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ABSTRACT
Read-eval-print-loops (REPLs) allow programmers to test

out snippets of code, explore APIs, or even incrementally

construct code, and get immediate feedback on their actions.

However, even though many languages provide a REPL, the

relation between the language as is and what is accepted at

the REPL prompt is not always well-defined. Furthermore,

implementing a REPL for new languages, such as DSLs, may

incur significant language engineering cost.

In this paper we survey the domain of REPLs and investi-

gate the (formal) principles underlying REPLs. We identify

and define the class of sequential languages, which admit a

sound REPL implementation based on a definitional inter-

preter, and present design guidelines for extending existing

language implementations to support REPL-style interfaces

(including computational notebooks). The obtained REPLs

can then be generically turned into an exploring interpreter,

to allow exploration of the user’s interaction.

The approach is illustrated using three case studies, based

on MiniJava, QL (a DSL for questionnaires), and eFLINT (a

DSL for normative rules). We expect sequential languages,

and the consequent design principles, to be stepping stones

towards a better understanding of the essence of REPLs.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

Onward! ’20, November 18–20, 2020, Virtual, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8178-9/20/11. . . $15.00

https://doi.org/10.1145/3426428.3426917

CCS CONCEPTS
• Software and its engineering→ Interpreters; Domain
specific languages; Integrated and visual development en-

vironments; • Human-centered computing→ Command
line interfaces.

KEYWORDS
interpreters, REPLs, software language engineering, note-

books, meta-languages, language workbenches

ACM Reference Format:
L. Thomas van Binsbergen, Mauricio Verano Merino, Pierre Jean-

jean, Tijs van der Storm, Benoit Combemale, and Olivier Barais.

2020. A principled approach to REPL interpreters. In Proceedings of
the 2020 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward!
’20), November 18–20, 2020, Virtual, USA. ACM, New York, NY, USA,

17 pages. https://doi.org/10.1145/3426428.3426917

1 INTRODUCTION
“The top level is hopeless”, Matthew Flatt

1

Read-eval-print-loops (REPLs, also known as command-line

interfaces, or interactive shells) are a popular way for pro-

grammers to interact with programming languages. They

allow incremental definition of abstractions, testing out snip-

pets of code with immediate feedback, debugging executions,

and explore APIs.

Some languages, such as scripting languages or interpreted

languages, are more naturally compatible with the REPL

mode of interaction and the styles of programming that it

enables (and that programmers have come to expect). For

example, a sequence of valid code snippets written in the

REPL of Python is itself a valid Python program. On the

other hand, JShell, for instance, allows programmers to write

1
https://gist.github.com/samth/3083053
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expressions, statements, variable declarations and method

declarations as code snippets, even though these constructs

are not allowed at the top-level in Java programs.

Consider the following example JShell interaction (every

line is a code snippet sent separately):

class Example {}

Example obj = new Example();

class Example { public int meth() { return var; } }

int var = 1;

This example raises the questions whether classes can be

redefined, whether obj can be accessed after Example is rede-

fined or if obj is migrated, and, if so, what methods it has and,

if meth is available, whether a call obj.meth() returns 1. With-

out giving answers here, the example shows that the relation

between a programming language and the behavior of its

REPL is not immediately obvious. Matthew Flatt’s ceterum
censeo quoted above bears witness to the fact that the relation
can actually be strenuous and cause a lot of confusion. The

above questions are fundamentally about language design:

several sensible answers are possible and the answers have

a significant impact on programmer experience.

In some sense, JShell can be seen to implement its own
language, which, even though strongly reminiscent of Java,

is markedly different. In this paper, we take this observation

and run with it: we assume that a REPL interpreter for L

effectively defines its own language R, often as an extension

or modification of L, whose programs are sequences of valid

code snippets according to the REPL.

To this end we identify and define the class of languages

that underlie REPL interpreters as sequential languages. The
essence of sequential languages is that the concatenation of
two programs is again a program. Or, to put it more precisely, a

language is sequential if it features an associative sequencing

operator
o

9
, such that the following equation holds:

Jp1 o

9
p2K = Jp2K ◦ Jp1K

The meaning of a sequence of program fragments is defined

by composing the meanings of the individual fragments,

including any impure effects of these fragments.

The notion of sequential language informs a methodology

to make a language sequential, and hence suitable for sound

REPL interpreters. The methodology enforces certain design

principles on the REPL engineer to ensure that questions

like the ones asked about the JShell interaction are answered

precisely and are explicitly addressed as matters of language

design, instead of an implementation concern. Furthermore,

sequential languages are amenable to interfaces which allow

exploring execution traces resulting from REPL interactions.

We have applied this methodology in three case studies.

The first extends an existing implementation of MiniJava [1]

in the Rascal language workbench [15], to make it sequen-

tial. This extended MiniJava is then the base interpreter for

a computational notebook interface through Bacatá, Ras-

cal’s bridge to Jupyter [22]. The second case study involves

QL, a DSL for defining spreadsheet-like interactive question-

naires [8, 9]. This case study show that it is feasible to obtain

REPLs for languages that are not statement- or expression-

oriented. The third case-study applies the methodology to

obtain interactive services for eFLINT, a DSL for executable

normative specifications [43]. The resulting services allow

users and policy-aware software to navigate choices and

decisions in the realm of law and regulation.

To summarize, the contributions of this paper are:

• A feature-based analysis of the landscape of REPLs

for a selection of the most popular programming lan-

guages (Section 2).

• A formalization of the notion of sequential language

as the underlying principle of REPLs (Section 3)

• A language-parametric exploring interpreter algorithm
on top of existing interpreters, allowing users to navi-

gate user interaction history (Section 4)

• Amethodology for developing REPL interpreters by se-
quentializing languages with a definitional interpreter

(Section 5).

• Three case studies to illustrate the feasibility of the

approach (Section 6).

The paper is concluded with a discussion of limitations, re-

lated work, and directions for further research.

2 REPL DOMAIN ANALYSIS
This section provides a study of existing REPL interpreters

and their main features. We have studied freely available

REPL implementations, listed in Table 1, for the 15 most pop-

ular languages from the TIOBE index
2
, with the exception

of Visual Basic, for which we could not find an freely avail-

able implementation. For MATLAB we have selected GNU

Octave as a substitute. We performed a feature-oriented do-

main analysis [14], resulting in the feature model of Figure 1.

Below we briefly describe the main mandatory and optional

features.

Mandatory Features. An interpreter must have certain fea-

tures to be considered a REPL. In particular, a REPL has the

ability to execute multiple code snippets across multiple in-

teractions in a single session (as opposed to executing one

full program per session). In most of the investigated REPL

implementations, the REPL maintains execution context and

executes snippets incrementally (the “Incremental” alterna-

tive of the “Snippet Execution” feature). Optionally, a REPL

2
https://www.tiobe.com/tiobe-index/ (accessed May, 22nd, 2020)

https://www.tiobe.com/tiobe-index/
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Figure 1: Feature Model for REPL Interpreters

Table 1: Surveyed REPL implementations.

REPL Reference

CLing (C/C++) https://cdn.rawgit.com/root-

project/cling/master/www/index.html

JShell (Java) http://openjdk.java.net/jeps/222

Python https://docs.python.org/3/tutorial/

interpreter.html

C# https://www.mono-project.com/docs/

tools+libraries/tools/repl/

Node.js (Javascript) https://nodejs.org/api/repl.html

PHP https://www.php.net/manual/en/

features.commandline.interactive.php

PsySH (PHP) https://psysh.org/

SQLite (SQL) https://sqlite.org/

R https://www.r-project.org/

Swift https://swift.org/lldb/

Gore (Go) https://github.com/motemen/gore

GNU Octave https://www.gnu.org/software/octave/

Rappel (assembly) https://github.com/yrp604/rappel

iRB (Ruby) https://github.com/ruby/irb

may provide a way to undo the execution of snippets (roll-

back). An alternative to incremental execution is composing

all snippets into a single program and execute the program

from scratch (the “Full” alternative). REPLs are expected to

provide feedback after evaluating snippets, showing at least

the snippet’s printed output, and perhaps any result values

or newly declared types (“Summary of Snippet Effects”).

