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Abstract

Exploratory programming is a programming technique that intertwines design

and implementation, and is used across a wide variety of domains. However,

current tooling only supports a limited form of exploratory programming or

is focused on the text level, preventing interactivity with a running system.

Furthermore, many software projects are written in a combination of languages,

but most tooling is only focused on exploration with one language, complicating

exploratory programming in such projects.

In this thesis, I present an implementation for a generic exploring interpreter

that supports a wide variety of interactive exploratory behaviours, a consis-

tent exploratory experience, and makes exploratory programming available to

a broad range of languages. With the implementation, language parametric

interfaces for exploratory programming are possible and implemented. These

interfaces simplify the creation of interfaces supporting exploratory program-

ming, reducing the effort required by a language to support exploratory envi-

ronments. Furthermore, a protocol for the exploring interpreter is designed,

allowing interfaces to be re-used by many exploring interpreter implementa-

tions. Via these interfaces and the exploring interpreter, a method for poly-

glot exploratory REPLs is presented based on language compositions, enabling

polyglot exploratory programming and setting a step into the direction of ex-

ploratory language development.
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1

Introduction

Exploratory programming [1, 2] is a style of programming that intertwines system design

and implementation. A main characteristic of such an approach is that the goal worked to-

wards is not fully known beforehand, but is formed while exploring with code, constituting

an iterative and volatile style of development.

Usage of exploratory programming is seen in a wide range of different domains, where ex-

ploratory programming has different goals. For example, Alice [3] provides an environment

for children to create 3D animated stories with the goal to teach children programming via

an exploration process. The Processing environment [4] is another example, which enables

the creation of digital art via exploratory programming. Notebooks, like Jupyter [5], sup-

port basic forms of exploratory programming combined with literate programming, and are

accessible for non-programmers. Usage of notebooks is seen in domains like data science [2]

and computational science [6].

Currently, much exploration is done via text editors [7] or interactive systems [8] like a

read-eval-print loop (REPL) or computational notebook.

Text editors offer undo and redo functionality, which is useful when backtracking to

earlier version and going back from earlier versions to later version. However, the undo and

redo functionality are often linear, a user can only redo the last edit and when editing after

an undo, the redo option is lost. In addition, text editors do not provide the interactivity

REPLs and notebooks provide, making iterations slower.

While systems like REPLs and notebooks provide interactivity, they often do not support

undo and redo functionality [9]. Hence, a user can move forward in an exploration session

with such a system, but is unable to have multiple versions of an implementation such that

it is easy to switch between different implementations without losing work and compare

different implementations, which is a crucial component in the exploratory process [8, 10]
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1. INTRODUCTION

Recent focus on exploratory programming resulted in new tools to support a more exten-

sive form of exploratory programming [11, 12]. More extensive exploratory programming

is obtained by allowing different versions or derivations of an implementation and enabling

the comparison of these implementations, thus moving away from the linear behaviour seen

in most editors.

However, current exploratory tools are mostly focused on the text level, missing interac-

tivity and only enabling shallow inspection of run-time state. In addition, most tools that

support interactivity, only support interactivity via one language, but many systems are

written in a combination of languages to utilise more libraries, use the right language for a

problem, or to achieve performance criteria [13, 14]. Exploratory programming in such en-

vironments is difficult, because it requires managing multiple isolated environments. When

environments are isolated, a definition introduced in one environment is only available in

that environment, requiring a user to perform manual syncing or restarting of environments

to share definitions, impeding interactivity and volatility.

In this thesis I investigate techniques to support interactive exploratory programming

in an exploratory environment for a wide range of languages, without requiring extensive

effort on the language implementation side. Furthermore, I investigate how to facilitate

polyglot exploratory programming in a flexible, safe, and low effort form.

Concretely, in this thesis I make the following contributions:

• create a generic implementation of the exploring interpreter model that adds support

for exploratory programming to any language following the language definition;

• discuss different styles of exploratory programming enabled by the exploring inter-

preter implementation;

• introduce an updated model for the exploring interpreter that provides consistent ex-

ploratory behaviour and allows impure interpreters and interpreters that can indicate

program errors;

• define a language generic protocol for the exploring interpreter and implementations

of language parametric interfaces for exploratory programming, making exploratory

programming interfaces almost free;

• and introduce a method for language composition, enabling the creation of coarse

and fine-grained polyglot REPLs that support exploratory polyglot programming,

and opening up experimentation with systems to support exploratory language de-

velopment.
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1.1 Thesis structure

1.1 Thesis structure

In chapter 2 the necessary background for this thesis is given, including a definition for

exploratory programming and the formal model of the exploring interpreter. Background

is followed by a brief discussion of related work in chapter 3. chapter 4 introduces and

evaluates the generic exploring interpreter. Insights obtained from the evaluation are

used to introduce a new exploring interpreter model in chapter 5. Language independent

interfaces for exploratory programming are introduced in chapter 6, which is followed by

a method for constructing polyglot exploratory programming environments in chapter 7.

The presented work is broadly discussed in chapter 8 and a conclusion is presented in

chapter 9.
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2

Background

2.1 Exploratory programming and interactive environments

Exploratory programming is not a new concept and has been present in interactive en-

vironments, like Smalltalk [15], LISP [16] and SELF [17]. Interactive environments make

several tools available in an interactive system to the programmer. These tools include, but

are not limited to, read-eval-print loop (REPL) tools, profilers, debuggers, and sometimes

text editors. The interactivity and tools of these components enable quick iteration and

prototyping, and quick insights in the state of an execution, supporting limited forms of

interactive exploratory programming.

In this thesis, exploratory programming is placed as a component in an interactive sys-

tem. As such, interacting with an interactive system is not exploratory programming.

Exploratory programming is a separate activity, like debugging, that can be performed in

an interactive system. By placing exploratory programming as a separate component in

interactive systems, debugging or similar activities are not considered exploratory program-

ming in this thesis. This distinction follows from the definition of exploratory programming

given in [2]. The paper defines exploratory programming as a task with two properties.

• (Property 1) The programmer writes code as a medium to prototype or experiment

with different ideas.

• (Property 2) The programmer is not just attempting to engineer working code to

match a specification. The goal is open-ended, and evolves through the process of

programming.

The second property denotes that the goal with exploratory programming is open-ended

and evolves as a result of the exploration process. Since debugging has a clear goal, it is not

5



2. BACKGROUND

considered exploratory programming. Nonetheless, I do recognise that the tooling provided

by the exploratory programming component can be combined with other components in the

interactive environment to improve the exploratory experience, decrease iteration time, and

increase capabilities of other components. Hence, the exploratory programming component

is not an isolated component in the interactive environment.

2.2 Principled approach to REPLs and exploring interpreters

Previous work [9] proposes a principled approach to REPLs. The principled approach

describes how to construct a REPL for a language by identifying that the interaction with

a REPL follows naturally via sequential languages. In the paper, a language is defined as

follows.

Definition 2.2.1. A language L is a structure 〈P,Γ, γ0, I〉 with P a set of programs, Γ a
set of configurations, γ0 an initial configuration and I a definitional interpreter assigning
to each program p ∈ P a function Ip : Γ→ Γ.

A language is a sequential language if it follows the following definition.

Definition 2.2.2. A language L = 〈P,Γ, γ0, I〉 is sequential if there is an operator ; such
that for every p1, p2 ∈ P and γ ∈ Γ it holds that p1; p2 ∈ P and that Ip1;p2(γ) = (Ip2◦Ip1)(γ)

The sequentiality definition describes that there is no difference between submitting

isolated programs or submitting sequenced programs, and every isolated program can be

sequenced with another isolated program to create a new valid sequenced program. Via

this behaviour, evaluation performed by a REPL is not influenced by the submission style

of the user, ensuring consistent behaviour.

The paper continues by introducing an exploring interpreter, a bookkeeping device built

on top of a definitional interpreter — an interpreter also defining the operational semantics

of a language.

Definition 2.2.3. An exploring interpreter for a language 〈P,Γ, γ0, I〉 is an algorithm
maintaining a current configuration (initially γ0) and an execution graph (initially con-
taining just the node γ0) and iteratively executing one of the following actions. At any
moment the execution graph is a subgraph of the reachability graph from γ0

• execute(p): transition from the current configuration γ to the configuration γ′ =

Ip(γ), where p ∈ P is provided as input, and subsequently:

– add γ′ to the set of nodes (if new),

6



2.3 Data types á la carte

– add 〈γ, p, γ′〉 to the set of edges (if new).

• revert(γ): take γ as the current configuration for the next action, where γ ∈ Γ is
provided as input,

• display: produce a structured representation of the current graph, distinguishing the
current configuration in the graph from the other configurations.

With the exploring interpreter, the definitional interpreter is extended with support for

interactive exploratory programming.

2.3 Data types á la carte

Data types á la carte [18] describes an approach to achieve compositional data types that

can be freely combined and new operations over these data types can freely added, solving

the expression problem [19].

The expression problem describes the difficulty of extending a data type with new cases

and adding new operations over existing data types, while retaining type safety and no

recompilation of existing code. In functional languages, the problem arises because it is

difficult to extend a data type with new cases. For example, we can encode a simple integer

addition language in Haskell as follows.

data Expr = Val Int | Add Expr Expr

eval :: Expr → Int

eval (Val v) = v

eval (Add l r) = eval l + eval r

Extending the language with a new case, for example adding support for subtraction,

requires modification of the Expr data type. As a result of modifying this data type,

all functions over this data type need to be modified to support the newly added case,

requiring recompilation. Alternatively, adding support for a new operation, like pretty

printing, is trivial in a functional language: just write a new function over the data type.

To make adding new cases without modification possible, data types á la carte represents

data types as functors, which allows combining data types using the co-product of the

underlying functor. Using this technique, the expression language can be represented as

follows.

data Val a = Val Int

data Add a = Add a a

data (f :+: g) e = Inl (f e) | Inr (g e)

7



2. BACKGROUND

The Val and Add data types are now isolated functors, which can be combined using the

composition operator (:+:): Val :+: Add . With this technique, a simple expression can be

constructed as follows.

Inr (Add 5 5) :: (Val :+: Add) Int

Inl (Val 5) :: (Val :+: Add) Int

Since the Add signature is on the right side of the composition, the Inr constructor is used

to place values of type Add into the right side of the composition. For values of type Val ,

the Inl constructor is used to place the values on the left side of the composition.

The composition operator takes a type parameter and forwards it to the individual com-

ponents of the composition, requiring a type argument for a composition. In the example,

the Int type is given as the argument, which makes Int the expected type for the parame-

ters of the Add constructor. The Val constructor is not influenced by the type parameter,

since the Val constructor explicitly states the parameter type. However, specifying the

type parameter as type Int makes it impossible to pass values of the composition type

as arguments to the constructor, thus only non-recursive integer expressions can be con-

structed.

To tie the recursive knot, the approach uses the fixed point of functors [20].

data Term f = In (f (Term f ))

The data type takes a type parameter of kind ∗ → ∗, corresponding to the kind of a

functor. It then passes the Term f data type as the argument to the provided type

parameter. In our example, the Val :+: Add composition can be passed as the argument

to Term: Term (Val :+: Add). As a result, values of type Term (Val :+: Add) can be

given to the constructors Val and Add , making recursive definitions possible.

In (Inr (Add (In (Inr (Add (In (Inl (Val 5))) (In (Inl (Val 10)))))) (In (Inl (Val 1)))))

:: Term (Val :+: Add)

The example shows the encoding of the (5 + 10) + 1 expression, which is a simple ex-

pression but results in a non-trivial encoding. To alleviate the construction of terms,

the approach defines a typing relation using type-classes. The typing relation is used to

perform automatic injections into the composition.

class (Functor sub,Functor sup)⇒ sub :<: sup where

inj :: sub a → sup a

instance f :<: f where

inj = id

instance f :<: g where

8



2.3 Data types á la carte

inj = Inl

instance (f :<: g)⇒ f :<: (g :+: h) where

inj = Inr ◦ inj

The :<: operator defines a typing relation such that if f :<:g it means that f is subsumed by

g, i.e. values of type f can be constructed as part of type g. With the automatic injections,

our earlier example can be defined as follows.

inject = In inj

inject (Add (inject (Add (inject (Val 5)) (inject (Val 10)))) (inject (Val 1))) :: Term (Val :+: Add)

which is more concise, and with smart constructors, like val x = inject (Val x ), it can be

further improved.

Thus, we have a method for combining data types in a functional language without

modifying existing data types. However, with the method the ability to define simple

functions over data types is lost, because a function must know the structure of the data

type it operates on. With compositional data types, the structure is not known and can

be freely extended, but the extension is not handled by existing functions.

Nonetheless, because the data types are functors and the co-product of a functor is

a functor, catamorphisms — generalisation of folds — can be used to operate on the

composition of data types.

foldTerm :: Functor f ⇒ (f a → a)→ Expr f → a

foldTerm f (In t) = f (fmap (foldTerm f ) t)

The first argument to the foldTerm function is called an algebra, denoted by the f a → a

type, and defines how the resulting value is constructed.

To enable extension of new cases at the function level, the approach makes algebra’s

part of type classes. Type classes are used because they provide ad-hoc polymorphism and

are open for extension by defining an instance of the type class. In our example, a simple

algebra evaluating the expression to their integer value can be defined as follows.

class Eval f where

evalInt :: f Int → Int

instance Eval Add where

evalInt (Add l r) = l + r

instance Eval Val where

evalInt (Val v) = v

-- Lift the algebra to operate on compositions.
instance Eval (f :+: g) where

evalInt (Inl l) = evalInt l

evalInt (Inl r) = evalInt r

9



2. BACKGROUND

The Eval f class defines the type class with the algebra specification, and data type cases

define an instance of the class To allow evaluation of composed data types, an instance is

also defined for the composition.

A full implementation of the data types á la carte approach and extensions on the

approach are presented in [21]. The extensions include, among others, automatic generation

of smart constructors using template Haskell and automatic lifting of algebras to operate

on compositions, which removes a lot of boilerplate code. With the library, our earlier

example can be rewritten as follows.

data Val a = Val Int

data Add a = Add a a

$ (derive [makeTraversable,makeFoldable,

makeEqF ,makeShowF , smartConstructors ]

[” Val , ” Add ])

class Eval f where

evalInt :: Alg f Int -- Internal type for the Algebra of f Int -> Int

instance Eval Add where

evalInt (Add l r) = l + r

instance Eval Val where

evalInt (Val v) = v

$ (derive [ liftSum ] [” Eval ])

The derive expressions denote template Haskell expressions and are implemented by the

library. The first derive generates automatic injections for the Val and Add data types,

and instances of the Show , Eq , Traversable, and Foldable type classes. The second derive

automatically lifts the Eval algebra to an algebra defined over a composition of data types.

With the generated smart constructors our earlier example of the (5 + 10) + 1 expres-

sion can be written in the following way.

expr = (iAdd (iAdd (iVal 5) (iVal 10)) (iVal 1)) :: Term (Val :+: Add)

In the example, the functions prefixed by ‘i‘ are the generated smart constructors, which

automatically inject the value into the data type composition.

2.4 Polyglot programming

Polyglot programming1 is a term describing the technique of using multiple programming

languages in the same context [22]. This style of programming prevents language lock-in,

1http://nealford.com/memeagora/2006/12/05/Polyglot_Programming.html

10
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2.4 Polyglot programming

enabling usage of the right language for a problem, increasing productivity and mainte-

nance; and widens the number of libraries usable in a context, promoting re-usability.

Usage of polyglot programming is seen in many software projects and languages. For

example, mixing PHP and HTML is a form of polyglot programming; using a web frame-

work with an SQL database, where SQL statements are encoded as strings; or an embedded

regex language in a programming language.

With polyglot programming, a distinction between two types can be made: coarse-

grained polyglot programming and fine-gained polyglot programming. In coarse-grained

polyglot programming, there is a clear distinction between the languages used in the poly-

glot system and languages can not be freely mixed, but there is interoperability between

the languages. With fine-grained polyglot programming, languages can be mixed arbitrar-

ily, allowing usage of language constructs not present when working with the languages in

isolation.

