cause
conflicts

17 / 69

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Explicit permissions cause
conflicts

18 / 69

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Explicit permissions cause
conflicts

19 / 69

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Explicit permissions cause
conflicts

20 / 69

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Explicit permissions cause
conflicts

21 / 69

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Explicit permissions cause
conflicts

22 / 69

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Explicit permissions cause
conflicts

23 / 69

Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

�Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

� Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

• Powers modify
truth-assignments to
variables

� Explicit permissions cause
conflicts

24 / 69

Normative relations between actors

• A deontic value is associated with several actors:

– The holder of the prohibition, obligation or prohibition
– Zero or more claimants to the prohibition or obligation
– The actor who assigned the prohibition, obligation or permission

• A potestative value is associated with several actors

– The performing actor
– One or more recipients being affected by the power
– The actor who assigned the power

25 / 69

Regulated systems – points to address

Formalization of applicable norms: reusable, modular and dynamically updateable

Different methods of embedding and enforcing norms:
• Static ex-ante: verify and apply norms during software production

e.g. correct-by-construction arguments, model checking

• Dynamic ex-ante: apply rules at run-time, guaranteeing compliance
enables decisions (behavioral, normative) that depend on input

• Embedded ex-post enforcement: specified responses to violations
enables (regulated) non-compliant behavior, e.g. based on risk assessment by agent

• External ex-post enforcement: external responses to violations
e.g. auditing, conformance checking
enables (human-)intervention in running system

Production of diagnostic reports and/or audit trails to enable evaluation and reflection

26 / 69

Regulated systems – points to address

Derivation of regulatory services from formalization of norms

Interfacing between application and regulatory services:
• Monitoring (communicated and silent) behavior of services

difficulties: fallible and subject to manipulation

• Regulatory services responding to queries about normative positions
e.g. do I have permission to...? or the obligation to... ?

• Application services verifying facts on behalf of regulatory services
e.g. verifying credentials or certificates

• Regulatory services communicating changes in normative positions
e.g. gaining/losing powers, holding/satisfying obligations, violations

Challenges: different interpretations of norms and different qualifications of situations

27 / 69

Regulated systems for Know Your Customer case study

repository of
reusable norm
specifications

application
specific specs

regulatory
services

application
services

policy construction (offline)

distributed system (online)

Internal Policy
Sharing
Agreement

Consent Ontology Rectification

GDPR composition

Internal Policy
Sharing
Agreement

GDPR composition

SA G1 ... G nP1 ... P n

initialization initializationinitialization

M0 M1 M2

event request/response event event

Client1

Client n

Employee1

Employee n

Bank1

Bank n
Broker

28 / 69

Section 2

The eFLINT language

29 / 69

Subsection 1

eFLINT 1.0

30 / 69

Example – knowledge representation

(Toy Article 1) a natural person is a legal parent of another natural person if:

• they are a natural parent, or
• they are an adoptive parent

Fact person Identified by String

Placeholder parent For person

Placeholder child For person

Fact natural -parent Identified by parent * child

Fact adoptive -parent Identified by parent * child

Fact legal -parent Identified by parent * child

Holds when adoptive -parent(parent ,child)

|| natural -parent(parent ,child)

31 / 69

Example – powers and duties

(Toy Article 2) a child has the power to ask a legal parent for help with their homework,
resulting in a duty for the parent to help.

Act ask -for -help

Actor child

Recipient parent

Creates help -with -homework(parent ,child)

Holds when legal -parent(parent ,child)

Duty help -with -homework

Holder parent

Claimant child

Violated when homework -due(child)

Fact homework -due Identified by child

Act help

Actor parent

Recipient child

Terminates help -with -homework(parent ,child)

Holds when help -with -homework(parent ,child)

32 / 69

Example – scenario

Fact person Identified by Alice , Bob , Chloe , David

Listing 1: Domain specification

+natural -parent(Alice , Bob).

+adoptive -parent(Chloe , David).

Listing 2: Initial state

ask -for -help(Bob , Alice). // Alice is Bob ’s legal parent

+homework -due(Bob). // homework deadline passed

?Violated(help -with -homework(Alice ,Bob)). // query duty violation

help(Alice ,Bob). // duty terminated

Listing 3: Scenario

33 / 69

34 / 69

Subsection 2

eFLINT 2.0

35 / 69

Deriving REPLs and Notebooks for DSLs – ALE collaboration

Figure: Software Language Engineering 2019

Figure: Art, Science, and Engineering of Programming 2020
36 / 69

Deriving REPL/Notebook – commonalities

• READ: Identify entry points, i.e. the alternatives in syntactic root
• EVAL: Connect entry points with evaluation function in DSL interpreter
• PRINT: Specify function to convert evaluation result to string
• LOOP:

How does one execution
affect the next?

37 / 69

Deriving REPL/Notebook – commonalities

• READ: Identify entry points, i.e. the alternatives in syntactic root
• EVAL: Connect entry points with evaluation function in DSL interpreter
• PRINT: Specify function to convert evaluation result to string
• LOOP:

How does one execution
affect the next?

38 / 69

Idea..!