Optional Features. Next to these mandatory features, the

investigated REPLs implement several additional features

such as auto-completion of snippets (“Snippet Completion”).

This can target either language keywords or previously de-

fined identifiers. Completion can take into account the syn-

tactic context in which the user is typing, can be extended to

fully qualified identifiers, and may also take into account the

type of identifiers (through static typing or type hinting).

Even though the language itself might not support modi-

fying an existing definition (“Definition Modification”), most

REPLs allow this behavior to some extent. Common ways

include overriding the previous definition, either through a

new definition snippet or by editing it from an external text

editor. Other REPLs also allow opening up definitions (such

as classes) for additions (“Open & Extend”).

Another common feature is the help (meta-)command

(“Help Command”), which can document either the language,

the REPL and its meta-commands, or both. The history of

commands (including snippets) is usually made available

to the user, in order to find and resubmit previous com-

mands (“Command History”). It can be consulted sequen-

tially through the arrow keys, but often includes a search

facility as well. Some REPLs assign identifiers to commands

in order to retrieve them arbitrarily. Some REPLs support

saving and loading sessions (“Save and Load Session”). This

https://cdn.rawgit.com/root-project/cling/master/www/index.html
https://cdn.rawgit.com/root-project/cling/master/www/index.html
http://openjdk.java.net/jeps/222
https://docs.python.org/3/tutorial/interpreter.html
https://docs.python.org/3/tutorial/interpreter.html
https://www.mono-project.com/docs/tools+libraries/tools/repl/
https://www.mono-project.com/docs/tools+libraries/tools/repl/
https://nodejs.org/api/repl.html
https://www.php.net/manual/en/features.commandline.interactive.php
https://www.php.net/manual/en/features.commandline.interactive.php
https://psysh.org/
https://sqlite.org/
https://www.r-project.org/
https://swift.org/lldb/
https://github.com/motemen/gore
https://www.gnu.org/software/octave/
https://github.com/yrp604/rappel
https://github.com/ruby/irb
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may involve storing the execution context, or simply stor-

ing all user inputs to reproduce the execution context after

loading. For some languages, the session can also be saved

as a valid program outside of the REPL.

REPLs behave differently when multiple code snippets are

input at once (“Multiple Input”). Output is either provided for

all of the snippets or only for the last snippet (which could

result in no output at all). Most REPLs allow inspection of the

current execution context to the user (“Summary of Current

State”). And finally, some REPLs allow the results of previous

snippets to be used in new snippets (“Access to Previous

Results”), either for the last executed snippet or for all by,

for instance, assigning result values to variables.

Feature Support of Existing REPLs. Table 2 shows how the

investigated REPLs support the features identified in the fea-

turemodel of Figure 1. The table illustrates that no two REPLs

share the same set of features. IPython supports most fea-

tures, whereas PHP supports a minimal set of features. Inter-

estingly, PHP is the only REPL that does not print computed

output values. The Go REPL (Gore) is the only REPL that

simulates incremental execution by compiling a complete

compilation unit in the back-ground. Type-aware completion

is not applicable to Node.js and R since the languages are

dynamically typed and do not support type hinting. Sessions

exported from SQLite and R include the snippets to reproduce

data, but not the results of querying the data. Octave exports

variables and their values, but not declared methods. Only

three REPLs support exporting sessions as valid programs.

Although IPython provides additional commands, they are

all implemented in Python and can therefore be exported.

As explained before, a valid Go program is produced as part

of every interaction with Gore. The interactive interpreter

for Swift also provides debugging facilities. This feature was

observed but not discussed as a REPL feature because the

behaviors are accessed by running the interpreter in different

‘modes’. Interestingly, the decision to provide both modes

in a single tool was made from observing that the modes

shared similar features such as expression evaluation, data

monitoring and step by step execution.

The wealth of features and diversity observed in REPLs

motivated this paper’s study into the foundations of REPLs.

3 SEQUENTIAL LANGUAGES
This section defines the class of software languages for which

the semantics can be expressed as a deterministic transition

relation (a transition function). A subclass of these languages

– the so-called sequential languages – is defined as the set of

languages in which programs are written as sequences of

smaller programs. A language is defined as a set of syntacti-

cally valid programs
3
with an interpreter assigning to each

program the effect of the program, expressed as mutations

on the context in which it is executed. The context is called

a configuration in reference to Plotkin’s Structural Opera-

tional Semantics [30]. A program’s effect is thus modeled as a

function from configuration to configuration
4
. This model is

sufficient to describe the semantics of real-world, large-scale,

deterministic programming languages as is demonstrated

by the body of literature on big-step, small-step and natural

semantics [2, 13, 24, 26, 30] and does not exclude languages

with non-deterministic aspects when these aspects can be

captured algebraically [46].

Definition 3.1. A language L is a structure ⟨P , Γ,γ 0, I ⟩ with
P a set of programs, Γ a set of configurations,γ 0 ∈ Γ an initial
configuration and I a definitional interpreter assigning to

each program p ∈ P a function Ip : Γ → Γ.

Definition 3.2. A language L = ⟨P , Γ,γ 0, I ⟩ is sequential if
there is an operator ; such that for every p1,p2 ∈ P and γ ∈ Γ
it holds that p1;p2 ∈ P and that Ip1;p2 (γ ) = (Ip2 ◦ Ip1 )(γ ).

Any two programs of a sequential language can be com-

bined to form a new program whose effects are equal to the

composition of the effects of the individual programs. If a

language L does not have an operator ; with Ip1;p2 = Ip2 ◦ Ip1 ,
then the language is easily extended to have such an operator

by taking Ip1;p2 = Ip2 ◦ Ip1 as the definition of its semantics.

If the set P of the definition of a sequential language L is

taken as the set of code snippets accepted by the REPL for L,
then the ; operator describes the (snippet-related) behavior

of the REPL. This is under the assumption that REPLs should

always accumulate the effects of the code snippets they are

asked to execute. The definitional interpreter of the language

determines the effects of individual code snippets as well as

the effect of their compositions. These observations show

that, when it comes to the syntax and semantics of code

snippets, REPL engineering can be considered as a matter of

language design and engineering. On top of this there are

several benefits to basing a REPL on a sequential language,

i.e. to having the sequential composition operator as a lan-

guage construct. These benefits are discussed throughout

this paper.

The ; operator of the Definition 3.2 does not necessar-

ily correspond to the sequence operator of imperative or

statement-based languages (often written as a semicolon).