11
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3

Related Work

3.1 Exploratory programming

In the current literature, several systems are introduced that improve the exploratory

programming experience compared to ordinary REPLs and notebooks.

Variolite [11] is a code editing tool on top of the Atom editor, with support for exploratory

programming. Exploratory programming is supported by enabling a user to define different

variants of a piece of code. A variant is created by selecting lines in the editor and wrapping

it in a variant. After wrapping the piece of code in a variant, a new variant can be created

that replaces the old variant. When replaced, the initial variant is still available in the

editor and the user can swap back to the initial variant with the click of a button. Because

the tool is as the text level, it is language generic instead of language parametric. Thus,

there is no need for a language to implement anything to obtain this form of exploratory

programming. Furthermore, variants can be defined inside pieces of code, for example,

a variant can be defined on one line in a function, enabling a very fine grained form of

exploratory programming. However, currently, the tool provides no integration with the

running system of the code. Instead, it runs the file, captures output produced by the

program, and stores the output, parameters and input to the program into a file which can

be inspected by a user.

A similar tool at the text level is introduced in [12]. Instead of requiring the user

to explicitly define a variant, the tool tracks all operations made by a user, assigns the

operations a version, and places an indicator in the text editor at the location of the change.

Indicators can be used by a user to operate on the text, such as redoing or undoing that

specific operation. Operations are local, thus undo only acts on the specific location and

not the whole file, as is the case with regular undo in a text editor. Furthermore, the

13
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tool uses executions of the code as a delimiter. Edits that are both performed between to

executes are marked as dependent and placed in a group, such that operating on one part

of the group, operates on the full group.

3.2 Polyglot systems

GraalVM [23] is a virtual machine (VM) with support for high performance polyglot pro-

gramming [24]. The approach defines a common format via the Truffle framework [25].

Truffle is a framework for implementing abstract syntax tree (AST) interpreters in Java.

All languages on the GraalVM implement an AST interpreter in Truffle, making Truffle a

bridge between the languages. However, AST interpreters are still language specific and

can store their interpreter data in any way required. Consequently, languages can not just

use data from another language. Instead, communication between languages is performed

via messages. A message denotes an action on an object, like reading a property, and is

transformed into a AST interpreter operation by the receiving side. This requires languages

to implement the message protocol before a language can be used in a polyglot system.

Using the Truffle framework, GraalVM provides polyglot REPLs. Since Truffle is focused

on the abstract syntax, the provided polyglot REPLs are coarse grained. Thus, it must

be made explicit that another language is used and freely mixing of language constructs is

not possible.

Wrattler [26] supports polyglot programming in notebooks. Wrattler uses multiple run-

times to evaluate polyglot programs. To share data between the different run-times, Wrat-

tler uses a data store. A data store stores data frames, and run-times obtain input via the

data store and place output in the data store. Hence, Wrattler extracts data management

from the evaluation performed in a run-time, allowing different run-times to share data.

However, a run-time must add support for data frames and communication via the data

store, before it can be used in the polyglot notebooks. In addition, because Wrattler uses

multiple run-times, one for every language, only coarse grained polyglot programming is

possible.
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Generic Exploring Interpreter

Some of the contributions presented in this chapter are published in the 2021 edition of

Trends in Functional Programming [27], and the corresponding paper was awarded the

best student paper prize1.

In this chapter I introduce the initial implementation of a generic exploring interpreter,

based on the exploring interpreter model defined in [9]. The introduction is accompa-

nied by a running example in the form of a simple While language, which is introduced

in section 4.1. After introducing the running example, the generic exploring interpreter

implementation is presented and is followed by an evaluation.

4.1 Running example

The running example used alongside our implementation is a simple While language as

presented in [28]. In Haskell, the While language can be defined as follows.

data Command = Seq Command Command

| Assign String Expr

| Print Expr

| While Expr Command

| Skip

data Expr = Leq Expr Expr | Plus Expr Expr | LitExpr Literal | Id String

data Literal = LitBool Bool | LitInt Integer

whileInterpreter :: Command → Config → Config

data Config = Config {cfgStore :: Store, cfgOutput :: Output }
type Store = Map String Literal

type Output = [String ]

initialConfig = Config {cfgStore = empty , cfgOutput = [ ]}

1http://tfp2021.org/
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The Command , Config , initialConfig , and whileInterpreter form a language according to

Definition 2.2.1. While is also a sequential language, because the definitional interpreter

is implemented according to Definition 2.2.2.

4.2 Initial implementation

An exploring interpreter is implemented as a parameterised data type, where the type

parameters denote the programs and configurations of the language:

data Explorer p c = Explorer {defInterp :: p → c → c

, config :: c

, execEnv :: Gr Ref p

, currRef :: Ref

, genRef :: Ref

, cmap :: IntMap c

, sharing :: Bool

, backTracking :: Bool }
type Ref = Int

via these types, the type of the language specific definitional interpreter (defInterp) is

inferred. In addition, the exploring interpreter tracks the current configuration (currRef )

and the history of previous configurations and the transitions between the configurations

(execEnv). The execEnv is an edge-labelled graph as provided by the fgl library1. In the

graph, the labels along the edges denote the executed program between two configurations,

and the nodes store references to configurations. A reference, represented by the Ref type,

is an index in the cmap and maps to a concrete configuration. References are unique

and generated for every new configuration via genRef . Storing references in the execution

graph instead of concrete configuration has two advantages: displaying large execution

graphs becomes more concise by displaying references instead of actual configurations, and

referencing configurations from a text-based interface — like a command-line — becomes

feasible. If references are not used, referencing a configuration is impossible and the full

configuration must be specified when operating on a configuration. With references, the

information inside a configuration is not lost, because an interface can request the configu-

ration corresponding to a reference via the cmap. The remaining fields of the explorer type,

backTracking and sharing , denote how the explorer operates when exploring. The sharing

field influences the execution behaviour of the explorer, and the backTracking fields influ-

ences the reverting behaviour. The combination of these two fields results in four different
1https://hackage.haskell.org/package/fgl
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behaviours, as displayed in Table 4.1. In this chapter, the main focus is on the Stack, Tree,

and Graph behaviours since those are the behaviours introduced by the original paper.

Table 4.1: The different behaviours of the exploring interpreter for the combinations of
sharing and backtracking.

Backtracking enabled Backtracking disabled

Sharing enabled Graph Structured Stack Graph
Sharing disabled Stack Tree

Construction of an explorer requires construction and initialisation of the cmap, initial-

ising the currRef and genRef , and adding the initial configuration to the environment.

To ensure the correctness of this process, several smart constructors are provided that, on

construction, produce an Explorer .

mkExplorer :: Bool → Bool → (p → c → c)→ c → Explorer p c

mkExplorer share backtrack interpreter conf = Explorer

{sharing = share

, backTracking = backtrack

, defInterp = interpreter

, config = conf

, genRef = 1

, currRef = 1

, cmap = IntMap.fromList [(1, conf )]

, execEnv = mkGraph [(1, 1)] [ ]}
mkExplorerStack = mkExplorer False True

mkExplorerTree = mkExplorer False False

mkExplorerGraph = mkExplorer True False

Via these smart constructors, an explorer for the While language can be constructed.

type WhileExplorer = Explorer Command Config

whileTree = mkExplorerTree whileInterpreter initialConfig

4.2.1 Operations

The exploring interpreter model from [9] describes three actions that can be performed on

the exploring interpreter: execute, revert, and display, for executing programs, reverting

to previous configurations, and displaying the exploration state, respectively.

The execute action is implemented as an execution of the definitional interpreter on

the current configuration, with the program to execute as the supplied argument. The
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result of this execution is a transition from the current configuration to a possibly new

configuration for the supplied program.

execute :: (Eq c,Eq p)⇒ p → Explorer p c → Explorer p c

execute p e = updateConf e (p, defInterp e p (config e))

updateConf :: (Eq c,Eq p)⇒ Explorer p c → (p, c)→ Explorer p c

updateConf e (p,newconf ) =

if sharing e

then case findRef e newconf of

Just (r , )→
if hasLEdge (execEnv e) (currRef e, r , p)

then e {config = newconf , currRef = r }
else e {config = newconf , currRef = r

, execEnv = insEdge (currRef e, r , p) (execEnv e)}
Nothing → addNewPath e p newconf

else addNewPath e p newconf

The processing of a new configuration depends on the sharing flag. If sharing is enabled,

the execution graph is first searched for a configuration equal to the new configuration. If

such a configuration is found, an edge between the current configuration and the found

configuration is created. If a configuration is not found, a new configuration is created and

the execution environment is extended, including an edge from the current configuration

to the newly created one. In both cases, the current configuration is updated to point

to the configuration transitioned to. When sharing is disabled, the behaviour is identical

to the behaviour with sharing when no equal configuration is found: an extension of the

execution environment with a new configuration.

The revert action is implemented as an interaction with the explorer influenced by

backTracking .

revert :: Explorer p c → Ref → Maybe (Explorer p c)

revert e r = case IntMap.lookup r (cmap e) of

Just c | backTracking e → Just e {execEnv = execEnv ′, config = c

, cmap = cmap′, currRef = r }
| otherwise → Just e {currRef = r , config = c}

Nothing → Nothing

where

nodesToDel = reachable r (execEnv e) \\ [r ]
edgesToDel = filter toDel (edges (execEnv e))

where toDel (s, t) = s ∈ nodesToDel ∨ t ∈ nodesToDel

execEnv ′ = (delEdges edgesToDel ◦ delNodes nodesToDel) (execEnv e)

cmap′ = deleteMap nodesToDel (cmap e)

The revert action receives a reference as an argument and reverts the current reference

to the given reference and updates the current configuration accordingly. If the supplied
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reference does not correspond with a configuration, Nothing is returned — indicating no

change in the explorer. When backTracking is enabled, the revert action is destructive by

removing all nodes and corresponding edges reachable from the configuration reverted to.

The display action provides a structured representation of the current exploration graph.

This is implemented by returning the nodes and edges of the execution graph, and the

current configuration.

executionGraph :: Explorer p c → ((Ref , c), [(Ref , c)], [((Ref , c), p, (Ref , c))])

In this representation, both the reference and the actual configuration are returned, ensur-

ing that all information is present for interfaces to display context dependent information.

Displaying a full execution graph might be infeasible when the exploration reached a

sufficient size. In such cases, only displaying the history of the current configuration —

also known as a trace — provides an alternative display style.

getTrace :: Explorer p c → [((Ref , c), p, (Ref , c))]

getTraces :: Explorer p c → [ [((Ref , c), p, (Ref , c))]]

The getTraces version is required when sharing is enabled, because a configuration might

be reached via multiple paths, resulting in multiple traces.

The trace functions operate from the initial configuration. Such a starting point can be

inefficient or insufficient for certain display styles. For example, an interface displaying the

current and the two previous configurations will request unnecessary information when the

trace is large and the trace functions are used. Requesting unnecessary information can be

problematic when the interface requests the data over a network, where the time till display

is influenced by the amount of data being send. To accommodate different requirements

and display styles, the display operations for the path between any two configurations are

provided as well.

getPathFromTo :: Explorer p c → Ref → Ref → [((Ref , c), p, (Ref , c))]

getPathsFromTo :: Explorer p c → Ref → Ref → [ [((Ref , c), p, (Ref , c))]]

The presented functions provide the necessary building blocks to construct more complex

and language specific display styles.

Using the provided implementation, a REPL for While with exploratory programming

can be constructed as follows.

repl :: WhileExplorer → IO ()

repl exp = do

putStr ("\n#"++ show (E .currRef exp) ++ " > ")>> hFlush stdout

input ← getLine
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case break isSpace input of

(":display", )→ display exp >> repl exp

(":revert",mint) | Just ref _id ′ ← readMaybe (dropWhile isSpace mint)

→ E .revert ref _id ′ exp >>= repl

| otherwise → putStrLn "Integer argument required">> repl exp

→ case whileParse input of

Left err → putStrLn err >> repl exp

Right program → E .execute program exp >>= showOutput >>= repl

As an example of using an exploring interpreter, consider the interaction with the ex-

ploratory REPL of While displayed in Figure 4.1. The session starts by assigning the result

x = 1 + 2

print(x)

:revert 0

x = 2 + 1

print(x)

:display

Figure 4.1: Example of an exploratory session in the While REPL.

of the 1 + 2 expression to the variable x. The x variable is then printed by the print(x)

command, which is followed by a revert to the configuration referenced by 0. After this

revert, the command x = 2 + 1 is executed and followed by the print(x) command,

printing the x value. Finally, the exploration environment is displayed via the display

operation. The results of the display operation for the Stack, Tree, and Graph behaviours

are displayed Figure 4.2.

Every behaviour results in a different execution environment, indicating that the be-

haviours influence exploratory programming in different ways, which is further explored

and evaluated in the next section.

Since While is a sequential language, programs can be sequenced to construct new pro-

grams. In the example session, it is possible to execute the x = 2 + 1;print(x) as a

sequence — thus as one program. In case of the Stack behaviour, this results in the ex-

ecution graph displayed in Figure 4.3. The exploring interpreter executes the sequenced

program as one program — thus one execute operation — resulting in one transition.

However, it is also possible to execute the sequenced program with two execute operations,

resulting in the original execution environment. The preferred execution graph is difficult

to determine generically and depending on the situation, one might be preferred over the

other. Therefore, the following function is provided to allow the execution of a sequence of
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r0 : γ0

r1 : γ1

r2 : γ2

r3 : γ1

r4 : γ2

x = 1 + 2

print x

x = 2 + 1

print x

r0 : γ0

r3 : γ1

r4 : γ2

x = 2 + 1

print x

r0 : γ0

r1 : γ1

r2 : γ2

x = 1 + 2 x = 2 + 1

print x

Figure 4.2: Execution graphs for the Tree (left), Stack (middle), and Graph (right) be-
haviours resulting from the execution of the While exploratory session from Figure 4.1. Nodes
store the configuration (γ) and the corresponding reference (r), and are uniquely identified
by their reference. Edges represent a transition from the source configuration to the target
configuration as a result of executing the program — which is displayed as the edge label. The
current configurations are represented with dashed lines.

r0 : γ0

r3 : γ2

x = 2 + 1; print x

Figure 4.3: Execution graph for the Stack behaviour resulting from the execution of the While
exploratory session from Figure 4.1 as sequenced program, resulting in only one transition.
Nodes store the configurations (γ) and the corresponding reference (r), and are uniquely
identified by their reference. Edges represent a transition from the source configuration to the
target configuration as a result of executing the program — which is displayed as the edge
label. The current configuration is represented with dashed lines.

21



4. GENERIC EXPLORING INTERPRETER

programs in separate execute operations, giving interfaces the choice to execute a sequence

as one program or as separate programs.

executeAll :: (Eq c,Eq p)⇒ [p ]→ Explorer p c → Explorer p c

executeAll = flip (foldl $ flip execute)

4.3 Evaluation

To evaluate the exploring interpreter implementation, the running example is used together

with two new languages — eFLINT and funcons-beta — to construct exploratory envi-

ronments. The resulting specialised exploring interpreters are used to evaluate the generic

implementation.

The eFLINT language is a domain specific language (DSL) for norm formalisation of

a variety of sources, such as contracts and business-policies [29]. The language supports

three interfaces: a command-line REPL, a web-interface, and a TCP server, which are all

operating via the exploring interpreter.

An example session in the eFLINT REPL is given in Figure 4.4. The session defines a

new fact called admin, which can be used to assign admin rights to users. The fact database

can then be queried to determine if a specific user has the correct rights to perform specific

actions. The eFLINT REPL shows the effect of a revert by displaying the information

that is removed due to the revert. In the session, this is visible when the revert is performed

to the second configuration, resulting in the removal of the admin rights for Bob and Alice

— denoted by the -admin output.

Figure 4.5 shows part of the eFLINT web-interface, displaying a single trace that was

obtained via the getTrace functionality of the exploring interpreter implementation. The

eFLINT web-interface supports exploratory programming with the Stack behaviour, and

communicates using JSON with a back-end HTTP server built on top of the eFLINT TCP

server. With the web-interface, specification files can be loaded that start an exploratory

session from a pre-defined point. After, a sequence of statements and queries can be

submitted for execution (using the ‘Send phrase’ button). The effects of these statements

and queries on the configurations are shown in green and orange in the displayed trace.