Distinguish between REPL language and base language (e.g. JShell vs Java)

Figure: Onward!2020

39 / 69

Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which p1 ⊗ p2 is a (syntactically) valid program iff p1

and p2 are valid programs and iff p1 ⊗ p2 is equivalent to ‘doing’ p1 and then p2

Jp1 ⊗ p2K = Jp2K ◦ Jp1K

A REPL is a monoid homomorphism between programs and their effects

40 / 69

Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which p1 ⊗ p2 is a (syntactically) valid program iff p1

and p2 are valid programs and iff p1 ⊗ p2 is equivalent to ‘doing’ p1 and then p2

Jp1 ⊗ p2K = Jp2K ◦ Jp1K

A REPL is a monoid homomorphism between programs and their effects

41 / 69

Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which p1 ⊗ p2 is a (syntactically) valid program iff p1

and p2 are valid programs and iff p1 ⊗ p2 is equivalent to ‘doing’ p1 and then p2

Jp1 ⊗ p2K = Jp2K ◦ Jp1K

A REPL is a monoid homomorphism between programs and their effects

42 / 69

REPLization in Onward!2020

Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)

2. Extend interpreter by linking phrases to functions in base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

Jp1 ⊗ p2K = Jp2K ◦ Jp1K

• The effect of one phrase on the next is determined by (2)

43 / 69

REPLization in Onward!2020

Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)

2. Extend interpreter by linking phrases to functions in base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

Jp1 ⊗ p2K = Jp2K ◦ Jp1K

• The effect of one phrase on the next is determined by (2)

44 / 69

REPLization in Onward!2020

Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)

2. Extend interpreter by linking phrases to functions in base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

Jp1 ⊗ p2K = Jp2K ◦ Jp1K

• The effect of one phrase on the next is determined by (2)

45 / 69

REPLization in Onward!2020

Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)

2. Extend interpreter by linking phrases to functions in base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

Jp1 ⊗ p2K = Jp2K ◦ Jp1K

• The effect of one phrase on the next is determined by (2)

46 / 69

REPLization in Onward!2020

Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)

2. Extend interpreter by linking phrases to functions in base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

Jp1 ⊗ p2K = Jp2K ◦ Jp1K

• The effect of one phrase on the next is determined by (2)

47 / 69

Onward!2020 (MiniJava case study)

48 / 69

REPLization of eFLINT

1. eFLINT 2.0: REPLization applied to eFLINT using eFLINT 1.0 interpreter

• valid phrases: type-declarations, initialization, triggering action/events, queries
• enables backtracking for manual exploration
• enables implementation of ‘eFLINT actors’
• type-declarations as phrases enable dynamic policy construction

2. Tools based on the same REPLized interpreter

• eflint-repl: command line tool for manual exploration and debugging
• eflint-server: server that listens on a port for incoming phrases

49 / 69

REPLization of eFLINT

1. eFLINT 2.0: REPLization applied to eFLINT using eFLINT 1.0 interpreter

• valid phrases: type-declarations, initialization, triggering action/events, queries
• enables backtracking for manual exploration
• enables implementation of ‘eFLINT actors’
• type-declarations as phrases enable dynamic policy construction

2. Tools based on the same REPLized interpreter

• eflint-repl: command line tool for manual exploration and debugging
• eflint-server: server that listens on a port for incoming phrases

50 / 69

eFLINT actors

inference

eFLINT actor

Actor

changes in norms

query (e.g. permission?)

query (e.g. verification)

notification
(e.g. violation / new duty)

notification
(e.g. of action)

51 / 69

eFLINT integration – overview (GDPR example)

M

Specialized specification

Reusable specification

OntologyConsent Rectification

composition

specialization

I1 ... In

initialization

online

offline

52 / 69

eFLINT integration – example

Reusable GDPR concepts

Fact controller

Fact subject

Fact data

Fact subject -of

Identified by subject * data

Specialisation to application

Fact bank // exactly one

Fact client // exactly one

Fact controller

Derived from bank

Fact subject

Derived from client

Fact data

Identified by Int

Event data -change

Terminates data

Creates data(data + 1)

Fact subject -of

Derived from

subject -of(client ,processed)

,subject -of(client ,data)

Fact processed

...

Instantiation at run-time

+bank(GNB).

+client(Alice).

+data (0).

Derived after instantiation

+controller(GNB).

+subject(Alice).

+subject -of(Alice ,0).