This is best exemplified by errors and exceptions. A sequence

of statements typically terminates upon the occurrence of

an exception, whereas a REPL is not expected to terminate

3
The abstract syntax of the language.

4
Corresponding to a big-step transition relation or the transitive closure of

a small-step transition relation.
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Table 2: REPL Interpreter Features ( = full, G# = partial, − = not applicable)
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Multiple Input Last output          

All outputs     
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Identifiers               
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Definition Modification Redefine  1   1   1    1 −  
Open & Extend −  

Help Command REPL commands            
Language use      

Command History (User Access) Sequential                
Search              
Arbitrary    

Save and Load Session Current state   G#

REPL code snippets    G# G#

Valid programs   G# G#  

1
The previous definition can be opened in an external editor for editing

if a code snippet raising an exception is submitted. As an

example, consider the following JShell interaction:

jshell> (1/0); System.out.println(5)

| Exception java.lang.ArithmeticException: / by zero

| at (#1:1)

jshell> (1/0)

| Exception java.lang.ArithmeticException: / by zero

| at (#2:1)

jshell> System.out.println(5)

5

This example shows that the effect of executing a snippet

throwing an exception is to output information about the

exception and to ensure that control flow returns to normal.

In the first snippet, the print-statement is not executed, be-

cause of the exception. But after the second snippet, the user

can continue printing a value.

Definition 3.3. Given a languageL = ⟨P , Γ,γ 0, I ⟩, the reach-
ability graph from γ ∈ Γ is the graph ⟨V ,E⟩ with V and E
the smallest sets of nodes and labeled edges such that γ ∈ V
and for every triple ⟨γ1,p,γ2⟩, with γ1 ∈ V and γ2 = Ip (γ1), it
holds that γ2 ∈ V and that ⟨γ1,p,γ2⟩ ∈ E.

The reachability graph encodes, as paths, every possible

execution run resulting from executing some sequence of

programs in the context of configuration γ .

Lemma 3.4. The reachability graph from any configura-
tion in a sequential language is closed under transitivity, with
⟨γ1,p1;p2,γ3⟩ ∈ E if and only if there exists a γ2 ∈ Γ with
⟨γ1,p1,γ2⟩ ∈ E and ⟨γ2,p2,γ3⟩ ∈ E.

Proof. Follows from the definitions of sequential lan-

guages and reachability graphs. □

The effect of a program can be defined as the difference

between the source and target configuration of an edge in

a reachability graph, i.e. if ⟨γ ,p,γ ′⟩ is in some reachability

graph, the effect of p in γ is the difference between γ ′ and γ .
Lemma 3.4 states that the reachability graph for a sequen-

tial language is closed under transitivity. It follows that the

effects of a path in the reachability graph, i.e. the effects of

the sequence of programs occurring as labels on the edges of

that path, is simply the difference between the start and end

configuration of the path. The effects of a path can thus be

computed without the need to compute the effects of all indi-

vidual programs separately. Moreover, every path describes

a valid program that can be saved (possibly together with its
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effects). Sequential languages thus admit simple implemen-

tations of the "Save and Load Session" feature of REPLs.

4 EXPLORING INTERPRETERS
This section defines a generic algorithm for executing pro-

grams by calling an underlying definitional interpreter and

recording the resulting configurations. Specialized to a par-

ticular language L, this algorithm is the exploring interpreter
for L. The exploring interpreter for L records configura-

tions in a subgraph of the reachability graph for L and is

capable of reverting to a recorded configuration. Exploring

interpreters admit exploratory programming by enabling

programmers to revert to previous execution states in or-

der to explore the effects of alternative sequences of code

snippets.

The formal definition of exploring interpreters follows

naturally from the definitional interpreter component of the

definition of languages. However, definitional interpreters

that form the basis for exploring interpreters have much

stronger implementation requirements than definitional in-

terpreters for REPLs without exploration. In particular, ex-

ploring interpreters require all program effects to be repre-

sented by changes in data, i.e. the definitional interpreter

has to be a pure function. Without exploration, REPL im-

plementations can be based on definitional interpreters that

use real, rather than simulated, IO, memory and network

communication (while still respecting their formal defini-

tion). Although exploring interpreters form the basis of the

MiniJava and eFLINT case studies in this paper, the core of

the methodology we propose in Section 5 is also applicable

to implementations without explicit state representation (as

discussed in Section ??).

Definition 4.1. An exploring interpreter for a language

⟨P , Γ,γ 0, I ⟩ is an algorithm maintaining a current configura-

tion (initially γ 0
) and an execution graph (initially containing

just the node γ 0
) and iteratively executing one of the fol-

lowing actions. At any moment the execution graph is a

subgraph of the reachability graph from γ 0
.

• execute(p): transition from the current configuration

γ to the configuration γ ′ = Ip (γ ), where p ∈ P is

provided as input, and subsequently:

– add γ ′ to the set of nodes (if new),

– add ⟨γ ,p,γ ′⟩ to the set of edges (if new),

• revert(γ ): take γ as the current configuration for the

next action, where γ ∈ Γ is provided as input

• display: produce a structured representation of the

current graph, distinguishing the current configura-

tion in the graph from the other configurations.

The exploring interpreter algorithm is generic in that it

has the language components P , Γ, I and γ 0
as inputs (type

parameters in implementations). The display action can be

used by interfaces to visualize the execution graph and to

enable users to choose a node to revert to (see the MiniJava

notebook discussed in Section 6).

REPL interpreters typically do not support the kind of ex-

ploration enabled by the revert action (only CLing has the

“Undo” feature of the feature model). For practical purposes,

such as space-efficiency, it may be desirable to implement a

less powerful version of the algorithm in which the execu-

tion graph is maintained as a tree, a single path or even just

a single node. For example, an implementation of revert(γ )
that removes all descendants of γ requires less space as it

maintains only a single path (the exploring interpreter be-

haves like a stack). For another example, if a execute(p) is
implemented to always create a new node for every γ ′, then
the execution graph is actually a tree in whichmultiple nodes

may hold the same configuration. There are advantages to

both execution graphs (with sharing) and execution trees

(without sharing). With sharing, there is the potential to

avoid redoing (potentially costly) computations. This situ-

ation arises if the current node with configuration γ has

an outgoing edge labeled q. If in this situation the action

execute(q) is performed, then there is no need to interpret q
as there is already an edge ⟨γ ,q,γ ′⟩ in the graph (for some

γ ′). The potential to avoid costly computations significantly

increases if the graph is kept closed under transitivity (which

is possibly for sequential languages according to Lemma 3.4)

and if program transformations are used to label the edges

with normal forms. Without sharing, there is exactly one

path from the root node to every other node, i.e. every node

has a unique ‘history’. By reverting to a particular node, the

user has not only chosen a configuration, but also the se-

quence of programs that led to that configuration. This is

helpful, for example, when printing the effects of the snip-

pets that gave rise to the current configuration after a revert.
If, after reverting, the current node has multiple incoming

edges, then it is not clear what output should be printed.

5 METHODOLOGY
In this section we propose a methodology for developing

REPL interpreters based on the definitions and observations

of the previous sections. The methodology proposes to build

a REPL for some base language on top of an exploring in-

terpreter for a sequential language defined as an extension

of, or modification to, the base language. An exploring in-

terpreter is essentially a bookkeeping device on top of a

definitional interpreter and provides the “Incremental Snip-

pet Execution” and “Undo” features directly (cf. Section 2).

Additional motivation for using the exploring interpreter

(for a sequential language) is that it promotes certain design

principles while preserving the ability to implement many

desirable features. These principles and their consequences
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are discussed in this section, together with a summary of the

proposed methodology.

The core principles underlying our methodology are:

• the effects of a code snippet manifest as changes to an

explicit state representation (a configuration)

• the effects of a code snippet are determined by the def-

initional interpreter used by the exploring interpreter

• the effects of a sequence of code snippets is the com-

position of the effects of the individual snippets

• only code snippets change configurations

For users of the REPL, the most important consequence of

these principles it that an understanding of the definitional

interpreter is enough to understand the precise behavior of

the REPL for the language. In practical terms: to know the

effects of code snippets, a user needs to understand the base

language and its extension or modification to a sequential

variant. The extension or modification is made explicit by

the definitional interpreter and should be communicated

clearly (as precise documentation, a formal semantics, or an

open-source implementation).