When a violation occurs, it is marked red. Furthermore, the web-interface allows expansion

of states, making it possible to inspect the state of the system at specific points in the

exploration process. When expanding, the interface provides several buttons to modify

the exploration session. When a user clicks a button, the operation is translated in to

combinations of execute and revert.
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#1 > Fact admin

New type admin

#2 > +admin(Alice)

+admin("Alice")

#3 > +admin(Bob)

+admin("Bob")

#4 > :revert 2

-admin("Alice")

-admin("Bob")

#2 > +admin(Bob)

+admin("Bob")

#5 > +admin(Alice)

+admin("Alice")

#4 > :session

#1

|

‘- #2

|

+- #3

| |

| ‘- #4

|

‘- #5

|

‘- #4

#4 >

Figure 4.4: An exploratory session — using the Tree behaviour — in the eFLINT command-
line interface. On the left the REPL input and output is visible and on the right the exploration
environment is displayed.

The TCP server is also used a central component in an integration with the Akka frame-

work to support actor oriented programming with normative actors — actors that manage

an eFLINT specification. Actors can communicate with the normative actors by sending

eFLINT messages, making different interactions possible. For example, an actor can check

via the normative actor if an operation is allowed before performing it.

The PLanCompS project1 aims to define languages formally using a component-based se-

mantics approach that describes languages in terms of fixed semantics language constructs

— shortened as funcons [30, 31]. Funcons have their semantics defined using I-MSOS and

are translated into micro interpreters. Micro interpreters can be composed to construct

more complex definitional interpreters. An example of a definitional interpreter constructed

by composing micro interpreters is funcons-beta, which uses the micro interpreters defined

in the funcons library2. The funcons library offers a broad variety of different funcons

that suffice to define definitional interpreters for languages across paradigms3, enabling an

evaluation of the exploring interpreter over multiple programming paradigms.

Figure 4.6 shows the display result of an exploratory session in the funcons-beta REPL

operating on an exploring interpreter. The session uses the read funcon to read a value

1http://plancomps.org
2https://plancomps.github.io/CBS-beta/Funcons-beta/Funcons-Index/
3https://plancomps.github.io/CBS-beta/docs/Languages-beta/index.html
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Figure 4.5: A part of the eFLINT web-interface in an exploratory session on the exploring
interpreter.

r1 : γ1

r2 : γ2
bind("input",read)

print(bound("input"))

Figure 4.6: A session in the command-line REPL for Funcons-beta.

from standard-in. This value is bound to the input identifier using the bind funcon. This

binding is used in the next statement, where the value bound to the input identifier is

requested via the bound funcon and then printed to standard-out with the print funcon.

To apply the generic exploring interpreter to the languages, around 50 to 100 lines of

Haskell code were required. Most of that code was for the definition of the definitional

interpreter as an extension of the existing interpreter of the language, which involved

carefully choosing the contents of the propagated configuration and the method of handling

output.
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4.3.1 Backtracking

The revert action makes backtracking possible and gives the programmer the means to

play with the execution history, providing a more powerful form of exploratory program-

ming compared to existing interactive tools. The implementation provides two forms of

reverting: a destructive and a non-destructive form. The destructive form ensures that

the execution graph has only one node without an outgoing edge at any time. With the

non-destructive form, multiple nodes without outgoing edges can exist. This difference is

clearly visible in the example in Figure 4.1, where the left execution graph displays the

non-destructive form and the middle execution graph the destructive form. The destructive

form has only the right side of the non-destructive execution environment.

The difference between the execution environments occurs because the exploratory ses-

sion performs a revert action in the middle of the session. As a result, the destructive

form destroys the nodes reachable from the node reverted to (r0), which corresponds to

nodes r1 and r2. As a result, the execution environment for the destructive form contains

less information but also requires less space.

Both forms have their use-cases, the destructive form is useful for exploration sessions

that are either linear or are guaranteed to not revert to destroyed configurations. The

non-destructive form is useful for exploratory session that require a lot of switching between

obtained configurations, where a switch occurs more than once.

An example use-case that fits the destructive form is the eFLINT TCP server with Akka.

Using the destructive form, the actors can explore a system up to a point where a violation

happens, investigate the violation and revert to a previous state and continue from there.

This makes it possible to explore different system states, including violations, with the

actor framework and inspect in detail the evolution of a violation while not requiring an

immense amount of memory.

A similar style is batch testing, where there is common prelude that is executed before

every test. With the destructive form, the prelude can be the revert target to revert to

after executing a test, allowing another test to be executed without having to re-execute

the common prelude and without keeping the successful test evolution in memory. The

advantage of this approach occurs when a test fails. On failure, the exploratory system

can stop and allow the user to inspect the current test evolution and explore the different

states achieved during testing.

Furthermore, the destructive form is also beneficial in scratch pad programming [32],

where something is quickly tried, as on a scratch-pad, and after trying is immediately
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button

button

bg=red

button

bg=red;fc=white
...

Figure 4.7: A concept for a specialised interface of an exploratory design system.

destroyed. With the destructive form, a common prelude or base for scratch pad pro-

gramming can be setup, such that a correct environment for scratch pad work is readily

available. After the scratch pad session, a destructive revert back to the prelude is per-

formed, making the environment ready for a new scratch pad session without duplicating

work or keeping unnecessary state in memory.

Destroying configurations is counter productive when the state of the configuration might

be required for further exploration. An example use case of this is given in [7], which

performs a case-study on exploratory programming where users use the undo and redo

functionality in a text editor. In the case-study, one user uses this combination to compare

16 derivations of one button. With the exploring interpreter, the user could setup a

base button style as the main configuration and then execute programs to define the 16

derivations, where every new derivation is preceded by a revert to the main configuration.

With the non-destructive form, this would allow the user to have all 16 derivations available

at all times, and a specialised interface can visualise the different buttons simultaneously.

A concept interface providing this functionality is presented in Figure 4.7.

4.3.2 Sharing

Sharing — ensuring that every configuration is referred by one node — has a similar mem-

ory reduction property as the stack behaviour, but achieves it differently. With sharing,

the execution environment is based around structural equality of configurations. Programs

that affect a configuration identically, transition to the same configuration, resulting in a

graph as the execution environment, as showcased in Figure 4.2. As a result, compared to

the tree behaviour the number of configurations are reduced without removing information.

Reduction of the number of configurations without losing information is seen in Fig-

ure 4.2, where the Graph behaviour contains the same execution history as the Tree be-

haviour, except the Graph behaviour stores it differently. With the Graph behaviour, there

is no difference between the nodes obtained by the execution of the x = 1 + 2 and x =

2 + 1 programs from node r0, since they affect the configuration identically — assign the

variable x the value 3. Furthermore, the second execution of the print(x) program can

be skipped, resulting in one less edge in the graph. Skipping an execution means that
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the definitional interpreter is not called by the exploring interpreter, because the explor-

ing interpreter knows the result of calling the definitional interpreter. In the case of the

example, there is already a transition from r1 to r2 for the program print(x), when the

program is again executed from r1, the exploring interpreter knows that the result of exe-

cuting the program is a transition to r2. Hence, the exploring interpreter can skip the call

to the definitional interpreter and present the corresponding configuration, in this case γ2,

as the result. Skipping executions is useful when time expensive programs are repeatedly

executed and can be combined with program normalisation to increase the frequency of

execution skipping. Skipping execution is, besides the Graph behaviour, also possible in

the Tree behaviour. However, it is more likely to occur in the Graph behaviour since it can

only occur in the Tree behaviour after a revert followed by the execution of a program

already executed from the configuration reverted to.

Reduction of execution environment size and higher probability of execution skipping are

not the only benefits of sharing. Sharing also introduces extra information not obtained

with the Tree and Stack behaviours. Namely, the convergence of programs with respect

to the effect they have on configurations. This is seen in the execution environments from

Figure 4.2, where the Graph behaviour has two edges leaving node r0 that both go to node

r1. In this case, the programs belonging to these transitions are x = 1 + 2 and x = 2

+ 1. Via the execution environment obtained by the Graph behaviour, it became clear

that these two programs affect the configurations identically. This makes it possible to use

information obtained from the Graph behaviour to find locally optimal programs.

However, revert becomes ambiguous in the context of sharing because a node can have

multiple incoming edges, making it impossible to decide the correct history of a revert

operation. This is problematic in the eFLINT case-study, where the REPL shows the

effect of a revert by walking the history, as displayed in Figure 4.4. Furthermore, sharing

creates infinite paths in case of a cycle. With infinite paths, most display operations

return infinite results, complicating the interaction with interfaces. Furthermore, with a

cycle not all paths are paths created by a user, which can confuse a user when these paths

are displayed to the user as their exploration. In addition, the semantics of a destructive

revert in the context of sharing is unclear. In the implementation, this implemented by

removing all reachable edges from the configuration reverted to1.

Overall, sharing complicates the execution environment and effects the explorer opera-

tions, making the interaction with the explorer more complex, but provides higher proba-

bility of execution skipping and introduces insights not obtained with the other behaviours.
1The node reverted to remains intact in case of a cycle.
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4.3.3 Total purity and its implications

The current implementation requires a pure interpreter that always returns a valid con-

figuration, as defined in 2.2.1. These requirements on the definitional interpreter restrict

the applicability of the exploring interpreter implementation, because it can not support

languages that are not pure nor languages that can have failing interpreters.

Non-pure definitional interpreters occur as soon as a language supports some kind of

interaction with the environment, for example, printing to a terminal or communicating

with the file system. The funcons-beta language is such a language due to the earlier

presented read and print funcons. Both effects can be simulated. The read funcon can

be simulated by defining an input sequence before execution, and the print funcon can be

simulated by storing the output in the configuration and possibly performing the actual

output at the end of the execution. However, simulation complicates the exploratory

session. Input simulation requires a user to define the input sequence before the execution,

which requires a context switch and is not trivial for more complex programs. Output

simulation becomes more complex when the simulation performs more complex actions like

file writing or network communication where timing or response can play a crucial role for

the continuation or correctness of a program. In addition, storing output in configurations

affects opportunities for sharing. Output itself is data that in most cases does not affect

the execution of subsequent programs. Thus, if two configurations are equal up to their

output, a program executes identically when executed from those configurations. However,

when output is part of the configuration, sharing can not occur because the output prevents

structural equality.

Requiring a definitional interpreter without possibility of error complicates the existence

of context specific programs. For example, a program that references an identifier is valid

when that identifier is bound to a value and invalid when unbound. With the current

definitional interpreter definition, both cases must return a valid configuration. It is un-

clear what the configuration in case of the invalid program must be, and from the users

perspective it is confusing when an invalid program results in a valid configuration and a

transition in the exploration environment.

4.3.3.1 Allowing impurity and erroneous computations

To allow languages that perform effects not captured by the model — also known as side-

effects — we extend the implementation with an arbitrary monad.

defInterp :: Monad m ⇒ programs → configs → m configs
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The monad can be instantiated as required, allowing effects to occur outside of the con-

figurations. In case of funcons-beta, m can be instantiated as the IO monad, making real

input and output possible.

However, moving effects out of the configurations affects the optimisations the exploring

can perform, reduces the extra information obtained from sharing, and complicates the

information exchange with certain interfaces.

The earlier mentioned skipping of executions is not possible when a definitional inter-

preter executes inside a monad, because the effects in the monad are only obtainable by

executing the program, making execution skipping also skip effects. Not executing these

effects gives an inconsistent view to the user, for example, if a program performs output to

a terminal device, this output would not be visible when execution skipping is performed.

Such an inconsistent behaviour is unexpected for a user and does not represent the actual

execution correctly. Nonetheless, a simplification of the effect monad [33] can be used to

create a distinction between pure programs and programs with side-effects. As a result,

execution skipping can still be performed on pure programs.

When effects are moved into a monad, the insights obtained from sharing regarding

program conversations are reduced, because programs only converge with respect to the

effects in the configurations. Thus the convergence seen in an exploration graph states

nothing about the side-effects of the programs.

Since monadic effects are not part of the configuration, the information regarding these

monadic effects are more difficult to display for certain interfaces. An example of such

an interface is the eFLINT web-interface. The web-interface uses the server — including

the exploring interpreter — as the source of truth and constructs the interface based on

that information. With monadic execution, effects inside the monad are not available in

the information provided by the exploring interpreter. As a result, an interface can only

display partial information.

Both the convergence of programs and missing information can be solved by extending

the definitional interpreter with a monoid component along the result of the definitional

interpreter — in accordance with MSOS [34, 35] with respect to output.

defInterp :: (Monad m,Monoid out)⇒ programs → configs → m (configs, out)

Via this monoid component, a definitional interpreter can include information that will

not be part of the configurations, but instead is stored along the program on the edges —

indicating that the values are produced by that program but do not affect the execution of

subsequent programs. In case of the eFLINT web-interface, output can become part of the
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edges making output available to the web-interface without affecting the higher probability

of sharing. While shown in the context of output, monoidal values are not restricted to

purely output. A language can store any information as long as it forms a monoid. For

example, an interpreter can time the execution of a program and store it along the edges,

giving some insight to the user regarding execution times.

To accommodate the inclusion of monoidal values, the definitions of Explorer and execute

are updated.

data Explorer p m c o where -- using GADT extension
Explorer :: (Eq p,Eq c,Monad m,Monoid o)⇒
{defInterp :: p → c → m (Maybe c, o), ...} → Explorer p m c o

execute :: (Eq c,Eq p,Monad m,Monoid o)⇒
p → Explorer p m c o → m (Explorer p m c o, o)

execute p e = do (mcfg , o)← defInterp e p (config e)

case mcfg of Just cfg → return (updateConf e (p, cfg , o), o)

Nothing → return (e, o)

The updateConf function is still responsible for updating the execution graph, but now

takes monoidal values into consideration. The configuration resulting from the definitional

interpreter is wrapped inside a Maybe monad, allowing definitional interpreters to fail.

While failing, a definitional interpreter can still produce output, allowing for error mes-

sages from within the definitional interpreter. This pattern is visible in both eFLINT and

funcons-beta. eFLINT performs type-checking for type errors and funcons-beta fails on

run-time errors like an unbound identifier. As a result of these errors, both languages yield

error messages as part of the output.

By introducing monoidal values and erroneous computations, the semantics of an exe-

cution of a sequence of programs is changed, which requires an update to the executeAll

function.

executeAll :: (Eq c,Eq p,Eq o,Monad m,Monoid o)⇒
[p ]→ Explorer p m c o → m (Explorer p m c o, o)

executeAll ps exp = foldlM executeCollect (exp,mempty) ps

where executeCollect (exp, out) p = do (res, out ′)← execute p exp

return (res, out ‘mappend ‘ out ′)

The new definition still uses a fold, but now executed inside a monad. An execute that

results in Nothing is handled by continuing with the previous well known configuration.

Finally, monoidal values are propagated through the sequence, clearly demonstrating the

monoidal requirement via the usage of the identity element (mempty) and the binary

operator (mappend).
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4.3.4 Sessions

The execution environment contains enough information to support sessions generically.

There are different ways to support session that affect the process of saving and loading

differently.

Sessions can be supported by exporting one configuration. A user can load this con-

figuration in a new session and continue execution from that point. The method makes

session loading quick, since it only requires to read in one configuration. Memory usage in

this approach is dependent on the configuration size, but is moderate compared to alter-

natives. However, the resulting session contains very little information. The full history of

the exploratory session is lost, giving no indication how the configuration is obtained.

Alternatively, a session can export a trace by exporting all information — configurations,

programs, and output — from the initial configuration to the end of the trace. This provides

more context than the previous approach, but also increases the size of the session.

To reduce session size, only programs instead of all information can be exported. A

session is then loaded by executing the exported programs, which reconstructs the execu-

tion environment. This keeps session size small compared to exporting full configurations,

but has the caveat that loading a session requires execution. Execution of programs can

increase loading time, especially if the session contains executions that take a considerable

amount of time.

With the last two methods, it is also possible to export the full execution environment

instead of a trace. Exporting the full environment in most cases results in bigger session

and more need for reproducibility.

