
Executable Formal Specification of Programming
Languages with Reusable Components

Submitted in fulfilment of the degree of Doctor of Philosophy by

L. Thomas van Binsbergen1

2018

Department of Computer Science

Royal Holloway, University of London

Supervisors

Adrian Johnstone

Elizabeth Scott

Examiners

Cliff B Jones

Matthew Hague

1Liewe Thomas van Binsbergen — http://ltvanbinsbergen.nl — ltvanbinsbergen@acm.org

http://ltvanbinsbergen.nl

Declaration of Authorship

I, Liewe Thomas van Binsbergen, hereby declare that this thesis and the work presented in

this thesis is entirely my own, unless otherwise stated. Where I have consulted the work of

others, this is clearly stated.

Signed:

Date:

17/09/2018

2

Acknowledgements

I would like to thank my supervisors Adrian Johnstone and Elizabeth Scott for the opportu-

nities they have given me, their support, academic advice, and especially for challenging me

to articulate my ideas carefully. I am grateful to Peter Mosses for inviting me to Swansea

University on several occasions and giving me the opportunity to collaborate with the PLan-

CompS team. Of the PLanCompS team, I would like to thank Peter Mosses, Neil Sculthorpe

and Casper Bach Poulsen for our collaborations and technical discussions.

The (social) life of a PhD student can be hard, and it is has been made much easier for

me by Rob Walsh who welcomed me to the office and PhD student life, by the friendships

with fellow PhD students in the department, and by the leisure of Royal Holloway’s staff

football. I want to especially thank my good friends Georgiana Lungu, Ionuţ Ţuţu, and

Claudia Chiriţǎ for technical discussions and their support.

The collaborations with Duncan Mitchell and Johannes Kinder of Royal Holloway were

very enjoyable and fruitful, for which I am grateful. I would also like to thank Martin Berger

for our discussions on meta-programming and for inviting me to present my ideas at the

University of Sussex.

This thesis marks the end of a long, privileged life as a student. I owe this privilege

primarily to my parents Tonnie Kikkert and Janus van Binsbergen. With words I can only

begin to express how grateful I am for their care and support, for believing in me, and giving

me the freedom to develop myself according to my own plan.

Tonnie, Janus, en Jonas, met veel trots presenteer ik jullie dit werk. Bedankt voor de steun!

3

Abstract

Writing a formal definition of a programming language is cumbersome and maintaining the

definition as the language evolves is tedious and error-prone. But programming languages

have commonalities that can be captured once and for all and used in the formal definition

of multiple languages, potentially easing the task of developing and maintaining definitions.

Languages often share features, even across paradigms, such as scoping rules, function calls,

and control operators. Moreover, some concrete syntaxes share patterns such as repetition

with a separator, delimiters around blocks, and prefix and infix operators.

The plancomps project has established a formal and component-based approach to

semantics intended to reduce development and maintenance costs by employing the software

engineering practices of reuse and testing. This thesis contributes further, taking advantage

of the advanced features of the Haskell programming language to define executable and

reusable components for specifying both syntax and semantics.

The main theoretical contributions of this thesis are: a data structure for representing

the possibly many derivations found by a generalised parser which significantly simplifies

the specification of generalised parsing algorithms, a purely functional description of GLL

parsing based on this data structure, a novel approach to combinator parsing that incorpo-

rates generalised parsing algorithms such as GLL in their implementation, and a novel and

lightweight framework for developing modular rule-based semantic specifications (MRBS).

The main practical contributions of this thesis are: a combinator library for component-

based descriptions of context-free grammars from which GLL parsers are generated, a com-

piler and interpreter for executing operational semantic specifications written in CBS (the

meta-language developed by the plancomps project), an interpreter for an intermediate

meta-language (IML) based on MRBS, and a translation from CBS specifications into IML

that gives an operational semantics to CBS.

The practicality of the presented tools is evaluated through case studies.