For engineers of the REPL, the most important conse-

quence of the principles is that every feature (on top of “In-

cremental Snippet Execution” and “Undo”) is implemented

either:

• as a language extension (e.g. the features “Definition

Modification” and “Access to Previous Results”),

• as a series of interactions with the exploring inter-

preter (e.g. “Multiple Input”, explained below),

• based on information stored in the execution graph (e.g.

“Summary of Snippet Effects”, “Summary of Current

State” and “Snippet Completion”) or

• independently of the exploring interpreter, when the

feature does not involve snippet execution (e.g. “Help

Command” and other meta-commands).

The methodology of this paper is based on the hypothesis

that many of the features of existing REPLs, including at

least those in Figure 1, fall into the four categories listed

above. This hypothesis is tentatively supported by the vari-

ous feature implementations described across Section 6.

To prelude the example feature implementations of Sec-

tion 6, consider the alternatives of the “Multiple Input” fea-

ture (“All outputs” and “Last output”). A “Multiple Input”

snippet is parsed as, for example, p;q; r . In the implementa-

tion of a REPL following our methodology, such a snippet

can be handled by performing three execute actions with
respectively p, q and r as inputs (because the language is

sequential). The REPL has then seen the four configurations

γ0, γp , γq and γr corresponding to the configuration before

executing p, after executing p, after q and after r respectively.
The output of the last input r is found by computing the

difference between γq and γr , the output of all three inputs
is found by computing the difference between γ0 and γr .
The methodology for developing a REPL for any base

language L is formulated as the following steps (and has

certain commonalities with the approach of [12]).

1) Definitional Interpreter. Formulate L as a language in

terms of its concrete and abstract syntax, and a definitional

interpreter that captures the effects of programs as a function

over some set of configurations, thus forming the compo-

nents of a language according to Definition 3.1. If the lan-

guage is sequential according to Definition 3.2, then steps

2–5 can be skipped.

2) Phrase Nonterminal. To define a sequential variantL ′ of
L, reuse the syntax definitions of the previous step to define

a new sort phrase with an alternate for each of the sorts

of L that describe the syntax of a valid code snippet of the

envisioned REPL. The syntax can also have other extensions

or modifications, as long as phrase is the entry point of the

syntax (the first component of a language in Definition 3.1).

3) Phrase Interpreter. Define a definitional interpreter for
L ′ to capture the semantics of phrases, reusing as much

as possible the definitional interpreter of step 1, ideally by

applying modular extension mechanisms (e.g., Object Alge-

bras [11, 27], Rascal’s extend [4]). Special consideration needs

to be given to the effects of phrases to ensure the next phrase

is executed in the right context. For example, if the result

value of a phrase needs to be available to the next phrase

through a binding, this binding needs to be introduced as

one of the effects of the first phrase.

4) “;”-Phrase. Extend the sort phrasewith an alternate that
combines two valid phrases to form a phrase. For example,

with the semicolon as a separator, let p;q be a valid phrase if

p and q are valid phrases.

5) Interpreter for “;” Extend the definitional interpreter of

L ′ such that the effect of a phrase formed by combining two

phrases is the composition of the effects of the combined

phrases, e.g. Ip ;q = Iq ◦ Ip . The language L
′
is sequential by

definition as a result of this and the previous step.

6) Instantiate Explorer. Obtain an exploring interpreter for

L ′ by instantiating the generic exploring interpreter algo-

rithm with the definitional interpreter for L ′. The implemen-

tation may be simplified compared to Definition 4.1 in that it

maintains a simpler form of execution graph, if desirable. In-

stead of an exploring interpreter, the definitional interpreter

for L ′ can also be used directly. In fact, any implementation

that respects the semantics of the definitional interpreter

can be used, e.g. an implementation with real rather than

simulated effects.
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The chosen interpreter can then be offered through vari-

ous user interfaces, such as command-line interfaces, a net-

work service, or a computational notebook. The interface

displays visualizations of the effects of phrases, e.g., by show-

ing output, computed values and new bindings, and can

optionally implement additional REPL features.

5.1 Pragmatics
In the context of language workbenches [9] and DSLs [23],

a common language implementation strategy is to define

interpreters, consisting of functions traversing an abstract

syntax tree whilst modifying a propagated configuration to

express effects (following the Visitor design pattern). The

case studies of the next section include such interpreters. The

REPLs in these case studies are obtained through generic

implementations of the exploring interpreter algorithm (in

Java and in Haskell) that are easily specialized by providing

the entry points of the abstract syntax and the interpreter.

The presented methodology is based on an exploring inter-

preter because it is a relatively natural and simple layer to

add on top of the described definitional interpreters typically

built with Rascal [4, 15]. Moreover, the generic exploring

interpreter forms a suitable abstraction for reasoning about

sequences of interactions between programmer and REPL

– e.g. saving and loading sessions and extracting base lan-

guage programs – and for implementing advanced REPL and

notebook features that support exploratory programming

and live programming.

In theory, our approach can also be used for developing

REPLs for (general-purpose) programming languages, as

many languages can have their semantics expressed as a

transition function. In practice, however, very few program-

ming languages have an interpreter implemented as a pure

function or have a complete operational semantics from

which such an interpreter can be derived. REPLs are not

typically implemented with explicit state representation and

few enable backtracking (in our survey only CLing supports

“Undo”). However, an impure interpreter implementation

can be used at step 6 (Instantiate Explorer) of the methodol-

ogy. Although some advanced features – such as “Undo” –

may then be harder to realize, the most important principles

of our methodology still hold. In particular, the differences

between base language and REPL should be formulated as

extensions or modifications of the base language. This is

achieved by updating the semantics of the base language

such that repeated execution of its interpreter (i.e. the com-

position of effects) gives the behavior expected of the REPL

of the language. The details of how this can be achieved de-

pend on the language and the techniques used to implement

the language. Discussed next are the general patterns that

have been observed in our survey.

5.2 Common REPL Language Extensions
As mentioned in Section 3, languages rarely provide an op-

erator that corresponds precisely to the REPL top level. For

example, a snippet with an uncaught exception is not ex-

pected to prevent subsequent snippets from being executed,

whereas termination is expected when an exception occurs

within a sequence of (;-separated) statements. Of the sur-

veyed REPLs, only Gore prevents subsequent snippets from

executing once a previous snippet raises an exception (a

consequence of its “Full” execution model). In the other lan-

guages, the REPL top level catches any otherwise uncaught

exceptions and presents them to the programmer after which

a subsequent snippet can be executed. In languages with

constructs for catching and handling exceptions, one might

explain or implement this feature with a top-level catch and

a handler that prints the exception. For example, a snippet

{System.out.println(1); (1/0);} can be considered as implic-

itly wrapped in a try/catch block in JShell as follows:

try {{System.out.println(1); (1/0);}} catch (Exception e) {

... // print the exception in a helpful format

}

This clarifies, in reference to the Java semantics, that any

effects produced by a snippet before, but not after, an ex-

ception is thrown are preserved. However, the translation

is inaccurate as a JShell snippet is not an isolated block, un-

like a try-block. Bindings produced by top-level declarations

are active when subsequent snippets are executed, i.e. all

snippets are in the same scope and the top-level catching

exceptions does not change this. In the next JShell fragment,

the meta-variable $1 is available to subsequent snippets de-

spite the exception.

jshell> 5; (1/0);

$1⇒ 5

| Exception java.lang.ArithmeticException: / by zero

| at (#2:1)

This example also highlights the importance of presenting

new bindings, assignments, and any other effects to the pro-

grammer, providing the information required by the pro-

grammer to update their mental model of the REPL’s execu-

tion state.