4.3.4.1 Reproducible sessions

Reproducible sessions fully reconstruct the original environment, including correct refer-

ences. With reproducible sessions, it is easier to share session, do live collaboration, and

make session loading more consistent, simplifying the resumption of an exploratory session.

Exporting all information from an execution environment achieves reproducible sessions

in case the definitional interpreter performs no effects in a monad. As stated earlier, ef-

fects executed in the monad are unavailable to the exploring interpreter and can therefore

not be part of the exported session. However, missing certain information is not the only

problem. The environment can change after exporting a session, such that importing the

session executes in a different environment. For example, a session that reads in a file
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has no guarantee that the file exists when reloading the session. Hence, when a defini-

tional interpreter executes inside a monad, it is impossible to guarantee fully reproducible

sessions.

Another consequence of monadic execution is sessions altering the environment, for ex-

ample by writing to a file. When reloading a session that alters the environment, the

expected behaviour is not immediately clear. When the session is loaded without program

execution, the environment is not changed. Not changing the environment might be de-

scribed as not reproducing the original session. However, executing programs such that the

environment is changed can still not guarantee session reproducibility, because there is no

guarantee that the environment is identical to the environment when the session was first

constructed. Furthermore, there is a certain security risk when executing code during ses-

sion loading, especially when sharing sessions — there is no guarantee that a session being

shared is fully trusted. The security implications can be partly mitigated by performing

passive program execution when loading a session, where the user is questioned per pro-

gram if it is save to execute. Of course, this makes session loading a more manual process

but can help in achieving secure reproducible sessions when side-effects are possible.

Thus, to achieve fully reproducible exploration sessions, the exploring interpreter is de-

pendent on the reproducibility of the underlying environment, and compromises must be

made between security and convenience.
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A Unified Exploring Interpreter

In this chapter I follow up on the insight gained from the evaluation of the generic exploring

interpreter implementation. The chapter starts by introducing the unified model — an

exploring interpreter model that combines the different behaviours of the initial exploring

interpreter — and is followed by an implementation and evaluation of the new model.

5.1 Unified model

Behaviours were a prominent concept in the previous chapter, since they affected func-

tionality of the exploring interpreters resulting in different execution environments for the

same session. The unified model — presented in this section — steps away from the idea

of having different behaviours by collapsing the differences into one, reducing the disad-

vantages while preserving most of the advantages. The unified model is based around the

updated definitional interpreter presented in the previous chapter. For the new definitional

interpreter, the language definition and sequential language definition must be updated.

Definition 5.1.1. A language L is a structure 〈P,Γ, γ0, O, I〉, with P a set of programs,
Γ a set of configurations, γ0 ∈ Γ an initial configuration, O a set of output (values), and I
a definitional interpreter that assigns to each program p ∈ P a function Ip : Γ→ Γ⊥ ×O,
where Γ⊥ = Γ ∪ {⊥} and O is assumed to form a monoid with identity element ε and
binary operation •.

Definition 5.1.2. A language L = 〈P,Γ, γ0, O, I〉 is sequential if there is an operator
⊗ such that for every p1, p2 ∈ P and γ ∈ Γ it holds that p1 ⊗ p2 ∈ P and Ip1⊗p2(γ) =

(γ, ε).Ip1 .Ip2, where . : Γ×O×(Γ→ Γ⊥×O)→ Γ×O, such that (γ, o).f = (γ�γ′, o•o′),
where (γ′, o′) = f(γ), and γ � ⊥ = γ and γ � γ′ is γ′ when γ′ 6= ⊥.
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The new sequential definition extends the original definition with propagation of monoidal

values through the sequence of programs and handling of erroneous evaluation, such that

whenever the execution of a program does not produce a valid configuration, the sequence

continues with the last valid configuration. This definition naturally translates to the

behaviour seen in many REPLs, where an invalid program does not crashes the REPL,

instead the REPL continues with the last valid state.

Using the new definitions, the definition for the unified exploring interpreter model is

given.

Definition 5.1.3. An exploring interpreter for a language 〈P,Γ, γ0, O, I〉 is an algorithm
maintaining a current reference (initially r0), a mapping from references to configurations
(initially only mapping r0 to γ0), and an execution tree (initially only containing the node
labelled r0) upon which the following actions are executed iteratively:

• execute(p): let (γ′, o) = Ip(γ), where p ∈ P is provided as input, and γ is the
configuration referenced by the current reference. When γ′ 6= ⊥, generate a fresh
reference r′ such that r′ maps to γ′, extend the execution tree with the (r, (p, o), r′)

edge, and transition the current reference to r′.

• revert(r): let r′ be the current reference. When r is an ancestor of r′ in the execution
tree, change the current reference to r and remove the (unique) path from r to r′

without removing r and any nodes and edges used in other paths from r.

• jump(r): When r is a node in the tree, take r as the current reference.

• display: provide a structured representation of the exploration tree.

The unified model makes the usage of references explicit and enforces the representation

of the execution environment as a tree — ensuring that every configuration gets a unique

reference. The difference between the Stack and Tree behaviours is split into two separate

actions: jump and revert. Jump performs the non-destructive revert — corresponding to

the Tree behaviour — and revert is now always destructive — corresponding to the Stack

behaviour. Revert also has the requirement that it is only possible to perform a revert to a

reference in the current trace such that the current reference is reachable from the reference

reverted to. With this requirement and both actions, the Stack and Tree behaviours are

both available in the same model.

Splitting the behaviours in two separate actions and ensuring that the revert action

always has a destructible path, made it possible to define less destructive semantics for

revert compared to the semantics in the Graph behaviour — which destroyed all outgoing
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paths. Providing a less destructive form, gives interfaces more control to construct complex

destructive operations. For example, the Graph destructiveness can be fully described in

combinations of jump and revert.

Ensuring that the execution environment is always represented by a tree, removes the

capability of sharing. This provides a more consistent and less complex form when display-

ing the execution environment, and prevents the introduction of non-existent paths due to

cycles. Moreover, the earlier mentioned benefits obtained from sharing are still possible via

the new execution environment, because all information is present in the tree. Program

conversion can be obtained by placing the references in equivalence classes with respect to

their mapped configuration. Execution skipping can be obtained by also storing all pro-

grams at the equivalence classes and their resulting configuration. Specifically, a function

can transform the exploration tree into a graph, where nodes are equivalence classes and

edges still programs.

5.2 Implementation

The implementation stays parameterised, but removes some fields and adds others.

data Explorer programs m configs output where

Explorer :: Language programs m configs output ⇒
{defInterp :: programs → configs → m (Maybe configs, output)

, config :: configs -- Cache the current config
, currRef :: Ref

, genRef :: Ref

, cmap :: IntMap.IntMap configs

, execEnv :: Gr Ref (programs, output)

, shadowGraph :: Gr [Ref ] (programs, output)

, configEq :: configs → configs → Bool

, shadowing :: Bool -- Shadow the exploration tree in a shadow graph.
} → Explorer programs m configs output

type Language p m c o = (Eq p,Eq o,Monad m,Monoid o) -- Using the ContraintKinds extension
type Ref = Int

The sharing and backtracking fields are removed, and the shadowing field is introduced.

Shadowing disables or enables the maintenance of a shadow graph (shadowGraph). The

shadow graph is implemented as a graph where the references are grouped based on equiv-

alence classes, with these classes being defined by a user supplied function (configEq). The

shadow graph functions as an optimisation on the earlier described function to obtain the

sharing insights and execution skipping optimisation. The remaining fields are identical to

those in the earlier implementation. The execEnv is still represented as a graph using the
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fgl library, purely for convenience; it will always follow the requirements of a tree. Fur-

thermore, the definitional interpreter remains executable inside a monad such that effects

not captured by the model are possible.

5.2.1 Operations

The operations of the initial implementation must be updated to work with the new

Explorer type and incorporate the usage of the shadow graph. Furthermore, the new

jump operation is introduced and the revert operation is updated in accordance with the

new definition.

The execute function is still implemented as an execution of the definitional interpreter

on the current configuration with the supplied program.

execute :: Language p m c o ⇒ p → Explorer p m c o → m (Explorer p m c o, o)

execute p e =

do (mcfg , o)← defInterp e p (config e)

case mcfg of

Just cfg → return (updateExecEnvs e (p, cfg , o), o)

Nothing → return (e, o)

When the definitional interpreter returns an invalid configuration — indicated by Nothing

— execute returns the current explorer and any output resulting from the call to the defi-

nitional interpreter. In case the definitional produces a valid configuration, the explorer is

updated and returned together with any output produced by the definitional interpreter.

The explorer is updated by updating the execution environments. The tree is updated

by including the edge as detailed in the model definition. The shadow graph is updated

only when shadowing is enabled by finding the equivalence class to which the configura-

tion referenced by the new reference belongs to. Then, an edge is added to the shadow

graph that connects the nodes belonging to the equivalence classes of the new and current

configurations, with the executed program and monoidal values as an edge label.

The revert action is updated to follow the constraint presented in the model.

revert :: Ref → Explorer p m c o → Maybe (Explorer p m c o)

revert r e

| currRef e ∈ reachNodes =

jump r e >>= λe ′ → return $ e ′ {
execEnv = mkGraph (zip remainNodes remainNodes) $ cleanEdges reachNodes (labEdges $ execEnv e ′)

, cmap = deleteMap reachNodes (cmap e ′)

, shadowExecEnv = cleanShadowEnv (shadowing e ′) reachNodes (shadowExecEnv e ′)

}
| otherwise = Nothing
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where

reachNodes = isUnique (execEnv e) $ reachable r (execEnv e) \\ [r ]
remainNodes = nodes (execEnv e) \\ reachNodes

jump :: Ref → Explorer p m c o → Maybe (Explorer p m c o)

jump r e = case deref e r of

(Just c)→ return $ e {config = c, currRef = r }
Nothing → Nothing

The implementation returns Nothing when the reference reverted to is not an ancestor of

the current reference or the reference is not in the tree. Otherwise, the path from the

reference reverted to containing the current reference, is destroyed while retaining nodes

used in other parts and the node of the reference reverted to. When shadowing is enabled,

the shadow graph is also updated by removing the nodes removed from the tree.

Furthermore, the revert implementation uses jump to update the current reference and

current configuration. Similarly to revert, the jump implementation returns Nothing when

the argument is invalid.

The implementation of most display operations are not affected by the new model, but

the getTraces function is redundant and therefore removed from the implementation. In

addition, to help interfaces display information regarding the program convergence with

respect to configuration equivalence classes, the implementation exposes a function that

returns all references belonging to the same equivalence class as the argument, and a

function that returns all equivalence classes.

eqClass :: Ref → Explorer → [Ref ]

eqClasses :: Explorer → [ [Ref ] ]

5.3 Evaluation

To evaluate the unified model, the implementation is applied to the Idris programming

language [36]. Idris is a functional language supporting dependently typed programming.

In contrast to the languages used in the earlier evaluation, Idris performs static type

checking before a call to execute. Furthermore, Idris provides an interactive system via the

REPL, with support for proofs, determining call sites, and requesting documentation. As

a result, with Idris the exploring interpreter as a component in an interactive environment

can be evaluated.
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5.3.1 State interpreters

The Idris interpreter is not constructed in the style expected by the exploring interpreter.

Instead, the Idris interpreter is described as a monadic computation.

idrisMain :: [Opt ]→ Idris ()

runMain :: Idris ()→ IO ()

repl = runMain idrisMain [ ]

type Idris = StateT IState (ExceptT Err IO)

The interpreter (idrisMain) executes in a state transformer monad (Idris), which encap-

sulates the interpreter state (IState) — corresponding to a configuration in the language

definition — and an exception monad (ExceptT ) encapsulating an error component (Err)

and the IO monad.

To construct a specialised exploring interpreter for the Idris interpreter, the Idris in-

terpreter must be defined according to the type expected by the exploring interpreter.

This can be achieved by defining a new interpreter that encapsulates parts of the existing

interpreter.

interpreter p s = do

res ← runExceptT $ execStateT (process "" p) s

case res of

(Right s ′)→ return (Just s ′, ())

(Left err)→ putStrLn (show err)>> return (Nothing , ())

The encapsulating interpreter performs an Idris computation with the second argument (s)

as the starting state for the computation. The result of the computation is extracted and

wrapped according to the expected result from the exploring interpreter.

With the encapsulating interpreter, the Idris language is fully defined to utilise the

exploring interpreter implementation and an exploratory REPL for Idris can be defined.

repl = do

setup ← runExceptT $ execStateT initREPL idrisInit

initialState ← case setup of

(Left err)→ error (show err)

(Right state)→ return state

let e = mkExplorer True (≡) interpreter initialState

loop e

where

loop e = do

putStr ("Exploring Idris(curr state: "++ (show $ currRef e) ++ ")> ")
input ← getLine

case break isSpace input of

-- Other meta-commands, like revert and jump.
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(":inspect",mint) | Just ref _id ← readMaybe (dropWhile isSpace mint)

→ handle_inspect ref _id e >> loop e

| otherwise → putStrLn "Inspect requires an integer argument">> loop e

(remain, )→ let res = parseCmd (config e) "input" input in

case res of

(Right (Right cmd))→ Language.Explorer .Monadic.execute cmd e >>= loop ◦ fst

(Right (Left err))→ putStrLn (show err)>> loop e

(Left err)→ putStrLn (show $ messageText err)>> loop e

5.3.2 Shadow graph

Maintaining the shadow graph as part of the implementation is not fully required to ob-

tain its benefits. As stated earlier, it is possible with the display functions to construct

equivalence classes without having to maintain a shadow graph in the implementation.

Table 5.1 compares the usage of the shadow graph to an implementation that calculates

the equivalence classes every time. The table shows that calculating the equivalence classes

every time becomes a bottle-neck during the exploration. When the distribution is high

— meaning many equivalence classes — the average waiting time is almost half a second.

The evolution of the time required with a probability of 0.75 is displayed in Figure 5.1.

The figure shows that the non-cached version already grows quadratic in contrast to the

linear growth seen with the cached version.

With the non-cached version, requesting information regarding equivalence classes fre-

quently results in a noticeable delay for the user, which grows with the number of config-

urations and the number of equivalence classes. By caching the equivalence classes and

updating this information after every execute operation, this delay is significantly reduced

and the information is readily available after an execute operation.

Purely caching the equivalence classes does not constitute including it in the implemen-

tation. However, when combined with the option of the explorer to utilise information from

the shadow graph, for example to perform execution skipping, and to be able to provide

the same features present in the earlier implementation, the inclusion is beneficial.

5.3.3 Interactive environments and the exploring interpreter

When the exploring interpreter is part of a larger interactive environment, the other compo-

nents can be combined with the exploration session to increase the exploratory experience

and enhance the functionality of other components. In Idris, there are several meta-

commands that can be used in such a manner. Table 5.2 gives an overview of some of

these commands with a small description describing the functionality of the command. In
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Table 5.1: Average time to request equivalence classes by executing 100 programs. Results
are the average of 10 runs of the experiment, compiled with ghc-8.0.2. Probability denotes the
probability a program results in a new equivalence class. With a 0 probability, all configura-
tions are grouped in the same equivalence class and with a probability of 1, every configuration
is placed in separate equivalence class. Cached eq-classes are requested via the eqClasses func-
tion exported by exploring interpreter. The non-cached eq-classes are obtained via a function
that transforms the tree into a list of equivalence classes.

Probability for new equiva-
lence class

Average time for cached eq-
classes (ms)

Average time for non-
cached eq-classes (ms)

0.0 2.0646 45.1253
0.25 14.2333 129.3170
0.5 14.5434 254.5370
0.75 14.9909 324.8710
1 15.2111 421.7530

this section, the interaction of the commands search, whocalls, and elab with the exploring

interpreter are discussed.

The search command searches through a configuration to find all values matching the

supplied type. For example, the plus operator can be searched by executing the command:

:search Nat → Nat → Nat. By utilising the exploring interpreter, a search can be executed

over multiple configurations at once. This allows a user to perform structured searching

of the exploration tree. Furthermore, the result of a search can be used to modify the

exploration tree. For example, when a term is found in a different configuration than the

current one, the term can be used as the argument to an execute operation, injecting the

term in the current exploratory trace. This operation can be performed by the interactive

environment, making it trivial for a user to update the existing trace with information

from another trace. Another use-case is switching to an other trace based on the searched

information, where the search results can be used to select the configuration to jump to.