4

Contents

1 Introduction 9

1.1 Personal Reflection . 9

1.2 Part 1: Syntax Analysis . 11

1.3 Part 2: Interpretation . 12

1.4 Part 3: Evaluation . 15

1.5 Supplementary Material . 16

I Syntax Analysis 17

2 Generalised Parsing 18

2.1 Preliminaries . 19

2.2 Recursive Descent Parsing . 27

2.3 Descriptor Processing . 30

2.4 GLL Parsing . 36

3 Generalising Combinator Parsing 41

3.1 Combinator Parsing . 42

3.2 Generating a Binarised Grammar . 48

3.3 Memoising Continuation-passing Combinators 53

4 Explicit BNF Combinator Parsing 62

4.1 Explicit BNF Combinators . 63

4.2 Generating a Grammar . 64

5

4.3 Direct FUN-GLL Parsing . 66

5 Haskell: Reusable Components for Syntax Specification 73

5.1 FUN-GLL Implementation . 74

5.2 Backtracking Recursive Descent Evaluators 82

5.3 Explicit BNF Combinators . 87

II Interpretation 97

6 Transition System Semantics 98

6.1 Transition Systems . 99

6.2 An Exemplary Language Definition . 100

6.3 Generalised Transition Systems . 110

7 Modular Rule-Based Semantics 118

7.1 Modular Rule-Based Specifications . 119

7.2 The Syntax of IML Programs . 125

7.3 The Semantics of IML Programs . 133

7.4 An Implementation of IML . 145

8 CBS to IML Translation 149

8.1 Preliminaries . 150

8.2 Types . 160

8.3 Rewrite Rules . 163

8.4 Entities . 166

8.5 Overcoming Translation Restrictions . 171

8.6 Homogeneous Generative Meta-Programming 173

8.7 Static Refocussing . 178

8.8 Evaluation . 181

9 The Haskell Funcon Framework 182

9.1 Funcon Modules . 183

9.2 CBS Rules . 185

6

9.3 Ambiguous Patterns and Types . 188

9.4 Configuration Files . 194

9.5 Homogeneous Generative Meta-Programming 195

III Evaluation 197

10 Tools 198

10.1 Functions for Describing Syntax . 198

10.2 Functions for Building Funcon Terms . 203

11 Case Study - Mini 206

11.1 Basic Expressions . 207

11.2 Variables . 209

11.3 Basic Commands . 211

11.4 Procedures . 213

11.5 Control Flow . 215

11.6 Arrays . 217

11.7 Programs . 219

11.8 Interpretation . 219

12 Case Study - Caml Light 221

12.1 Lexical Conventions . 221

12.2 Values . 223

12.3 Global Names . 223

12.4 Type Expressions . 225

12.5 Constants . 225

12.6 Patterns . 226

12.7 Expressions . 229

12.8 Module Implementations . 238

12.9 Interpretation . 240

7

13 Tool Evaluation 242

13.1 Parsing with BNF Combinators . 242

13.2 Interpreting Funcon Terms . 247

13.3 Case Study Evaluation . 252

Appendices 258

A Generalised Parsing 259

A.1 Equivalence of BPTs and Big-Step Derivations 259

A.2 Proof of Completeness CDS . 260

A.3 Proving CDS Computes a Complete Set of EPNs 261

A.4 Building BSPPFs from Extended Packed Nodes 262

8

Chapter 1

Introduction

1.1 Personal Reflection

The purpose of language is to convey meaning between speakers. The fact that sentences

and words do not have a unique meaning is both a strength and a weakness of natural

language. For example, the sentence “... and a man in a blue uniform gave me a ticket”

has a different meaning when uttered after the sentence “I ran a red light in an attempt to

be on time for my first date with Julie ...” than after the sentence “Julie and I went to the

cinema for our first date ...”.

Formal languages, like programming languages, are intended to be unambiguous in order

to make precise, provable, and testable claims. In the case of programming languages,

different programmers working on the same code should be confident about the code they

are reading and modifying. Programmers are interested in the effect of running a certain

piece of code on a particular machine, i.e. the behaviour of the program. Programmers have

to be confident that the compiler they use generates machine instructions that exhibit the

expected behaviour. Programming languages are given formal operational semantics in order

to describe the behaviour of programs precisely. A formal operational semantics provides a

precise, and machine-independent understanding of a language. We can talk about the exact

behaviour of programs separately from the machine instructions that realise this behaviour.