Another common example of a modification to the base

language is the “Access to Previous Results” feature avail-

able in several REPLs of the survey (demonstrated by the

variable $1 in the above fragment). JShell and IPython (“Ac-

cess to All”) implement this feature as follows. Whenever a

code snippet produces a result value (other than void), this

result value is assigned to a fresh variable. For example, if

the second snippet sent to IPython produces result value

5, then the variable _2 is assigned 5. The behavior differs

between JShell and IPython when a code snippet contains

multiple statements. In IPython (“Last Output”), the result of
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a sequence of statements is the result of the last statement
5
,

e.g., the snippet print(1);2;print(3) prints 1 and 3 but has no

result value. In JShell, the result of a sequence of statements

is the result of each statement with a (non-void) result. If a

snippet has multiple results, each result is assigned to a fresh

variable. For example, if 3;2;System.out.println(1); is sent as

the first snippet to JShell, then the variables $1 and $2 are

assigned the values 3 and 2 respectively and 1 is printed. In

Node.js (“Access to Last”), a statement such as console.log(1)

produces undefined as a result, which is then assigned to the

variable _. PsySH also assigns the last uncaught exception to

the variable $_e. This feature is helpful in situations where

the exception is not easily reproduced, e.g., when caused by

a (rare) non-deterministic, pseudorandom or timed event.

Most languages of the survey enable definitions to be re-

done (“DefinitionModification”), with only iRB also allowing

extensions to existing definitions (“Open & Extend”). The

main challenge to redefining or modifying existing defini-

tions is checking whether an updated definition is consistent

with definitions that depend on it. This is particularly chal-

lenging for statically typed languages such as Java. In JShell,

any inconsistencies are reported when a (now incorrect)

definition is used, as shown by the following interaction:

jshell> class B {int mymethod(){return 0;}}

| created class B

jshell> class A {int mymethod(){return new B().mymethod();}}

| created class A

jshell> class B {long mymethod(){return 0;}}

| replaced class B

jshell> int x = 4; int y = new A().mymethod(); int y = 5;

x⇒ 4

| attempted to use class A which cannot be instantiated or

| its methods invoked until this error is corrected:

| possible lossy conversion from long to int

| class A { int mymethod() { return new B().mymethod(); }}

y⇒ 5

Note that the last snippet is neither type-checked and re-

jected as a whole nor that the error keeps the other state-

ments from being executed. Statements appear to be type-

checked individually, with any errors causing only the in-

dividual statement to be rejected. However, the following

JShell interaction shows that this is a simplification:

jshell> int x = 1; new A(); int y = 2;

x⇒ 1

| Error:

| cannot find symbol

| symbol: class A

A downside of showing inconsistencies just before they

cause problems is that a menial mistake can cause a cascade

of avoidable mistakes to go undetected, perhaps requiring

5
Even when void. A possible alternative is to use the last non-void result.

tedious efforts to resolve. A downside of reporting inconsis-

tencies as soon as they arrive is that they may be considered

redundant and a nuisance when a programmer is aware and

about to resolve the inconsistencies.

The C# REPL does not update method definitions affected

by an update to another class. So when, in the example above,

mymethod is called on a new instance of A, the behavior is that

of the old mymethod of class B. (A similar example using fields

rather than methods causes the C# REPL to hang.)

A general theme in the discussed language extensions

is that they relate to the effects of code snippets on their

successors. A REPL engineer should consider all the different

kinds of (side-)effects code snippets can produce and decide

for each effect whether it should propagate and, if so, how

the programmer is informed of the effect, enabling them to

update their mental model of the REPL’s state. To help the

programmer further, the ability to request an overview of

the currently active bindings is desirable, especially together

with a mechanism for inspecting (modified) type definitions.

6 CASE STUDIES
This section discusses several REPL implementations for

a number of languages with different user interfaces. The

section is structured according to three case studies for the

Rascal-defined languages MiniJava and QL, and the Haskell-

defined language eFLINT. The case studies implement novel

sequential variants of these languages.

6.1 A Jupyter Notebook for MiniJava
The MiniJava language is a subset of Java that retains the

essential object-oriented features of Java [1, 6]. The seman-

tics of a MiniJava program is given by its interpretation as a

Java program. It is implemented as a definitional interpreter

in the Rascal language workbench [15]. The extension to a

sequential MiniJava uses Rascal’s modular extension mech-

anisms and demonstrates the methodology of the previous

section.

The first part of the extension is choosing the top-level

constructs of the language. As for JShell, these are expres-
sions, statements, variable, class, and method declarations,

and their associative composition. The syntax of MiniJava is

extended by adding the Phrase construct:

syntax Phrase

= Expression ";" | Statement

| VarDecl | ClassDecl | MethodDecl

| assoc Phrase Phrase;

syntax Statement

= ...

| "throw" "new" StringLiteral ";";

syntax Expression

= ...

| Identifier "(" ExpressionList? ")";
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The extension also includes a new method call variant, en-

abling (global) methods to be called without a receiver. The

throw-keyword is added to demonstrate an implementation

of handling uncaught exceptions. Exception values are sim-

plified to string literals rather than than arbitrary objects.

The definitional interpreter of extended MiniJava is de-

fined in Rascal as the function Config eval(Phrase, Config),

shown
6
in Figure 2. The type Config, shared by both Mini-

Java interpreters, is defined as the following tuple type:

alias Config = tuple[

Env env, Sto sto,

int seed, Out out,

Val given, MaybeFailure failed,

Val result

];

data MaybeFailure

= failure(FailureType e)

| no_failure()

;

data FailureType

= failed()

| exception(str msg)

;

Configurations have the following fields: the current exe-

cution environment (env), the store (sto), a seed (seed), the

output of all executed phrases represented as a list of strings
7

(out), a given value (given) of type Val used for passing argu-

ments, the field failed to indicate if and why the execution

got ‘stuck’, and a value with the execution’s result (result).

The Val ADT (not shown) defines constructors for references,

integers, booleans, vectors (arrays), environments, lists, clo-

sures, classes, objects, and null. The alternative failed() of

FailureType indicates the execution got stuck because the

evaluated program is invalid (e.g. due to unbound variables).

The alternative exception(str msg) indicates an exception has

been thrown with exception value msg.

The cases of Figure 2 that handle declarations (class, vari-

able, or method) first produce an environment by calling

the respective functions declareClass, declareVariables and

declareGlobalMethod. These functions also produce output that

informs the programmer of the successful binding of the re-

spective class, variable or method. If a class is redefined, the

programmer is also informed. The collectBindings function

(not shown) adds the bindings in the computed environment

(result) to the execution environment (env). The function

catchExceptions (not shown) checks whether a phrase has

6
The notation (NT)`...` is used to pattern match against or construct

concrete syntax trees of type NT, where NT is some nonterminal defined in

Rascal’s native grammar formalism; the parts between fish-angle brackets

represent typed holes of the pattern.

7
The implementation converts the integers printed by MiniJava to strings

and inserts a newline, corresponding to Java semantics.