The whocalls command shows all callers of a function. A user can use this command in

combination with the exploring interpreter to modify the exploration tree. For example,

by deleting all traces without callers to a specific function or by updating all traces with

callers to a function with an updated definition. Again, modifying the exploration tree

can be performed by the interactive environment, and by utilising other components in the

environment, a more feature full exploration can be performed.

The last command discussed is the elab command. This command starts the interactive
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Figure 5.1: Evolution of time to determine equivalence classes with the cached and non-
cached approaches, using a probability of 0.75 to create new equivalence classes. Averaged
over 10 runs.

prover to prove the supplied hole. The interactive prover is a separate component and

operates on a new language, specific to proving. By integrating the proving system with

the exploring interpreter, it is possible to start the proving system on a chosen configuration

from the exploratory session, create a proof, and inject the proof as a program into the

exploratory session. This way, the user does not need to end the exploratory session

when wanting to prove a hole, and the proof can immediately be utilised in the current

exploratory session, while retaining the usage of the original proving system.

The three discussed commands all operate on a configuration, which makes integration

with the exploring interpreter trivial. Furthermore, debugging is not present in Idris,

nonetheless, the elab command provides a similar experience and can be substituted for a

debug command in an environment supporting debugging. Thus, by placing the exploring

interpreter as a component in an interactive environment, existing components can be re-

used and integrated with the exploring interpreter to increase the exploratory experience.
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Table 5.2: Some of the meta-commands available in the Idris REPL

Command name Description

search Search a configuration for a value of the supplied type
apropos Search a configuration for the given name
browse Give information about a namespace
whocalls List the names of the callers for the supplied name
callswho List the names of the callees for the supplied name
doc Show documentation of the supplied name
metavars Show remaining proof obligations for supplied meta variable
total Check if the supplied name is total
showproof Show the proof for the supplied name
elab Start the elaboration shell to prove a meta variable
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6

Language Parametric Interfaces for
Exploratory Programming

In this chapter, language parametric interfaces for exploratory programming are intro-

duced. Language parametric interfaces are re-usable interfaces that are made concrete

by a language. Via language parametric interfaces, common boilerplate shared between

interfaces is abstracted into re-usable components, while retaining flexibility for language

specific functionality.

I make a distinction between two type of interfaces: embedded interface and non-

embedded interfaces. Embedded interfaces are developed in the same language as the

exploring interpreter. As a result, an interface can easily communicate with the exploring

interpreter via function calls. This makes the implementation of an embedded interface

simpler, but it also restricts the applicability of the interface, because it can only be used on

languages developed in the language used by the interface and exploring interpreter. Exam-

ples of embedded interfaces are the REPL for While and the REPL for Idris. Nonetheless,

embedded interfaces are not restricted to purely REPLs, since it is possible to construct

an embedded GUI interface.

Non-embedded interfaces are developed in a language different than the language used in

the development of the exploring interpreter. This prevents an interface to communicate

with the exploring interpreter via simple function calls. Instead, a communication format

is required to enable communication between the interface and the exploring interpreter.

Hence, interface implementation is more complex, because a data communication format

and implementation is required on both the interface side and the exploring interpreter side.

Nonetheless, it makes the interface applicable to any exploring interpreter following the
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communication format used, allowing more re-usability. An example of a non-embedded

interface is the eFLINT web-interface.

6.1 Embedded interfaces

The While REPL, introduced in chapter 4, and the Idris REPL, introduced in chapter 5,

share many functionalities: managing an exploring interpreter, parsing and execution of

meta-commands, parsing programs and executing the parsed programs, parsing exploring

interpreter commands, displaying prompts, and handling output produced by an execution.

Providing the REPL loop, managing the exploring interpreter, and handling exploring

interpreter commands are language independent. Furthermore, the other functionalities

are language parametric and can be abstracted into a language parametric REPL.

The language parametric REPL is parameterised by the prompt of the REPL, the parser

of the language, the meta-command prefix, the handler for meta-commands, the table for

exploring interpreter commands, and the output handler.

repl :: (Eq p,Eq o,Monoid o,MonadIO m)⇒ Repl p m c o

repl prompt parser metaPrefix metaHandler commandTable outputHandler ex = do

minput ← liftIO ◦ Rl .readline ◦ prompt $ ex

case minput of

(Just input)→ do

liftIO $ Rl .addHistory input

if metaPrefix ‘isPrefixOf ‘ input then runMeta input else runExec input

Nothing → return ()

where

repl ′ = Main.repl prompt parser metaPrefix metaHandler commandTable outputHandler

runMeta input =

let (pcmd , args) = break isSpace input in

case find (λ(cmd , )→ (metaPrefix ++ cmd) ≡ pcmd) metaTable of

Just ( , f )→ f args ex >>= repl ′

Nothing → metaHandler input ex >>= repl ′

runExec input =

case parser input (config ex ) of

(Just program)→ L.execute program ex >>= λ(newEx , out)→ (outputHandler out >> repl ′ newEx )

Nothing → repl ′ ex

type Repl p m c o = Prompt p m c o → Parser p c → String → CommandTable p m c o →
MetaHandler p m c o → OutputHandler m o → Explorer p m c o → m ()

type Prompt p m c o = Explorer p m c o → String

type Parser p c = String → c → Maybe p

type CommandTable p m c o = [(String ,String → Explorer p m c o → m (Explorer p m c o))]

type MetaHandler p m c o = String → Explorer p m c o → m (Explorer p m c o)

type OutputHandler m o = o → m ()
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The parameterisation of the prompt allows a REPL to display custom information to

the user. The meta-command parameters allow injection of the exploring interpreter com-

mands in the namespace of the meta-commands, and the meta handler is used to dispatch

to when a meta-command is not an exploring interpreter command. Exploring interpreter

commands are given to the REPL in the form of a command table. By making the com-

mand table a parameter, a language can modify the syntax of the exploring interpreter

commands, for example when a collision arises. Furthermore, it is possible to combine

independently developed commands into one command-table. The distinction between the

meta-handler and the command table is not necessary, because the meta-handler is typed

identical to the handlers in the command table. Therefore, a language can inject the meta-

commands into the command table without the need for the meta-handler. However, by

providing the option of a meta-handler parameter, existing functionality of a language can

be utilised, as is the case with Idris, and a clear distinction between language generic and

language specific operations is made. Furthermore, the meta-handler functions as a catch-

all clause for when a command is not in the command-table, allowing an implementation

to handle the passing of a missing meta-commands language specifically.

With the language parametric REPL, the Idris REPL can be defined as follows.

idrisRepl = do

setup ← runExceptT $ execStateT initREPL idrisInit

initialState ← case setup of

(Left err)→ error (show err)

(Right state)→ return state

let e = mkExplorer True (≡) interpreter initialState

repl (const "Idris> ") (flip simpleParser) ":" metaTable metaHandler (\_→ return ()) e

The Idris REPL only performs initialisation, by constructing the initial state and an ex-

plorer. The remainder of the REPL functionality is obtained by calling the language

parametric REPL — identified by the repl function.

6.2 Non-embedded interfaces

Non-embedded interfaces require a communication format to relay information between

the interface and the exploring interpreter. When there is no standard format, the clas-

sical n times m problem arises, where there are n interfaces and m exploring interpreter

servers, and the exploring interpreter servers all have their own communication format.

This requires an interface to implement m formats to support a wide range of exploring

interpreter implementations. This work must be repeated by n interfaces, resulting in n
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times m implementations. The n times m problem is classical since it also occurs with

compilers and with text editors supporting programming with IDE like features. In compil-

ers, the problem occurs when there are n languages compiling to m platforms. In editors

it occurs because there are n editors supporting m languages, requiring every editor to

implement IDE features m times.

For compilers, the problem is solved by systems like Clang [37] and GCC [38], which

abstract the m targets by providing one common language. As a result, a compiler only

has to generate the common language, from which the system can generate multiple target

languages. For editors, the problem is reduced by the Language Server Protocol (LSP)

and the Debug Adapter Protocol (DAP). These protocols describe a protocol for IDE

functionality, which allows an editor to connect to a server that implements the protocol.

As a result, an editor only has to implement the protocol and can support languages that

have a server implementing the protocol for free, allowing different editors to share the

same server implementation.

Both solutions rely on a common data format to solve the n times m problem. To solve

this for exploring interpreters, I introduce the exploring interpreter protocol (EIP). The

protocol functions as an interface between the front-end or GUI of an environment and

an exploring interpreter server, removing the fixed dependency from the front-end on the

back-end, i.e. it is trivial to swap the back-end by an other back-end while using the same

interface, and the other way around.

The protocol is as an instance of the JSON RPC 2.0 protocol1, and is described using

TypeScript interfaces similarly as LSP and DAP. The JSON RPC 2.0 protocol defines

a request object, response object, and an error object, which are all encoded as JSON

objects. A request object contains an identifier, a method name and the type capturing

the parameter(s) of the method (if any). A response object contains an identifier for the

request to which it responds and either a result or an error object. The result can be any

encoded JSON object and the error object contains a unique error code, a short descriptive

error message, and optional extra error data that can be any object.

The requests and response pairs of the protocol contain the operations corresponding

to the actions of the exploring interpreter algorithm, of which we detail the specification

jump, revert, and execute, and operations for accessing (parts of) the exploring inter-

preter’s execution tree (i.e. variants of display), such as getting all leaves of the tree or

the current trace. The full list of methods is given in Table 6.1, and the full protocol

specification is available in Appendix A.
1https://www.jsonrpc.org/specification
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Table 6.1: The methods provided by the exploring interpreter protocol.

Command Description

execute see execute in Definition 5.1.3 and the protocol specifica-
tion in section 6.2

revert see revert in definition 5.1.3 and the protocol specification
in section 6.2

jump see jump in definition 5.1.3 and the protocol specification
in section 6.2

getCurrentReference gets the reference labelling the current node
getAllReferences returns all references used as a label
getRoot returns the reference labelling the root node
deref gets the configuration assigned to the given reference
getExecutionTree gets the execution tree in the form of the current node a

list of edges and list of nodes
getTrace gets the edges representing the path from the root node to

the current node
getPath gets the edges representing that path between the nodes

labelled by two given references
getLeaves gets the references labelling the nodes without outgoing

edges
metaCommand execute a meta-command via the meta handler of the lan-

guage

A jump operation must be encoded as a request with the method specified as “jump”

and the parameter an object containing a reference.

interface JumpRequest extends RequestMessage {
method: "jump";
params: JumpParams;

}
interface JumpParams {

reference: uinteger;
}

As a result, a jump specific response is given which has a null result or a jump error.

interface JumpResponse extends ResponseMessage {
result ?: null;
error?: JumpError;

}
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interface JumpError extends ResponseError {
code: DefaultErrorCodes | ReferenceNotInTree;

}

A null result indicates a successful jump and the reference present in the request is now

the current reference. An error object can either encode one of the default errors of JSON

RPC, e.g. “method not found”, or a “reference not in tree” error.

A revert operation is encoded similarly as a jump request, but using method name

“revert” and a revert parameter instead of a jump parameter 1.

interface RevertRequest extends RequestMessage {
method: "revert ";
params: RevertParams;

}

interface RevertParams {
reference: uinteger;

}

The response of a revert request contains the deleted nodes, indicated by references.

interface RevertResponse extends ResponseMessage {
result ?: [uinteger ];
error?: RevertError;

}

interface RevertError extends ResponseError {
code: DefaultErrorCodes | ReferenceNotInTree | ReferenceRevertInvalid;

}

A revert error is like a jump error but has an additional alternative for the case the given

reference is not an ancestor of the current reference.

The execute operation has a request with the method specified as “execute” and the

parameter an execute parameter object. The execute parameter object contains a string

representing the program to execute.

interface ExecuteRequest extends RequestMessage {
method: "execute ";
params: ExecuteParams;

}

interface ExecuteParams {
program: string;

}

1Revert and jump parameters are defined separately to simplify future extensions.
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As a response, the execute operation gives an execute result or an execute error. An

execute result is an object containing the fresh reference and any output produced by the

program. The program error contains a default error or an error indicating the supplied

program can not be parsed, or an error indicating the execution of the program. In the

last case, the output of the execution is placed in the data field of the error object.

interface ExecuteResponse extends ResponseMessage {
result ?: ExecuteResult;
error?: ExecuteError;

}

interface ExecuteResult {
reference: uinteger;
output: string;

}

interface ExecuteError extends ResponseError {
code: DefaultErrorCodes | ProgramParseError | ExecuteError;

}

6.2.1 Implementation

As part of the protocol, I propose an architecture using websockets, of which an overview

is given in Figure 6.1. The proposed architecture contains a front-end and a back-end.

The front-end handles the connection from the interface side, which is mostly focused

on the creation of requests and the handling of responses. The back-end handles the

connection from the exploring interpreter side, which is focused on the handling of requests

and creation of responses.

Front-End

Interface Client EIP Websocket/Exploring
interpreter protocol bridge

Websocket communication

Back-End

Server EIP

Parser

Exploring interpreter Definitional
interpreter

Meta-handlerExploring interpreter protocol

Figure 6.1: Overview of the client-server architecture implemented on top of the exploring
interpreter protocol. The rectangles with rounded corners are language dependent and the
other rectangles are language generic.

The front-end contains an interface implementing the abstract client EIP. The client EIP,

partly shown in Figure 6.2, handles the communication with a bridge. The communication
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is performed over web-sockets, which provides real-time interaction with the interface and

allows the client EIP to send bare JSON over the network. The bridge transforms the

JSON into a correct EIP request and sends it over a socket to the server. The bridge also

handles the response from the server and extracts the relevant information for the interface

and sends it to the interface over the websocket. Since the exploring interpreter protocol

is much simpler than HTTP, it does not use HTTP. Hence, the bridge must ensure that all

the bytes of a response are received from the server before forwarding it to the interface.

The client EIP is abstract because the on methods determine how an interface responds

to responses of the EIP server, and are language dependent.

The back-end contains a server EIP that opens a socket and receives messages from the

bridge. The server EIP ensures that all the bytes of an EIP request are received from the

bridge and translates a request to functions on the parser, meta-handler, and exploring

interpreter. Furthermore, the EIP server translates responses of these function calls into

valid EIP responses and sends the response back to the bridge.

With the client EIP and the server EIP, the core part of the architecture is abstracted

away and language generic. On the front-end, an interface only needs to implement the

on methods to implement how responses affect the interface. On the back-end, an im-

plementation only needs to fulfil Definition 5.1.1, have a parser and a meta-handler, and

the remaining parts of the back-end are automatically obtained. These abstractions were

utilised by the author of [39] to adapt the interface from the corresponding paper — not

running on the exploring interpreter protocol — to support Idris without modifications on

the Idris back-end. In total, the implementation took around 100 extra lines of code, which

were mostly located in the on methods. The resulting interface is shown in Figure 6.3.
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export abstract class EIP {
socket: Socket;
requests: Map <string , RequestMessage > = new Map ();

constructor(socket: Socket) {
this.socket = socket
socket.on("data", (data) => {

this.handleResponse(data);
});
console.log(this);

}

...

handleResponse(resp: any) {
let r = JSON.parse(resp) as eip.ResponseMessage;
// Handle possible error cases
...

switch(req.method) {
case "execute ":

this.onExecute(req as eip.ExecuteRequest ,
r as eip.ExecuteResponse );

break;
...

}
}

execute(params: eip.ExecuteParams) {
this.send(new ExecuteRequest(params ));

}

abstract onExecute(req: eip.ExecuteRequest ,
resp: eip.ExecuteResponse ): void

abstract onUnkownError(resp: eip.ResponseMessage ): void;
abstract onError(req: eip.RequestMessage ,

resp: eip.ResponseMessage ): void;
}

Figure 6.2: Part of the abstract client exploring interpreter protocol class, which abstracts
away all the protocol related implementation details.