53 / 69

Modular GDPR specification

Figure: ICTH2021

Act collect -personal -data

Actor controller

Recipient subject

Related to data , processor , purpose

Where subject -of(subject , data)

Creates processes(processor , data , controller , purpose)

54 / 69

Article 5 – processing conditions

Fact minimal -for -purpose Identified by processes

Extend Act collect -personal -data Conditioned by minimal -for -purpose(data , purpose)

Listing 4: Member (1c)

Fact accurate -for -purpose Identified by data * purpose

Extend Act collect -personal -data Conditioned by accurate -for -purpose(data , purpose)

Listing 5: Member (1d)

55 / 69

Article 6 – legal processing

Fact consent Identified by subject * controller * purpose * data

Extend Act collect -personal -data

Holds when consent(subject , controller , purpose , data)

Listing 6: Member (1a)

Fact has -legal -obligation Identified by processes

Extend Act collect -personal -data

Holds when has -legal -obligation(controller , purpose)

Listing 7: Member (1c) 56 / 69

Compliance questions

According to the GDPR and the DIPG regulatory document:

1. What conditions need to be fulfilled by a member before making data available?

2. What conditions need to be fulfilled when accessing data from the registry?

57 / 69

Compliance Question 1

DIPG Regulatory document – Article 4(2):

Members should transfer data to the DIPG registry in a coded form only

Fact coded Identified by dataset

Act make -data -available

Actor institution

Recipient dcog

Related to dataset

Conditioned by coded(dataset)

Holds when member(institution)

58 / 69

Compliance Question 1

Extend Act make -data -available Syncs with (Foreach donor:

collect -personal -data(controller = institution

,subject = donor

,data = dataset

,processor = "DCOG"

,purpose = "DIPGResearch ")

When subject -of(donor , dataset))

An institution can make a dataset available when (for each donor (subject) in the dataset):

• The institution is a member (DIPG Regulatory Document – Article 4(2))

• Data is coded (DIPG Regulatory Document – Article 4(2))

• Consent is given by the donor for the processing of their personal data by the DCOG for
the purpose of DIPGResearch (GDPR – Article 6)

• Data should be accurate for the purpose DIPGResearch (GDPR – Article 5)

59 / 69

Subsection 3

Goals for eFLINT 3.0

60 / 69

Goals for eFLINT 3.0

Language design

• Clear separation between:
• Computational concepts: actions, events, synchronisation
• Normative concepts: prohibition, obligation, permission, power

• A module system, introducing namespaces and a versioning mechanism

• Modular, rule-based specification as the default through implicit extensions

• (eFLINT 2.0 can serve as a core/inner language to eFLINT 3.0)

Language engineering

• Additional static analyses to detect inconsistencies and possible errors

• Detailed reports as part of reasoning output to improve explainability

• User-friendly programming environment for writing and testing specifications

• Interoperability, e.g. with linked data / semantic web

61 / 69

Section 3

Reflections

62 / 69

Bounded vs open-ended domains

Static analyses

• eFLINT 1.0 enabled automated scenarios assessment in finite domain

• Future work: applying model checking, and/or property-based testing

Dynamic enforcement

• eFLINT 2.0 enabled dynamic interpretation, qualification and assessment

• Domain established at runtime, based on the contents of the knowledge base

Design decision:
When enumerating instances, first check domain of type, then knowledge base

// opt1: Fact person Identified by Alice , Bob , Chloe , David

// opt2: +person(Alice). +person(Bob). +person(Chloe). +person(David).

?(Forall person: !homework -due(person))

63 / 69

Two approaches to enforcing social policies

Embedding eFLINT specifications as eFLINT actors, akin to ‘policy decision point’:

inference

eFLINT actor

Actor

changes in norms

query (e.g. permission?)

query (e.g. verification)

notification
(e.g. violation / new duty)

notification
(e.g. of action)

Generating system-level policies, akin to ‘policy administration point’

64 / 69

Takeaway messages

At the Complex Cyber Infrastructure group, we are experimenting with approaches to
enforcing laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

These experiments highlight the importance of software engineering concepts such as
modularity, reuse, version control, overriding mechanisms and inheritance

The next phase is to improve the practicality and usability of eFLINT and to demon-
strate our approach in data exchange systems such as the Amsterdam Data Exchange
(AMdEX)

65 / 69

Takeaway messages

At the Complex Cyber Infrastructure group, we are experimenting with approaches to
enforcing laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

These experiments highlight the importance of software engineering concepts such as
modularity, reuse, version control, overriding mechanisms and inheritance

The next phase is to improve the practicality and usability of eFLINT and to demon-
strate our approach in data exchange systems such as the Amsterdam Data Exchange
(AMdEX)

66 / 69

Takeaway messages

At the Complex Cyber Infrastructure group, we are experimenting with approaches to
enforcing laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

These experiments highlight the importance of software engineering concepts such as
modularity, reuse, version control, overriding mechanisms and inheritance

The next phase is to improve the practicality and usability of eFLINT and to demon-
strate our approach in data exchange systems such as the Amsterdam Data Exchange
(AMdEX)

67 / 69

Takeaway messages

At the Complex Cyber Infrastructure group, we are experimenting with approaches to
enforcing laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

These experiments highlight the importance of software engineering concepts such as
modularity, reuse, version control, overriding mechanisms and inheritance

The next phase is to improve the practicality and usability of eFLINT and to demon-
strate our approach in data exchange systems such as the Amsterdam Data Exchange
(AMdEX)

68 / 69

Towards a DSL for formalising laws and regulations
intermediate findings and results

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
ltvanbinsbergen@acm.org

September 9, 2021
Strumenta, Virtual Meetup

69 / 69

	Regulated systems
	Relating normative and computational concepts

	The eFLINT language
	eFLINT 1.0
	eFLINT 2.0
	Goals for eFLINT 3.0

	Reflections