Config eval((Phrase)`<Expression e> ;`, Config c)

= catchExceptions(collectBindings(

setOutput(createBinding(eval(c, e)))));

Config eval((Phrase)`<Statement s>`, Config c)

= catchExceptions(collectBindings(

setOutput(exec(s, c))));

Config eval((Phrase)`<ClassDecl cd>`, Config c)

= catchExceptions(collectBindings(

declareClass(cd, c)));

Config eval((Phrase)`<VarDecl vd>`, Config c)

= catchExceptions(collectBindings(

declareVariables(vd, c)));

Config eval((Phrase)`<MethodDecl md>`, Config c)

= catchExceptions(collectBindings(

declareGlobalMethod(md, c)));

Config eval((Phrase)`<Phrase p1> <Phrase p2>`, Config c)

= eval(p2, eval(p1, c));

Figure 2: Interpreting MiniJava phrases.

failed or raised an exception. If so, the failure or exception

is reported and removed, ensuring that the next phrase ex-

ecutes normally. Note that a MiniJava code snippet of the

form 1;(2/0);3; is parsed as a sequence of three phrases and

not a code block consisting of three statements. Since the

division by zero error is removed, the next phrase (3;) is exe-

cuted normally. So, contrary to JShell, there is no distinction

between phrases executed as separate code snippets or as

a single, semi-colon separated code snippet. This arguably

makes the language more consistent. The behavior of state-

ments separated by a semi-colon in code blocks is unaffected

and an exception will terminate the execution of a code block

when it arises.

The first two cases of Figure 2 deal with expression and

statement phrases, reusing the original interpreters for ex-

pressions and statements (eval and exec respectively). A state-

ment, which may be a code block consisting of multiple state-

ments, either computes null or an environment that contains

the bindings for all variables that have been assigned a (new)

value. The function setOutput (not shown) inspects the com-

puted bindings, if any, and prints the variable and its as-

signed value, matching the behavior of JShell. An expression

computes a value such as an integer, a boolean or an object

reference. The function createBinding (not shown) assigns

the computed value to a fresh variable, using the seed field

of the current configuration, and binds the fresh variable

to the identifier $<i>, where <i> is generated from the seed.

The applications of setOutput and collectBindings ensure that
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the new binding is reported to the programmer and is active

when the next phrase is executed, matching the behavior of

JShell.

The final case confirms that two consecutive phrases are

evaluated by function-composition. The implementation of

method calls without receiver expression is not given.

The definitional interpreter of the extended language

forms the interface to language services such as REPLs and

computational notebooks. The connection between the defi-

nitional interpreter and Rascal’s notebook framework Bacatá

is discussed next.

Exploring Interpreters in Bacatá. Bacatá [22] is a generic
Jupyter

8
kernel generator for languages developed within

the Rascal Language Workbench. Bacatá is extended to sup-

port notebooks based on exploring interpreters. The generic

implementation of the exploring interpreter maintains a full

execution graph (in accordance to Definition 4.1). Bacatá

relies on the definition of a language repl, a value of the REPL

ADT shown below:

data REPL[&T]

= repl(&T initConfig, &T (str, &T) handler,

Completion (str, int, &T) completor,

Content (&T, &T) printer);

A value of REPL contains all required information to build a

REPL command-line interface for a language, or, together

with Bacatá, a computational notebook. The type parameter

&T represents the configuration (e.g., Config of MiniJava). The

handler takes a line of input and a configuration and produces

a new configuration. The completor can be provided for tab-

completion services. Finally, the printer produces (HTML)

content from the previous and/or current configuration.

Bacatá is used as an interface between a Jupyter server and

the language’s REPL. The workflow that describes the com-

munication among these components is as follows: Jupyter

takes the user’s code snippets and sends them to the lan-

guage’s interpreter through Bacatá. Bacatá takes the user’s

code and calls the language’s handler (defined in the repl

value), which is responsible for calling the parser and then

the interpreter of the language. Finally, the handler produces

a result, which is then displayed to the user, using the printer.

Figure 3 shows a simple notebook for MiniJava, produced

with Bacatá. The right shows the execution graph for explor-

ing the user’s interaction with the notebook. The active node

is colored green. The user can click any other node, to make

it active. The next cell will then be executed in the context

of that very configuration, resulting in a split in the graph if

the resulting configuration differs from the activated one.

8
http://jupyter.org/

Figure 3: Notebook example.

A Notebook Interface for MiniJava. Obtaining a REPL-style
command-line or notebook interface forMiniJava amounts to

instantiating the REPL data typewith the appropriate handlers,

printers, and completors. In the case of a Bacatá-generated

notebook Jupyter interface, the programmer has access to a

visual representation of the execution graph of the exploring

interpreter, as shown in Figure 3.

The handler for MiniJava parses the incoming input as a

Phrase and calls the extended definitional interpreter, which

returns a new configuration. The printer takes the old and

new configuration and prints relevant output. After a success-

ful execution, the differences between the out components

of the new and old configuration is shown. In the case of a

declaration, the difference between the two env components

gives the new bindings. The completor uses the bindings in

its input configuration to suggest possible completions for

identifiers.

6.2 QL: a DSL for Questionnaires
QL is a little language for defining interactive question-

naires [8, 9], like tax filing forms or online surveys. AQL form

defines a sequence of questions, where each question has a

label, an identifier, a type (boolean, integer, or string), and an

optional expression if the question is computed. Expressions

contain the usual arithmetic and comparison operations, and

allow referring to the current value of another question. Fur-

thermore, questions can be made conditional using if-then

and if-then-else constructs.

The meaning of a QL program is a rendering as an inter-

active GUI program, where the user enters values for the
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Figure 4: A QL questionnaire (left) and its rendering
(right).

(non-computed) questions. Depending on this input, condi-

tional questions may be shown or hidden, and the value of

computed questions may be recomputed, similar to a spread-

sheet. A simple example is shown in Figure 4, including its

rendering as an interactive UI.

From a REPL perspective, QL is interesting, because a

form specifies a conditional data-flow network rather than

a program consisting of instructions. Nevertheless, in this

section we introduce a prototype REPL for QL, both as an

instructive thought experiment, and to stress the concept of

sequential language.

Abstractly, the semantics of QL can be described with the

following (Rascal) function signature:

tuple[UI, Env] eval(Form form, Env env, Event evt);

Given a form, an environment mapping question identifiers

to values (Env), and a user event (Event), the function eval pro-

duces a rendering (UI) and an updated environment. Running

a QL questionnaire then amounts to constructing an initial

rendering, and then updating the current environment and

redrawing the UI after every user action.

To provide a REPL interface for QL, we extend the lan-

guage with a new start nonterminal, Cmd, the definition of

which is shown in Figure 5. Commands are the snippets that

the user can enter at the command line.

The first four alternatives of Cmd capture constructs to

manipulate forms. The user can define complete forms, ap-

pend or prepend individual questions to the current form,

and replace questions arbitrarily nested in the form using a

positional reference mechanism (Addr).

The last two alternatives can be used to evaluate expres-

sions, which shows the result, or update the value of a (non-

computed) question, if the current state of the UI allows

it. The update-value action simulates a user interaction if

the form would have been rendered as a proper UI. Finally,

Figure 5 defines a Script nonterminal to combine multiple

commands in sequence.

syntax Cmd

= Form // define form

| Question // append a question

| Question "..." // prepend question

| "@" Addr Question // replace question

| Expr // evaluate expression

| Id "=" Value; // perform user action

syntax Script

= Cmd* commands // batch perform commands

Figure 5: Language extension for ReplizedQL.

The interpreter for commands is a function from a com-

mand and the current configuration to a new configuration:

Config eval(Cmd cmd, Config cfg) { ... }

The Config type captures the current environment, the cur-

rent form, and a list of output values (UI renderings and

expression evaluation results).

That our definition of QL is sequential can be seen from

the definition of the interpreter for Scripts:

Config eval(Script scr, Config cfg) =

( cfg | eval(cmd, it) | Cmd cmd ← scr.commands );

This function simply composes the eval function for com-

mands for every command in the script
9
. This follows the

definition of sequential language of Section 3.