51



6. LANGUAGE PARAMETRIC INTERFACES FOR EXPLORATORY
PROGRAMMING

Figure 6.3: An exploratory programming interface using the exploring interpreter protocol
and implementation.
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Exploratory Polyglot REPLs

Polyglot REPLs enable a programmer to mix languages in the same REPL session. For

example, a construction of While mixed with a Lambda language enables a programmer to

use functions which are not present in the While language. With a fine-grained polyglot

REPL supporting While and Lambda, the following session is possible.

Lang > start = 0
Lang > end = 100
Lang > add = lambda l lambda r l + r done done
Lang > addWithS = add (0)
Lang > while (start =< end) print(start );

start = addWithS(start + 1); addWithS = add(start) done
0
1
3
7
15
31
63

The example first defines two variables, start and end, which are language constructs from

While. Then, the add function is defined. The definition of the add function uses the

assignment statement from While in combination with the lambda from Lambda. Fur-

thermore, inside the lambda, addition is used which is a language construct from While.

Next, the add function is applied once to create a function, addWithS, that adds 0 to the

provided argument. Then, a while loop is constructed with a body that first displays the

value of the start variable, then assigns the start variable the value of calling the addWithS

function with the start value increased by one as the argument, and finally updates the

addWithS function to store the updated value of the start variable.
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In the example, language constructs from While and Lambda are freely mixed, enabling

a much more powerful form of programming than possible when using the languages in

isolation. Furthermore, it must be emphasised that the languages are independently de-

veloped and it is trivial to obtain a REPL supporting only While or Lambda, or a REPL

with Lambda or While mixed with a completely different language.

In this chapter, I outline the method for constructing the example polyglot REPL, start-

ing with the introduction of the running example. After introducing the running example,

the construction of a trivial REPL that understands both languages but is not a valid poly-

glot REPL, to highlight the difficulty of polyglot REPLs, is shown. Following, a solution to

the presented problem is introduced, starting with a focus on abstract syntax that is slowly

developed into a full example with concrete and abstract syntax, and semantics. Finally,

an extension on the method is presented to make the method less prone to incompatible

polyglot REPLs.

7.1 Running example

Our running example consists of the While language, introduced in chapter 4, and the

Lambda language. Lambda is an implementation of untyped lambda calculus and is encoded

as follows.

data Expr = Var String | Abstraction String Expr | Application Expr Expr

lambdaInterpreter :: Expr → Config → Config

data Config = Config {env :: Env }
type Env = Map.Map String Expr

initialConfig = Env {env = empty }

The Expr , lambdaInterpreter , Config , and EmptyConfig form a language according to

Definition 2.2.11 and the interpreter is implemented according to Definition 2.2.2, making

the language sequential.

7.2 Polgot REPLs via language composition

A polyglot REPLs allows submission of code snippets from multiple languages, and exe-

cutes these snippets in the same context, allowing interoperability between the used lan-

guages and in a fine-grained REPL, mixing of language constructs.

1The original definitions are used for simplicity, since the interpreter is abstracted away at a later
point.
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A polyglot REPL can also be seen as an ordinary REPL for a polyglot language — a

language consisting of multiple languages. This way, polyglot REPLs can be obtained via

language composition. In our example, While and Lambda can be composed into a new

language as follows.

whileLambdaInterpreter = WhileLambdaProgram → Config → Config

whileLambdaInterpreter (While p) (cw , cl) = (whileInterpreter p cw , cl)

whileLambdaInterpreter (Lambda p) (cw , cl) = (cw , lambdaInterpreter p cl)

data WhileLambdaProgram = While While.Command | Lambda Lambda.Expr

type Config = (While.Config ,Lambda.Config)

initialConfig = (While.initialConfig ,Lambda.initialConfig)

To accept both programs, the new language keeps track of both language configurations and

implements the interpreter by dispatching to the language specific interpreter. A REPL

for this language is fully functional and accepts programs of both languages. However,

there is no interoperability between the languages since the languages still operate in their

own context. But polyglot programming uses multiple languages in the same context.

Thus, simple language composition does not result in valid polyglot REPLs, because a

valid polyglot REPL requires combining the context of different languages.

7.3 Combining context

There are different methods for combining the context of different languages [25, 26], but

all depend on a common data format to which the languages can translate their context

to or can operate in.

In the presented approach, funcons will function as the common data format to which

languages translate their semantics, enabling operating the language with the same inter-

preter and the same context. Funcons enable specification of different paradigms, which

enables composition of languages across paradigms. Furthermore, funcon definitions are

immutable and specify the semantics of the language. This makes composition easier,

because incompatible funcon versions between languages is not possible, and a language

only has to translate its abstract syntax into funcon terms with all semantics handled by

funcons. Furthermore, the translation to funcons is done at a very high level of abstraction,

decreasing the effort needed for a translation.

With funcons as the common data format, languages only need to translate their abstract

syntax into funcon terms. For this, we introduce a type class defining the interface for the

translation.
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class ToFuncons programs where

toFuncons :: programs → Funcons

With our common data format and the type class to distinguish between composable

languages, our composition of While and Lambda can be written as follows.

whileLambdaInterpreter :: WhileLambdaProgram → Config → Config

whileLambdaInterpreter p cfg = defInterpreter (toFuncons p) cfg

defInterpreter :: Funcons → Config → IO Config

instance ToFuncons WhileLambdaProgram where

toFuncons (While p) = toFuncons p

toFuncons (Lambda p) = toFuncons p

The composition now uses the funcons interpreter to evaluate the languages, with the

configurations being funcon specific and shared between the different languages. As a result

of the composition based on the common data format, values from While and Lambda can

be used across the languages.

However, the current composition is solely focused on While and Lambda, but we might

want to compose another language to extend our polyglot REPL further. When introducing

a new language, the allowed programs in our composition must be updated because the

programs in our compositions are explicit, requiring new implementation of the ToFuncons

instance. Furthermore, the current polyglot REPL is coarse, we can use While and Lambda

programs in the same context, but it is not possible to freely mix the language constructs of

both languages, because only their translation to funcons is shared and not their abstract

syntax.

7.4 Signature composition

To overcome explicit program notation, which requires an instance definition and pre-

vents fine grained composition, data types á la carte is integrated as the method in which

languages describe their signature. Via this approach, languages can be composed using

the co-product of their signatures, which also enables finer grained composition than just

top-level composition, allowing fine grained polyglot REPLs.

With the new approach, While is encoded as follows.

data Literal a = LitBool Bool | LitInt Int deriving Functor

data Expr a = Leq a a | Plus a a | Id String deriving Functor

data Command a = Seq a a | Assign String a | Print a |While a a a | Done deriving Functor

type Sig = Literal :+: Expr :+: Command

And Lambda is encoded similarly.
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data Expr a = Var String | Abstraction String a | Application a a deriving Functor

type Sig = Expr

Both languages export their signature (Sig), which is used in the composition.

type LambdaWhile = Lambda.Sig :+: While.Sig

Note that the type LambdaWhile is just for clarity and is not required. Furthermore, we

are free to extend the language with other signatures. This new representation requires

an update to the toFuncons instance, which must now be a valid algebra to be used in a

catamorphism over the signatures to translate signatures into funcon terms.

class ToFuncons f Funcons where

tofuncons :: f Funcons → Funcons

$ (derive [ liftSum ] [” ToFuncons ])

interpreter p cfg = def _interpreter (cata toFuncons p) cfg

Valid programs in the polyglot REPL are now of type Term (Lambda.Sig :+:While.Sig),

which intertwines the abstract syntax of the languages, allowing usage of Lambda expression

inside While construct, and the other way around.

7.5 Concrete languages

With a solution for abstract syntax and semantics, only concrete syntax remains. To

extend the current approach with support for concrete syntax, generalised parsing [40]

is used. Generalised parsing enables parsing of all context free languages and computes

all derivations of input. Computing all derivations of input is crucial when perform fine

grained composition in polyglot REPLs, because parser composition of arbitrary languages

can result in ambiguities.

With the parsing library, a parser for the Lambda language can be defined as follows.

pLambda :: Expr :<: f ⇒ BNF Token (Term f )

pLambda = "Lambda"
〈::=〉 iVar 〈$$〉 id_lit

〈||〉 iAbstraction 〈$$〉 (keyword "lambda" ∗∗〉 id_lit) 〈∗∗〉 (pLambda 〈∗∗ keyword "done")
〈||〉 iApplication 〈$$〉 pLambda 〈∗∗〉 (keychar ’(’ ∗∗〉 pLambda 〈∗∗ keychar ’)’)

The left hand side of the 〈::=〉 operator names the production of this parser and the

right hand side describes the rules for the production. Furthermore, the parsing result is

defined open by stating that it returns a parser of type Term f , which is valid as long as

the Expr type is subsumed by f — indicated with the Expr :<: f type constraint. As a
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result, composition with other parser is possible, as long as the final signature subsumes

the Expr type.

With the parser constraints, a language is completely specified by its parser, signature,

and its instance definition of the ToFuncons type class. This enables language composition

by compositions of parsers, which is possible with the choice( 〈||〉 ) operator.

pWhileLambda = "LambdaWhile" 〈::=〉 pWhile 〈||〉 pLambda

The choice operator first tries the parser of the left side. If that parser does not parse the

input, the parser on the right side is tried. This assigns a higher priority to the parser on

the right side, thus if a program is parsable by both parsers, it will be parsed by the first

and thus translated to funcons by the first language. Nonetheless, it makes freely parsing

two languages in the same REPL possible.

7.6 Exploratory polyglots

With the addition of concrete syntax, most requirements are met to utilise the exploring

interpreter from chapter 5 and the language parametric REPL from chapter 6.

To fully meet the requirements and obtain sequential languages without requiring mod-

ifications for different compositions, a generalisation of the whileLambdaInterpreter is de-

fined.

interpreter :: Term f → Config → IO (Maybe Config , ())

interpreter term cfg = def _interpreter (cata toFuncons p) cfg >>= λcfg → return (Just cfg , ())

With the generalisation, wrapping the result configuration in a Maybe monad, and taking

() as the monoid, our languages follow Definition 5.1.1.

Using the approach outlined in [9], the composed language can be made sequential by

extending the language with a sequence operator and implementing the interpreter for the

extended language according to Definition 5.1.2.

For the sequence operator, a parser is defined that takes the parser of the composed lan-

guage and extends this with support for sequencing using the supplied sequence operator.

pSequential :: String → Parser f → BNF Token (Seq (Term f ))

pSequential seqOp pmain = "programs" 〈::=〉 Program 〈$$〉 pmain

〈||〉 SeqProgram 〈$$〉 (pmain 〈∗∗ keyword seqOp) 〈∗∗〉 pmain

data Seq f = Program f | SeqProgram f f

The interpreter for the sequenced language is defined as follows.
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seqInterpreter :: Seq (Term f )→ Config → IO (Maybe Config , ())

seqInterpreter (Program p) cfg = interpreter p cfg

seqInterpreter (SeqProgram p1 p2 ) cfg =

interpreter p1 cfg >>= λ(mcfg ,mval)→ interpreter p2 (fromMaybe cfg mcfg)>>= return ◦ second (mval ‘mappend ‘)

Using the combination of the seqInterpreter and pSequential , language compositions be-

come sequential languages without needing sequentiality from the composition itself.

Now, both the exploring interpreter and the REPL can be used for any composition of

languages, enabling the creation of free exploratory polyglot REPLs via language compo-

sition.

whileLambdaRepl = polyglotREPL WhileLambda.lexerSettings (pWhileLambda :: Parser (WhileLambda.Sig))

polyglotREPL lexerSettings parser = do

(cfg , runopt)← setup [ ]

let ex = mkExplorer False (\_→ \_→ False) (seqInterpreter (def _interpreter runopt)) cfg

let replParser = λp → \_→ listToMaybe $ parse (pSequential ";" parser) (lexer lexerSettings p)

repl (\_→ "Lang> ") replParser ":" metaTable (\_→ λex → return ex ) (\_→ return ()) ex

The polyglot REPL first performs setup required by the funcons definitional interpreter.

It then constructs the replParser which parses input using the sequential parser and takes

the head of the results as the parse result, if any. Finally, the polyglot REPL calls the

language parametric REPL with default values.

7.7 Fine grained polyglots

The creation of polyglot REPLs is now possible, but the created REPL only supports coarse

grained polyglot programming. Hence, the example session introduced at the beginning of

this chapter is not yet obtained.

To allow fine-grained polyglot programming, parsers are defined as higher order parsers

— parser taking parsers as arguments and returning new parsers. With higher order parser,

the languages can be defined as open, allowing other languages to be embedded into the

open languages. For example, the parser for While commands can be defines as a higher

order parser as follows.

pWhile :: Command :<: f ⇒ Parser f → Parser f → Parser f → Parser f

pWhile pmain pexpr pcond = mkRule $ iAssign 〈$$〉 id_lit 〈∗∗〉 (keychar ’=’ ∗∗〉 pexpr)

〈||〉 iPrint 〈$$〉 (keyword "print" ∗∗〉 (keychar ’(’ ∗∗〉 pexpr 〈∗∗ keychar ’)’))
〈||〉 (λe → λc → iWhile e c c) 〈$$〉
(keyword "while" ∗∗〉 (keychar ’(’ ∗∗〉 pcond 〈∗∗ keychar ’)’)) 〈∗∗〉 pmain 〈∗∗ keyword "done"
〈||〉 pSeq pmain

type Parser f = BNF Token (Term f )
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The parser takes as argument the parser for statements in while bodies, the parser for

expressions in statements, and the parser for conditionals. With this open definition, any

parser can be injected into the While language, because all parsers result in a Term f ,

which is open due to the used signature encoding. Thus, combining While expressions and

Lambda expression can be done as follows.

pWhileLambda :: (L.Expr :<: f ,W .Literal :<: f ,W .Expr :<: f ,W .Command :<: f )⇒ Parser f

pWhileLambda = "WhileLambda"
〈::=〉 L.pLambda pWhileLambdaExpr

〈||〉W .pWhile pWhileLambda pLambdaWhileExpr pLambdaWhileExpr

pLambdaWhileExpr :: (L.Expr :<: f ,W .Command :<: f ,W .Expr :<: f ,W .Literal :<: f )⇒ Parser f

pLambdaWhileExpr = "LWexpr"
〈::=〉 L.pLambda pWhileLambda 〈||〉W .pExpr pLambdaWhileExpr

This composition of parsers results in a language that allows usage of Lambda expressions

inside While statements, and While expressions inside Lambda expressions. Via this em-

bedding, the example polyglot REPL session introduced at the beginning of this chapter

is possible, and a method is available for the construction of exploratory polyglot environ-

ments via language composition.

7.8 Constrained compositions

One disadvantage of the usage of open languages, is that it is easier to construct combi-

nations that translate to erroneous funcons. For example, with a certain combination of

parser it is possible to have a while loop on the left hand side of an assign statement, which

results in a invalid funcon translation.

However, the current parsers all have type Term f as their parse result type and there

is no check if the constructed parser always results in an invalid funcon translation. As a

result, the user combining the languages must pay close to attention to the semantics of

the language, which is not ideal and error prone.

Instead, it would be beneficial if a parser can put a constraint on the parsers it accepts.

For example, stating that a parser only accepts parser that parse signatures that translate

to funcons that return a value on evaluation. For example, constraining the parser passed

to the Lambda parser to be an expression, where an expression is defined as a funcon that

returns a value on evaluation.

pLambda :: Functor f ,Expr :<: f , IsExpr f ⇒ Parser f → Parser f

In the example, the functor f is now required to be an instance of the IsExpr type class,

where the IsExpr type class is an empty type class. However, both parser are still of type
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Parser f , which means that the resulting parser also must be an instance of type IsExpr .

Since all parsers are of the same type, all types must be an instance of the IsExpr class to

use the Lambda. This requirement makes it impossible to compose Lambda with While,

because While commands do not return a value, therefore, are not part of the IsExpr type

class.