A Sample Interaction. The above interpreter for commands

can be hooked to Rascal’s standard REPL infrastructure to

obtain a command-line interface for QL. We illustrate the

semantics of sequential QL below, using a sample user inter-

action. The code snippets use > as prompt, the output of a

command is shown directly below.

First, let’s define a simple form:

> form simple { }

·

The result is the empty rendering of the UI, indicated by ·.

Then we append a (computed question), labeled “A”, of type

integer:

> "A" a: integer = c + b + 1

A ·

The a question is not conditional, so it is shown in the UI

rendering; note however that the value of the question is

still undefined because questions c and b have not yet been

defined.

The b question could be defined as follows:

9
The notation ( init | ... it ... | gen ) is Rascal syntax for writing
a reduce operation.
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> if (a < 20) "B" b: integer = c + 1

A ·

Since b is still undefined (because c is), a remains undefined

as well, and as a result, the visibility condition of b evaluates

to false. This all changes, however, after defining c:

> if (a > 20) "C" c: integer

A 2

B 1

The question c is not computed, so it receives an initial de-

fault value (in this case 0). Both a and b can now be computed,

as well as the condition of b, causing b to be shown in the UI.

Now let’s change the value of c:

> c = 10

A 22

C [10]

Setting c to 10 disables b, but changes the visibility condition

of c to true, making it appear in the UI. The square brackets

around the value of c indicate it is editable.

Changing the value of c to 5 updates the UI accordingly:

> c = 5

A 12

B 6

Now b becomes visible, and c is hidden again.

It is possible to add questions to the beginning of the form:

> "D" d: integer = 3 * a...

D 36

A 12

B 6

Or using the path-based address notation:

> :form

form simple {

[0] "D" d: integer = 3 * a

[1] "A" a: integer = c + b + 1

[2] if (a < 20)

[2.0] "B" b: integer = c + 1

[3] if (a > 20)

[3.0] "C" c: integer

}

> @2.0 "c + 1 is:" b: integer = c + 1

D 36

A 12

c + 1 is: 6

The :form meta-command pretty-prints the current form

annotated with addresses for every question. Using the @-

notation, the user can replace any question in the form, in

this case to change the label of the b question.

Note that the append-, prepend-, and position-based adding

and replacement of questions can be considered a rather low-

level (maybe even pathological) way of editing a program

#0 > Fact person. Placeholder parent,child For person

new fact-type person

no enabled actions or events

#3 > +person(Alice). +person(Bob) // introduce persons

+"Alice":person

+"Bob":person

no enabled actions or events

#5 > Fact parent-of Identified by parent * child

new fact-type parent-of

no enabled actions or events

#6 > +parent-of(Alice,Bob)

+("Alice":person,"Bob":person):parent-of

no enabled actions or events

#7 > Act call-for-help Actor child Recipient parent

Holds when parent-of()

new fact-type call-for-help

+("Bob":person,"Alice":person):call-for-help

enabled actions & events:

1. ("Bob":person,"Alice":person):call-for-help

#8 > :choose 1 // Bob asks Alice for help

enabled actions & events:

1. ("Bob":person,"Alice":person):call-for-help

#9 > :revert 7 // to before the action was declared

+("Alice":person,"Bob":person):parent-of

#7 > :current // show the current set of facts

"Alice":person

"Bob":person

("Alice":person,"Bob":person):parent-of

#7 > ?Enabled(call-for-help(Bob,Alice)) // query

undeclared type: call-for-help

Figure 6: A session with the eFLINT command-line
REPL.

(reminiscent of the line-based editors of the past). Neverthe-

less, without necessesarily claiming this is a realistic way of

evolving programs, it does illustrate a kind of REPL “com-

pleteness”, where every program and program change can

be realized using commands at the prompt.

6.3 eFLINT: Executable Normative
Specifications

eFLINT is a DSL for developing executable normative speci-

fications used to reason about compliance with regulations,

contracts and/or policies [43]. eFLINT programs are used to

simulate or verify normative decision making processes. The

methodology of Section 5 has been applied to develop two

REPLs on top of one exploring interpreter for eFLINT. The

implementation of eFLINT is available at GitLab [42].

REPL Interfaces. The first REPL is a command-line tool for

exploring compliant and non-compliant behavior. Figure 6

shows an example session where the user explores the norm
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“children can ask their parents for help”. As a meta-command,

a user can choose actions and events to trigger from a given

list of options. Choosing an action or event has the effect of

updating a database of ‘facts’, representing the state of the

world at a particular moment in time. A fact is said to ‘hold

true’ if it is present in the database. Some facts are reifications

of actions and correspond to acceptable behavior when they

hold true and when they are enabled by their pre-conditions.

Disabled actions can be executed in order to explore non-

compliant behavior (although causing a violation). Other

facts represent duties, which need to be ‘terminated’ before

one of their violation conditions holds true. The phrases of

the language are declarations of fact-, act-, event- and duty-

types, action or event triggers, insertion and removal of facts

and queries on the database. After a phrase is executed, the

user is presented with the changes in the database, newly

defined types, any violations and a new list of options.

The second REPL is a TCP server that listens on a chosen

port for incoming phrases and responds with the same in-

formation as the command-line REPL (in JSON form). The

TCP server is used as a general method for connecting other

languages with eFLINT to benefit from the normative speci-

fication written in eFLINT. For example, a program can send

queries to the eFLINT server to check whether certain ac-

tions are enabled before actually performing them. In this

way, software can be developed that is ‘compliant by design’.

The REPLs are developed on top of an exploring inter-

preter for eFLINT, briefly explained next.

Execution Tree. The type Explorer is an alias for functions

that receive an Instruction and return a Response in the IO
monad (Haskell’s mechanism for input and output).

type Explorer = Instruction→ IO Response
data Instruction = Execute CPhrase | Revert Int | Display
data Response = Success Node CPhrase Node | ExecError Error
type Node = (Int,Config)

The values of Instruction correspond to the actions of the

generic exploring interpreter algorithm. There are two types

of response, for successful executions and failing executions

respectively. One of the values of Error indicates that the inte-
ger given as part of some revert action does not correspond

to a known configuration. The success response contains the

elements of an edge in the execution graph: two nodes and

a label (phrase). The edge gives the effects, in terms of an

input and output configuration, of the last phrase executed

by the exploring interpreter. A node is a configuration and

an integer that uniquely identifies the node. The label is a

value of type CPhrase, a phrase that has been compiled.

A configuration contains information about declared types

(a type environment), a database of facts and a list of output

holding any reported violations:

data Config = Cfg { tyenv :: TyEnv, state :: Set Fact, out :: [String ]}

The algorithm maintains a tree rather than a graph, and

does so in a way that makes it very simple to find the path

from the root to any given configuration in the tree. The type

SIDMap is an alias for a map mapping integers to the con-

figurations with which they form a node. The type History
represents a tree as a collection of edges.

type SIDMap = IntMap Config
type History = IntMap (Int,CPhrase)

If x maps to (y, p) in theHistory map, this means that there is

an edge ⟨γ ,p,γ ′⟩ in the tree where y is the integer identifying
γ and x is the integer identifying γ ′.

REPL Features. The function getPath :: Int → SIDMap→
History → [CPhrase ] receives an integer identifying a node

and uses the maps to compute the sequence of phrases la-

beling the path from the root of the tree to the node. The

function is used to save a session by pretty-printing and

storing the returned phrases in a file.

The definitional interpreter of eFLINT receives compiled

phrases (CPhrases) as input. The tool-set for eFLINT con-

tains a compiler that translates from Phrase to CPhrase. The
compiler checks whether a Phrase is well-typed and ap-

plies conversions to make explicit certain implicit opera-

tor applications. Compilation is performed by the function

compile : TypeEnv → Phrase→ CPhrase, receiving as input
the type environment of the current configuration held by

the exploring interpreter.

When the command-line or TCP server REPL receives

a String for execution, the string is parsed as a Phrase. If
successful, the Phrase is type-checked and compiled to a

CPhrase. The CPhrase is sent as an execute action to the

exploring interpreter, which invokes the definitional inter-

preter and responds either with an error or with the edge

of its graph representing the latest execution. This edge is

given to a function called effectsOf to compute the effects of

executing the phrase. The function effectsOf finds any new

bindings by computing the difference between the two type

environments of the input configurations, finds any created

or terminated facts by computing the difference between the

two state components and finds new violations by computing

the difference between the two output components.

7 DISCUSSION & RELATEDWORK
Limitations & Future Work. The techniques described in

this paper are applicable to languages that can be imple-

mented by deterministic interpreters with explicit state rep-

resentations Moreover, if an execution graph is not needed,

then state does not have to be represented explicitly (see

Section 5.1), as long as the effects of top-level phrases still

compose and are communicated clearly to REPL users. This
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requirement does not necessarily rule out concurrent, non-

deterministic, compiled or data flow languages. In some cases

it is possible to model the complicating aspects of these lan-

guages, e.g., with thread models, data flow graphs and lists

to capture non-deterministic results.

Purely functional interpreters with explicit state repre-

sentation are, however, further removed from actual imple-

mentations and may be less suitable for developing practi-

cal REPLs. For instance, a definitional interpreter for C can

model memory (pointers) rather than providing real memory

access. A REPL for C can also be based on an interpreter that

invokes a C compiler, wrapping current and previous code

snippets in int main() {...}, before compiling and executing

the resulting program (similar to the Go REPL). It is possible

to obtain a REPL interface in this way, but it would not be

based on a sequential language and the explorative quality

of exploring interpreters is lost. The applicability of our ap-

proach in the context of such compilation-based REPLs is to

be investigated further.

The interpreters discussed in this paper are all imple-

mented in functional programming languages (Rascal and

Haskell) with immutable data. Maintaining the execution

graph is therefore easy to implement, but it may come at a

cost of performance and memory footprint. Further research

is needed to represent the graph more efficiently, for instance

by maximizing sharing, caching intermediate results, or se-

lectively culling the graph. The pragmatics of a REPL (small

snippets, immediate feedback, etc.), however, suggest that

such optimization might be premature.

Although not shown in this paper, exploring interpreters

can also be used to realize additional features not typically

found in REPLs by performing sequences of execute and

revert actions in response to a single user action. For exam-

ple, if a user edits a cell in a notebook, this could cause the

exploring interpreter to revert to the configuration in which

that cell was originally executed, keeping track of all cells

undone this way, re-executing the (now modified) cell, and

executing all the remembered cells in the order they were

first executed. Further research is needed to establish how

this relates to live programming [39, 44]. The QL language

described in Section 6.2 has a live programming environment

and forms a natural staring point for this study.

The MiniJava notebook discussed in Section 6.1 displays

the execution graph of the exploring interpreter, allowing

arbitrary roll-backs to explore alternative execution paths.

In future work we will explore the ability of the exploring

interpreter to support exploratory programming. More gen-

erally, we aim to describe algebraic operations over execution

graphs for both live and exploratory programming.

The methodology of Section 5 starts from a single base

language. The methodology is easily generalized to take

multiple based languages as a starting point and defining

Figure 7: Early user interaction using JOSS [37]

a single sequential language as an extension of all the base

languages, which is then used as the basis for a so-called

polyglot REPL. The definitional interpreter for the sequential
extension may not be easy to define, however, when the

effects of the phrases of the different base languages are not

easily reconciled. In a future study we hope to formulate and

demonstrate the more general methodology and to show its

benefits to developing polyglot REPLs and notebooks.

RelatedWork. REPLs have long history and documentation

on this history is scattered across sources. The Flexowriter

system of Lisp I from 1960 is perhaps the oldest REPL imple-

mentation [21]. An early description of REPL behavior can

be found in Peter Deutsch’s memo on PDP-1 LISP [7]:

Each S-expression typed in will be evaluated and
its value printed out.

The PILOT system [40] is one of the earliest and most

advanced interactive REPL systems, also based on a LISP, in

that it supports fully incremental and interactive evolution of

programs. Teitelman writes that REPL-style interaction with

Interlisp happened with the introduction of time-sharing

at MIT in 1964 [41]. It is very well possible, however, that

earlier Lisps and pre-1968 FORTH implementations [32] had

REPL interfaces as well. The earliest programming language

REPL that is not a Lisp we could find documentation of is the

JOHNNIAC Open-Shop System (JOSS) [37]. Figure 7 shows

an example of interacting with JOSS.

REPLs have a close relation to computational notebooks,

which were pioneered in the Mathematica system [47]. More

recently, this style has been adopted in the context of other

programming languages. IPython [28] and Jupyter [16] pro-

vide a means for computational story telling, where cells con-

taining code are interleaved with output and prose cells. The

language workbench framework Bacatá allows a language

engineer to provide a notebook feature by reusing existing

language artifacts [22]. In Section 6.1 we have adapted Ba-

catá to include the generic exploring interpreter algorithm

of which the execution graph is shown in the notebook

Reynolds first employed definitional interpreters as a vehi-

cle for reasoning about languages [33, 34]. His analysis took
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advantage of the formal similarity between denotational and

interpretative semantics [35]. The formal similarity between

various approaches to formal semantics is captured by Ini-

tial Algebra Semantics [10]. Modular extension mechanisms

have been developed for semantics, such as monad trans-

formers [18, 25], entity propagation in Modular Structural

Operational Semantics [3], and copy-rules and forwarding in

Attribute Grammars[38, 45]. These mechanisms greatly en-

hance the practicality of definitional interpreters. In modern

languages, we see advanced use of monads in Haskell [20, 29],

Object Algebras [27] in Java, C# and Scala and intrinsically-

typed definitional interpreters in Agda [36].

The usage of an execution graph containing all intermedi-

ate configurations of a user’s interaction is related to back-

in-time debugging [19, 31], also known as omniscient de-

bugging [5, 17], allowing programmers to go back in time of

an execution history. In contrast, however, exploring inter-

preters allow users to go back in session time, obtaining both
a new run-time state and program state.

Conclusion. REPLs provide programmers with a direct in-

terface to a programming language, supporting exploration,

testing, and incremental development. All mainstream lan-

guages have REPL interfaces, indicating the value they rep-

resent to programmers. However, the actual language that

is accepted by the REPL is often not well-defined, and engi-

neering REPLs lacks solid design principles.

In this paper we have surveyed existing REPLs in a feature-

oriented domain analysis, showing awide diversity in feature

support. To make the relation between a REPL and its lan-

guage precise, we have defined and formalized the notion

of sequential language, and used it as the basis of a method-

ology to construct REPL interpreters. The versatility of the

approach has been demonstrated in three case studies, one

based on MiniJava, and two based on DSLs (QL and eFLINT).

The case studies show notebook, command-line, and client-

server REPL interfaces, developed using the methodology by

extending base languages and reusing existing interpreters.

The concept of sequential language and its associated lan-

guage design and engineering guidelines may provide better

insight into the essence of REPLs, and promote a principled

approach to the construction of REPLs.
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