Thus, having one parser type is insufficient when wanting to constrain parser used in

open languages. Instead, it should be possible to combine different parser into new parsers

such that the combined parser contains both the parsable terms from the first parser and

the parsable terms form the second.

pLambda :: Functor f ,Expr :<: (f :+: Expr), IsExpr f ⇒ Parser f → Parser (f :+: Expr)

Now, the Lambda parser takes an argument of type Parser f but returns a parser of type

Parser (f :+: Expr).

However, now it is impossible to combine the Lambda parser with parsers already con-

taining the Expr type, because the resulting type of the parser is then an ambiguous

composition, making injection impossible. For example, if our parser argument is of type

Parser (g :+: Expr), the type of the resulting parser of passing this parser to the pLambda

parser is Parser ((g :+:Expr) :+:Expr), which breaks the automatic injection. Automatic

injection is broken, because the Expr data type is present at two locations in the com-

position. Thus it is unclear for the injection if the Inl or Inr constructor must be used,

because both are valid.

To solve this, an alternative definition for pLambda can be given that must be used when

the Expr type is already subsumed by f :

plambda ′ :: Functor f ,Expr :<: f , IsExpr f ⇒ Parser f → Parser f

which is our original type constrained definition. However, when multiple parsers argu-

ments are accepted, one extra definition is not enough. To illustrate, let us extend our

Lambda parser by taking two parser as arguments, one for lambda bodies and the other

for function application.

plambda ′ :: (Functor f ,Expr :<: f , IsExpr f ,Functor g , IsExpr g ,Expr :<: (f :+: g :+: Expr))

⇒ Parser f → Parser g → Parser (f :+: g :+: Expr)

Now, the resulting parser contains terms of type f , terms of type g , and Expr terms. Having

three types that are composed results in more chances of overlapping compositions, since

f can overlap with g , f can overlap with Expr , and g can overlap with Expr . Furthermore,

f and g can overlap on different levels: they can be equal, the can overlap on one term,
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or they can overlap on multiple terms. For example, we can have f = i :+: j :+: k and

g = h :+: l :+: k , where f does not subsume g , or the other way, but both contain k ,

making their composition ambiguous. Of course, the depth where such a duplicate occurs

is unknown, thus writing generic combinators is difficult because every possible level must

be defined.

To solve this, I introduce a flattening type family that takes two signature compositions,

composes the signatures, and flattens the resulting composition, such that duplicates are

removed.

type family F (f :: ∗ → ∗) (g :: ∗ → ∗) where

F f f = f

F (f1 :+: f2 ) g = F f1 (F f2 g)

F f (g1 :+: g2 ) = EmbedIfNotFound (Elem f (g1 :+: g2 )) f (g1 :+: g2 )

F f g = f :+: g

type family EmbedIfNotFound (e :: Emb) (f :: ∗ → ∗) (g :: ∗ → ∗) where

EmbedIfNotFound (Found ) g = g

EmbedIfNotFound f g = f :+: g

The type family defines four possible conditions in which the two signatures can be in. The

first condition states that when the two signatures are identical, the flattening is just the

signature, and not the composition. The second condition is hit when the first signature is

a composition of signatures. In this case, the compound signature is extracted into its left

and right parts, then the type family is applied on the right part and the second signature,

and the type family is applied on the result of that application and the left part of the

extraction. The third condition is hit when the second signature is a composition of other

signatures. In that case, the type family searches for the first signature in the second

signature using Elem type family exported by the compdata library, and if not found

composes the first signature with the second. The last case is when the two signatures are

not a composition of other signatures and are not identical, which results in a composition

of the two signatures.

Now, it is possible to redefine the constrained Lambda parser without requiring multiple

definitions.

pLambda :: Functor f ,Expr :<: (F f Expr), IsExpr f ⇒ Parser f → Parser (F f Expr)

However, because F is a type family, it is not injective and can not be on the left-hand side

in a type family definition. As a result, some recursive parser definitions become impossible

for the type checker to check. To illustrate, let us again take the example of the lambda

62



7.8 Constrained compositions

parser with two parser arguments, where a new variant (pLambdaV ) is defined that takes

one argument and uses plambda ′ to encode a parser definition.

pLambda ′ :: Parser f → Parser g → Parser (F3 f g Expr)

plambdaV :: Parser f → Parser (F f Expr)

plambdaV pmain = plambda ′ pmain (plambdaV pmain)

type F3 f g e = F (F f g) e

In this case, the second parser to plambda ′ is the plambdaV parser. The resulting type

of plambdaV is Parser (F f Expr), but this type is obtained via the result type of the

pLambda ′ parser, which is of type Parser (F3 f g Expr) where the second argument,

g , is in this case determined by the type of pLambdaV . Hence, the type of pLambda ′

is Parser (F3 f (F f Expr) Expr), which is incompatible with the type of pLambdaV ,

which is Parser (F f Expr), and Haskell signals a type error. Furthermore, because the

pLambdaV parser is an argument to the pLambda ′ parser, the type of plambdaV can not

be changed, since a change in the type of pLambdaV also changes the type of pLambda ′.

To solve this, a type level equality constraint — defined with the ∼ operator — must be

specified to signal to Haskell that the resulting type of pLambda ′ is equal to the resulting

type of pLambdaV .

plambdaV :: (F f Expr∼F3 f (F f Expr))⇒ Parser f → Parser (F f Expr)

plambdaV pmain = plambda ′ pmain (plambda ′′ pmain)

Thus, it is now possible to define recursive parsers with type level constraints to guide

the composition of higher order parsers to prevent the creation of incompatible parser

combinations. This method enables constraint language composition, making the approach

to construct exploratory polyglot systems via language composition safer.
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Discussion

8.1 Exploring interpreters

With the unified model, presented in chapter 5, a consistent exploratory experience is

provided and by combining the different behaviours in one model, the different exploratory

styles discussed in chapter 4 are possible in the same exploratory session. Furthermore,

the language requirements are minimal and enable a wide range of languages to support

exploratory programming with little effort, as seen in the case-studies.

The implementation makes no assumptions about the interface used to perform ex-

ploratory programming, as showcased via the different eFLINT interfaces. This enables

the creation of highly language specific interfaces that provide effective exploratory pro-

gramming for that language. Furthermore, being decoupled from the interface, construc-

tion of more non-developer interfaces, like mage [41], with some support for exploratory

programming is possible.

The operations provide the basic building blocks to operate on the exploration tree,

allowing an interface to construct more complex interactions. For example, an interface

can provide the functionality to execute a program on a group of configurations, which

can be fully encoded as combination of execute and jump operations. Combinations of

execute and jump can also be used to overlay traces or make a small modification in

an existing trace and re-execute the trace from that point with the modification. Similar

usage of combinations of exploring interpreter operations was showcased with buttons to

operate on a configuration in the eFLINT web-interface.

In addition, reproducibility is supported by the implementations up to the point of the

environment. reproducibility is an important concept in notebooks, and exporting repro-

ducible exploration sessions makes it possible to share exploration sessions between users
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and possibly enable pair exploratory programming, where multiple users work together

in the same exploration session. To fully enable reproducibility, the reproducibility pro-

vided by the exploring interpreter can be combined with tools to construct reproducible

environments [42], like Docker [43] and Nix [44].

Finally, the implementation uses an interpreter that evaluates the supplied program in

one go. Such an interpreter is also known as a big-step interpreter. Alternatively, there is

the small-step interpreter, which evaluates is a program in a combination of small steps [45].

An exploring interpreter implementation defined over a small-step interpreter can make ev-

ery step a new transition in the exploration tree. This gives a finer grained exploration

experience with more insight in the evaluation of a program, opening up integration with

debugging. However, a small-step interpreter increases the number of configurations signif-

icantly and requires more operations on the exploring interpreter when evaluating, which

can impact the performance compared to a big-step interpreter. More research is required

to determine how fruitful exploration with a small-step interpreter is, how big the per-

formance penalty is, and what the effects on the flexibility of the exploring interpreter

are.

8.2 Language parametric interfaces

With the language parametric interfaces for exploratory programming, languages receive

exploratory programming interfaces almost for free, as showcased with the polyglot REPLs,

further reducing the required effort for a language to support exploratory programming.

Furthermore, via the exploring interpreter protocol, duplicate implementations are reduced

and re-usability of interfaces is promoted.

This thesis was focused on the implementation level and not the interface level. Hence,

more research is required in the construction of complex interfaces on top of the exploring

interpreter protocol. Nonetheless, the exploring interpreter protocol makes it possible

to research a generic non-embedded interface that can be re-used by different exploring

interpreter implementations and is extensible by users. Such an interface would provide a

base to support languages generically and enable users to extend the interface with language

specific features. Enabling the user to extend the interface puts the exploratory display

in full control of the user, alleviating the language implementer to implement interfaces.

Putting the user in full control allows a user to provide display implementations for user

specific exploration behaviours, without having to implement all user specific exploration

behaviours in one interface. Furthermore, a library can be developed for the creation
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of components, where some components can be language parametric, allowing users to

compose components to create their preferred interface.

8.3 Polyglot language composition

With the method outlined in chapter 7 it is possible to create polyglot systems that support

exploratory programming, like REPLs, via language composition. The approach provides a

very flexible form of language composition, enabling both fine- and coarse-grained compo-

sitions and REPLs. By choosing funcons to translate semantics, effort required to support

using language in the system is reduced, because of the high abstraction level funcons

provide, and there is a lot of flexibility in freely mixing languages constructs, as shown

in the case of Lambda and While. However, the flexibility also makes it possible that

compositions are not well defined. With the type level constraints, it is more difficult to

create compositions that are not well defined, but it is still required that the type level con-

straints are implemented and not overridden. In addition, using type level programming

significantly increases the compilation time.

The parsers are based on GLL parsing, which enables parsing of all context free parsers

and ambiguities in the grammar are handled by returning multiple parse results. Currently,

when a parse has multiple results, the first result is taken. Taking the first result hides the

ambiguity from the user. Hiding the ambiguity from the user is nice, because it requires no

interaction from the user to continue the exploration session in a polyglot system. However,

when the parser results are not deterministic, it can really confuse a user, and when used

in agile language development, the ambiguity is necessary information for the language

developer. In the last case, a system might be developed that provides the user with a

choice to choose the right parser result, and then adapt the existing parsers to take into

account the choice made. This way, by making choices in an exploratory polyglot session,

the language composition becomes less ambiguous.

With the provided method, several options for future work as possible. A component

library of small languages and a combinator library for term parser can be constructed.

With these libraries, it becomes possible to compose languages using really small compo-

nents, and possibly performing these compositions in an exploratory environment, enabling

exploratory language development. Furthermore, an extensive evaluation of the method

can be performed by building some popular languages with the method and creating a

polyglot environment for these languages. For example, a polyglot environment mixing C

and Javascript, adding first class support to C for working with JSON.
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Conclusion

Exploratory programming is a useful programming method when the goal worked towards

is not fully known. Usage of exploratory programming is seen in a wide variety of domains.

However, current tooling only enables shallow forms of exploratory programming or are

focused on the text level, preventing interactivity.

In this thesis, I presented an implementation of a generic exploring interpreter, which

enables adding interactive exploratory programming to a wide variety of languages with-

out much effort from the language implementation. Via an evaluation of the exploration

experience with the model, a new unified model was proposed that supports a wider range

of languages, provides a consistent exploratory experience, and supports a broad range of

different exploratory programming styles.

In addition, language parametric interfaces for exploratory programming were created,

abstracting away the common functionality and simplifying the creation of exploratory

programming interfaces, reducing the required effort to add exploratory programming to

languages even further. For non-embedded interfaces, a protocol for exploratory program-

ming was designed and implemented, enabling an interface to work with any exploring

interpreter server that implements the protocol, promoting re-usability of interfaces.

Finally, by combining funcons and data types á la carte on top of the language parametric

interfaces and the unified model, a method for the creation of flexible polyglot exploratory

environments via language composition was created. Via higher order GLL parsers, the

method supports the creation of both fine- and coarse-grained exploratory polyglot REPLs,

and via type level constraints, the creation of invalid compositions is reduced. With the

method, a step is made in to the direction of exploratory language development.
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Appendix A

Exploring Interpreter Protocol

This section contains the full definition of the language independent protocol for ex-

ploratory programming. The request message, response message, and response error ob-

jects are defined by the Language Server Protocol1.

/** JSON RPC error codes */
type ParseError = -32700;
type InvalidRequest = -32600;
type MethodNotFound = -32601;
type InvalidParams = -32602;
type InternalError = -32603;

/** Exploratory programming error codes */
type ReferenceNotInTree = 1;
type ReferenceRevertInvalid = 2;
type ProgramParseError = 3;
type PathNonExisting = 4;
type MetaCommandError = 5;

type DefaultErrorCodes = ParseError | InvalidRequest | MethodNotFound
| InvalidParams | InternalError;

interface DefaultError extends ResponseError {
code: DefaultErrorCodes;

}

interface Edge {
source: uinteger;
target: uinteger;
label: EdgeLabel;

}

1https://microsoft.github.io/language-server-protocol/specifications/
specification-current
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interface EdgeLabel {
program: string;
output: string;

}

interface ExecutionTree {
current: uinteger;
references: [uinteger ];
transitions: [Edge];

}

interface JumpRequest extends RequestMessage {
method: "jump";
params: JumpParams;

}

interface JumpParams {
reference: uinteger;

}

interface JumpResponse extends ResponseMessage {
result ?: null;
error?: JumpError;

}

interface JumpError extends ResponseError {
code: DefaultErrorCodes | ReferenceNotInTree;

}

interface RevertRequest extends RequestMessage {
method: "revert ";
params: RevertParams;

}

interface RevertParams {
reference: uinteger;

}

interface RevertResponse extends ResponseMessage {
result ?: [uinteger ];
error?: RevertError;

}

interface RevertError extends ResponseError {
code: DefaultErrorCodes | ReferenceNotInTree | ReferenceRevertInvalid;

}
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interface ExecuteRequest extends RequestMessage {
method: "execute ";
params: ExecuteParams;

}

interface ExecuteParams {
program: string;

}

interface ExecuteResponse extends ResponseMessage {
result ?: ExecuteResult;
error?: ExecuteError;

}

interface ExecuteResult {
reference: uinteger;
output: string;

}

interface ExecuteError extends ResponseError {
code: DefaultErrorCodes | ProgramParseError;

}

interface DerefRequest extends RequestMessage {
method: "deref";
params: DerefParams;

}

interface DerefParams {
reference: uinteger;

}

interface DerefResponse extends ResponseMessage {
result ?: object;
error?: DerefError;

}

interface DerefError extends ResponseError {
code: DefaultErrorCodes | ReferenceNotInTree;

}

interface ExecutionTreeRequest extends RequestMessage {
method: "getExecutionTree ";

}

interface ExecutionTreeResponse extends ResponseMessage {
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result ?: ExecutionTree;
error?: DefaultError;

}

interface TraceRequest extends RequestMessage {
method: "getTrace ";

}

interface TraceResponse extends ResponseMessage {
result ?: [Edge];
error?: DefaultError;

}

interface PathRequest extends RequestMessage {
method: "getPath ";
params: PathParams;

}

interface PathParams {
source: uinteger;
target: uinteger;

}

interface PathResponse extends ResponseMessage {
result ?: [Edge];
error?: PathError;

}

interface PathError extends ResponseError {
code: DefaultErrorCodes | PathNonExisting;

}

interface CurrentReferenceRequest extends RequestMessage {
method: "getCurrentReference ";

}

interface CurrentReferenceResponse extends ResponseMessage {
result ?: uinteger;
error?: DefaultError;

}

interface AllReferencesRequest extends RequestMessage {
method: "getAllReferences ";

}

interface AllReferencesResponse extends ResponseMessage {
result ?: [uinteger ];
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error?: DefaultError;
}

interface LeavesRequest extends RequestMessage {
method: "getLeaves ";

}

interface LeavesResponse extends ResponseMessage {
result ?: [uinteger ];
error?: LeavesError;

}

interface LeavesError extends ResponseError {
code: DefaultErrorCodes | ReferenceNotInTree;

}

interface MetaRequest extends RequestMessage {
method: "metaCommand ";

}

interface MetaResponse extends ResponseMessage {
result ?: object;
error?: MetaError;

}

interface MetaError extends ResponseError {
code: DefaultErrorCodes | MetaCommandError;

}

75



A. EXPLORING INTERPRETER PROTOCOL

76



References

[1] Beau Sheil. Datamation®: Power Tools for Programmers. In Readings in

artificial intelligence and software engineering, pages 573–580. Elsevier, 1986. 1

[2] Mary Beth Kery and Brad A. Myers. Exploring exploratory program-

ming. In Austin Z. Henley, Peter Rogers, and Anita Sarma, editors, 2017

IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC

2017, Raleigh, NC, USA, October 11-14, 2017, pages 25–29. IEEE Computer Society,

2017. 1, 5

[3] Caitlin Kelleher, Randy F. Pausch, and Sara B. Kiesler. Storytelling

alice motivates middle school girls to learn computer programming. In

Mary Beth Rosson and David J. Gilmore, editors, Proceedings of the 2007 Con-

ference on Human Factors in Computing Systems, CHI 2007, San Jose, California,

USA, April 28 - May 3, 2007, pages 1455–1464. ACM, 2007. 1

[4] Ben Fry. Visualizing data - exploring and explaining data with the processing envi-

ronment. O’Reilly, 2008. 1

[5] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E.

Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jes-

sica B. Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián

Avila, Safia Abdalla, Carol Willing, and Jupyter Development Team.

Jupyter Notebooks - a publishing format for reproducible computational

workflows. In Fernando Loizides and Birgit Schmidt, editors, Positioning and

Power in Academic Publishing: Players, Agents and Agendas, 20th International Con-

ference on Electronic Publishing, Göttingen, Germany, June 7-9, 2016, pages 87–90.

IOS Press, 2016. 1

[6] Hans Fangohr, Thomas Kluyver, and Massimo DiPierro. Jupyter in Com-

putational Science. Comput. Sci. Eng., 23(2):5–6, 2021. 1

77

https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1145/1240624.1240844
https://doi.org/10.1145/1240624.1240844
http://www.oreilly.com/catalog/9780596514556/index.html#top
http://www.oreilly.com/catalog/9780596514556/index.html#top
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1109/MCSE.2021.3059494
https://doi.org/10.1109/MCSE.2021.3059494


REFERENCES

[7] YoungSeok Yoon and Brad A. Myers. An exploratory study of back-

tracking strategies used by developers. In Helen Sharp, Yvonne Dittrich,

Cleidson R. B. de Souza, Marcelo Cataldo, and Rashina Hoda, editors, 5th

International Workshop on Co-operative and Human Aspects of Software Engineering,

CHASE 2012, Zurich, Switzerland, June 2, 2012, pages 138–144. IEEE Computer So-

ciety, 2012. 1, 26

[8] Robert DeLine and Danyel Fisher. Supporting exploratory data analysis

with live programming. In Zhen Li, Claudia Ermel, and Scott D. Fleming,

editors, 2015 IEEE Symposium on Visual Languages and Human-Centric Computing,

VL/HCC 2015, Atlanta, GA, USA, October 18-22, 2015, pages 111–119. IEEE Com-

puter Society, 2015. 1

[9] L. Thomas van Binsbergen, Mauricio Verano Merino, Pierre Jeanjean,

Tijs van der Storm, Benoit Combemale, and Olivier Barais. A Principled

Approach to REPL Interpreters, pages 84–100. ACM, 2020. 1, 6, 15, 17, 58

[10] Kayur Patel, James Fogarty, James A. Landay, and Beverly L. Harri-

son. Investigating statistical machine learning as a tool for software devel-

opment. In Mary Czerwinski, Arnold M. Lund, and Desney S. Tan, editors,

Proceedings of the 2008 Conference on Human Factors in Computing Systems, CHI

2008, 2008, Florence, Italy, April 5-10, 2008, pages 667–676. ACM, 2008. 1

[11] Mary Beth Kery, Amber Horvath, and Brad A Myers. Variolite: Sup-

porting Exploratory Programming by Data Scientists. In CHI, 10, pages

3025453–3025626, 2017. 2, 13

[12] Hiroaki Mikami, Daisuke Sakamoto, and Takeo Igarashi. Micro-

Versioning Tool to Support Experimentation in Exploratory Program-

ming. In Gloria Mark, Susan R. Fussell, Cliff Lampe, m. c. schrae-

fel, Juan Pablo Hourcade, Caroline Appert, and Daniel Wigdor, editors,

Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems,

Denver, CO, USA, May 06-11, 2017, pages 6208–6219. ACM, 2017. 2, 13

[13] Pavneet Singh Kochhar, Dinusha Wijedasa, and David Lo. A Large Scale

Study of Multiple Programming Languages and Code Quality. In IEEE

23rd International Conference on Software Analysis, Evolution, and Reengineering,

78

https://doi.org/10.1109/CHASE.2012.6223012
https://doi.org/10.1109/CHASE.2012.6223012
https://doi.org/10.1109/VLHCC.2015.7357205
https://doi.org/10.1109/VLHCC.2015.7357205
https://doi.org/10.1145/1357054.1357160
https://doi.org/10.1145/1357054.1357160
https://doi.org/10.1145/3025453.3025597
https://doi.org/10.1145/3025453.3025597
https://doi.org/10.1145/3025453.3025597
https://doi.org/10.1109/SANER.2016.112
https://doi.org/10.1109/SANER.2016.112


REFERENCES

SANER 2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1, pages 563–573.

IEEE Computer Society, 2016. 2

[14] David Chisnall. The challenge of cross-language interoperability. Commun.

ACM, 56(12):50–56, 2013. 2

[15] David W. Sandberg. Smalltalk and exploratory programming. ACM SIG-

PLAN Notices, 23(10):85–92, 1988. 5

[16] Erik Sandewall. Programming in an Interactive Environment: the LISP

Experience. ACM Comput. Surv., 10(1):35–71, 1978. 5

[17] Urs Holzle. Adaptive optimization for SELF: reconciling high performance with

exploratory programming. PhD thesis, Stanford University, 1994. 5

[18] Wouter Swierstra. Data types à la carte. J. Funct. Program., 18(4):423–436,

2008. 7

[19] Philip Wadler et al. The expression problem. Posted on the Java Genericity

mailing list, 1998. 7

[20] Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. Functional Pro-

gramming with Bananas, Lenses, Envelopes and Barbed Wire. In John

Hughes, editor, Functional Programming Languages and Computer Architecture, 5th

ACM Conference, Cambridge, MA, USA, August 26-30, 1991, Proceedings, 523 of

Lecture Notes in Computer Science, pages 124–144. Springer, 1991. 8

[21] Patrick Bahr and Tom Hvitved. Compositional data types. In Jaakko

Järvi and Shin-Cheng Mu, editors, Proceedings of the seventh ACM SIGPLAN

workshop on Generic programming, WGP@ICFP 2011, Tokyo, Japan, September 19-

21, 2011, pages 83–94. ACM, 2011. 10

[22] N Watts. Even more than polyglot programming. Technical report, Re-

trieved 2021-07-27, from https://thewonggei.wordpress.com/2008/01/22/even-more-

than-polyglot-programming, 2008. 10

[23] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,

Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and

Mario Wolczko. One VM to rule them all. In Antony L. Hosking,

Patrick Th. Eugster, and Robert Hirschfeld, editors, ACM Symposium on

79

https://doi.org/10.1145/2534706.2534719
https://doi.org/10.1145/51607.51614
https://doi.org/10.1145/356715.356719
https://doi.org/10.1145/356715.356719
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1007/3540543961_7
https://doi.org/10.1007/3540543961_7
https://doi.org/10.1145/2036918.2036930
https://doi.org/10.1145/2509578.2509581


REFERENCES

New Ideas in Programming and Reflections on Software, Onward! 2013, part of

SPLASH ’13, Indianapolis, IN, USA, October 26-31, 2013, pages 187–204. ACM,

2013. 14

[24] Matija Sipek, Branko Mihaljevic, and A. Radovan. Exploring Aspects

of Polyglot High-Performance Virtual Machine GraalVM. In Marko Ko-

ricic, Zeljko Butkovic, Karolj Skala, Zeljka Car, Marina Cicin-Sain,

Snjezana Babic, Vlado Sruk, Dejan Skvorc, Slobodan Ribaric, Stjepan

Gros, Boris Vrdoljak, Mladen Mauher, Edvard Tijan, Predrag Pale,

Darko Huljenic, Tihana Galinac Grbac, and Matej Janjic, editors, 42nd

International Convention on Information and Communication Technology, Electron-

ics and Microelectronics, MIPRO 2019, Opatija, Croatia, May 20-24, 2019, pages

1671–1676. IEEE, 2019. 14

[25] Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Würthinger,

and Hanspeter Mössenböck. High-performance cross-language interoper-

ability in a multi-language runtime. In Manuel Serrano, editor, Proceedings

of the 11th Symposium on Dynamic Languages, DLS 2015, part of SPLASH 2015,

Pittsburgh, PA, USA, October 25-30, 2015, pages 78–90. ACM, 2015. 14, 55

[26] Tomas Petricek, James Geddes, and Charles Sutton. Wrattler: Repro-

ducible, live and polyglot notebooks. In Melanie Herschel, editor, 10th

USENIX Workshop on the Theory and Practice of Provenance, TaPP 2018, London,

UK, July 11-12, 2018. USENIX Association, 2018. 14, 55

[27] Damian Frölich and L. Thomas van Binsbergen. A Generic Back-End for

Exploratory Programming. In The 22nd International Symposium on Trends in

Functional Programming (TFP 2021), 12834 of LNCS. Springer, 2021. 15

[28] L. Thomas van Binsbergen. Executable Formal Specification of Programming Lan-

guages with Reusable Components. PhD thesis, Royal Holloway, University of London,

2019. 15

[29] L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom

van Engers. eFLINT: A Domain-Specific Language for Executable Norm

Specifications. In Proceedings of the 19th ACM SIGPLAN International Conference

on Generative Programming: Concepts and Experiences, GPCE 2020. ACM, 2020. 22

80

https://doi.org/10.23919/MIPRO.2019.8756917
https://doi.org/10.23919/MIPRO.2019.8756917
https://doi.org/10.1145/2816707.2816714
https://doi.org/10.1145/2816707.2816714
https://www.usenix.org/conference/tapp2018/presentation/petricek
https://www.usenix.org/conference/tapp2018/presentation/petricek


REFERENCES

[30] Martin Churchill, Peter D. Mosses, Neil Sculthorpe, and Paolo Tor-

rini. Reusable Components of Semantic Specifications. In Transactions on

Aspect-Oriented Software Development XII, TAOSD 2015, pages 132–179, 2015. 23

[31] Peter D. Mosses. Software meta-language engineering and CBS. Journal of

Computer Languages, 50:39–48, 2019. 23

[32] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and

Brad A. Myers. The Story in the Notebook: Exploratory Data Science

using a Literate Programming Tool. In Regan L. Mandryk, Mark Hancock,

Mark Perry, and Anna L. Cox, editors, Proceedings of the 2018 CHI Conference

on Human Factors in Computing Systems, CHI 2018, Montreal, QC, Canada, April

21-26, 2018, page 174. ACM, 2018. 25

[33] Oleg Kiselyov and Hiromi Ishii. Freer monads, more extensible effects.

In Ben Lippmeier, editor, Proceedings of the 8th ACM SIGPLAN Symposium on

Haskell, Haskell 2015, Vancouver, BC, Canada, September 3-4, 2015, pages 94–105.

ACM, 2015. 29

[34] Peter D. Mosses. Modular Structural Operational Semantics. Journal of

Logic and Algebraic Programming, 60–61:195–228, 2004. 29

[35] Peter D. Mosses and Mark J. New. Implicit Propagation in Structural

Operational Semantics. Electronic Notes in Theoretical Computer Science, 229(4),

2009. 29

[36] EDWIN BRADY. Idris, a general-purpose dependently typed programming

language: Design and implementation. Journal of Functional Programming,

23:552–593, 9 2013. 37

[37] Chris Lattner. LLVM and Clang: Next generation compiler technology.

In The BSD conference, 5, 2008. 46

[38] Richard M Stallman. GNU compiler collection internals. Free Software

Foundation, 2002. 46

[39] Joey Lai. Supporting Exploratory Programming in Computational Notebooks with an

Exploring Interpreter (Working title). Master’s thesis, Universiteit van Amsterdam,

the Netherlands, 2021. 50

81

https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/2804302.2804319
https://journals.cambridge.org/article_S095679681300018X
https://journals.cambridge.org/article_S095679681300018X


REFERENCES

[40] L. Thomas van Binsbergen, Elizabeth Scott, and Adrian Johnstone. GLL

parsing with flexible combinators. In David J. Pearce, Tanja Mayerhofer,

and Friedrich Steimann, editors, Proceedings of the 11th ACM SIGPLAN Interna-

tional Conference on Software Language Engineering, SLE 2018, Boston, MA, USA,

November 05-06, 2018, pages 16–28. ACM, 2018. 57

[41] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit

Wongsuphasawat, and Kayur Patel. mage: Fluid Moves Between Code

and Graphical Work in Computational Notebooks. In Shamsi T. Iqbal,

Karon E. MacLean, Fanny Chevalier, and Stefanie Mueller, editors, UIST

’20: The 33rd Annual ACM Symposium on User Interface Software and Technology,

Virtual Event, USA, October 20-23, 2020, pages 140–151. ACM, 2020. 65

[42] Jürgen Cito and Harald C. Gall. Using docker containers to improve re-

producibility in software engineering research. In Laura K. Dillon, Willem

Visser, and Laurie A. Williams, editors, Proceedings of the 38th International

Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016

- Companion Volume, pages 906–907. ACM, 2016. 66

[43] Dirk Merkel et al. Docker: lightweight linux containers for consistent

development and deployment. Linux journal, 2014(239):2, 2014. 66

[44] Eelco Dolstra, Merijn de Jonge, and Eelco Visser. Nix: A Safe and

Policy-Free System for Software Deployment. In Lee Damon, editor, Proceed-

ings of the 18th Conference on Systems Administration (LISA 2004), Atlanta, USA,

November 14-19, 2004, pages 79–92. USENIX, 2004. 66

[45] Gordon D. Plotkin. A structural approach to operational semantics. J.

Log. Algebraic Methods Program., 60-61:17–139, 2004. 66

82

https://doi.org/10.1145/3276604.3276618
https://doi.org/10.1145/3276604.3276618
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/2889160.2891057
https://doi.org/10.1145/2889160.2891057
http://www.usenix.org/publications/library/proceedings/lisa04/tech/dolstra.html
http://www.usenix.org/publications/library/proceedings/lisa04/tech/dolstra.html

	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis structure

	2 Background
	2.1 Exploratory programming and interactive environments
	2.2 Principled approach to REPLs and exploring interpreters
	2.3 Data types á la carte
	2.4 Polyglot programming

	3 Related Work
	3.1 Exploratory programming
	3.2 Polyglot systems

	4 Generic Exploring Interpreter
	4.1 Running example
	4.2 Initial implementation
	4.2.1 Operations

	4.3 Evaluation
	4.3.1 Backtracking
	4.3.2 Sharing
	4.3.3 Total purity and its implications
	4.3.3.1 Allowing impurity and erroneous computations

	4.3.4 Sessions
	4.3.4.1 Reproducible sessions



	5 A Unified Exploring Interpreter
	5.1 Unified model
	5.2 Implementation
	5.2.1 Operations

	5.3 Evaluation
	5.3.1 State interpreters
	5.3.2 Shadow graph
	5.3.3 Interactive environments and the exploring interpreter


	6 Language Parametric Interfaces for Exploratory Programming
	6.1 Embedded interfaces
	6.2 Non-embedded interfaces
	6.2.1 Implementation


	7 Exploratory Polyglot REPLs
	7.1 Running example
	7.2 Polgot REPLs via language composition
	7.3 Combining context
	7.4 Signature composition
	7.5 Concrete languages
	7.6 Exploratory polyglots
	7.7 Fine grained polyglots
	7.8 Constrained compositions

	8 Discussion
	8.1 Exploring interpreters
	8.2 Language parametric interfaces
	8.3 Polyglot language composition

	9 Conclusion
	A Exploring Interpreter Protocol
	References