As such, a formal description of a programming language can act as a a contract between

9

compiler engineer and programmer.

Programmers can have tremendously successful careers without ever having considered

formal descriptions of the programming languages they employ. One reason is that modern

high-level programming languages are the produce of decades of language development.

During this process, certain idioms have been established, e.g. looping constructs with

breaks, function calls with return statements, and inheritance between objects. These idioms

can be taught without formal underpinning. A second reason is experience. Just like when

learning a natural language, programmers learn a programming language — or perhaps

more accurately, a compiler for a language — by uttering sentences (running programs) and

observing their effects.

Compiler engineers can be just as successful in their task of developing a compiler,

without considering a formal semantics for the implemented language. In fact, only very

few popular programming languages have a complete formal semantics. Moreover, the

existence of a formal semantics does not imply that implementations are compliant to that

semantics. In practice, experienced programmers and popular compilers are in agreement

over the intended behaviour of most sensible programs. This common understanding is

challenged by corner-cases, programs for which a language deviates from the established

idioms or when two or more compilers have different interpretations.

Given these observations, why am I interested in formal semantics? In this thesis, I

investigate an approach for describing semantics of languages in terms of reusable compo-

nents. The components are given a formal semantics that can be understood in isolation.

Crucially, the components can be taught or understood without formal underpinning and

still serve as the basis of a formal semantics. A core assumption that underlies this thesis

is that the process of language design benefits from such reusable components. Moreover,

these components may prove useful in teaching programming languages at university level.

If one understands certain language constructs generally, it is easy to learn specific lan-

guages with variations or specialisations of such constructs. Programmers with a high-level

understanding of language constructs have the flexibility to switch between languages, and

this kind of flexibility otherwise requires years of experience to be obtained.

10

1.2 Part 1: Syntax Analysis

Background Syntax analysis is one of the major success stories of theoretical computer

science. There is a well-understood theory, namely that of regular and context-free gram-

mars. The theory underpins the regular expression formalism and the BNF formalism for

describing regular grammars and context-free grammars respectively. Efficient algorithms

have been developed for these formalisms based on the automata associated with the gram-

mar classes. The BNF formalism is at the heart of many parser generators like Yacc,

Bison and Happy. Regular expressions are found in many programming languages like Perl,

JavaScript and Python.

Parser combinators are a success story in their own right and are often taken as a prime

example of the power of higher-order functional programming. A parser combinator expres-

sions looks superficially like a BNF description of a grammar and behaves like a parser for

that grammar. As a result, parser combinator expressions are easy to understand and main-

tain. Moreover, functions can be written that generate parser combinators, and parser com-

binators can be combined to form new ones. A parser combinator library typically provides

a small set of elementary parsers and core combinators, together with combinators derived

from them. Well-known parser combinator libraries are Parsec [Leijen and Meijer, 2001]

and UU-Lib [Swierstra, 2009].

The success of parser combinators depends on the possibility to describe the syntax of

a language (or data format) with a deterministic or unambiguous grammar. On the other

hand, generalised parsing techniques like GLR [Tomita, 1985] and [Earley, 1970] enable

writing parsers for the full class of context-free grammars, yielding all possible derivations

of a sentence when a grammar is ambiguous. These general techniques have mostly been

applied in the context of natural language processing, sometimes as part of a combinator

library [Johnson, 1995, Frost et al., 2008].

Recent developments Generalised parsing is attractive to programming language re-

searchers as it can simplify the formal definition of programming languages by reducing the

gap between concrete and abstract syntax grammars. Since any context-free grammar ad-

mits a parser, the syntax of a language can be defined by a grammar that contains concrete

information, like keywords and delimiters, whilst being sufficiently abstract for the purposes

11

of semantic analysis. Recent research has lead to improvements in derivation representa-

tion [Scott et al., 2007, Scott and Johnstone, 2010b], to principled approaches for ambiguity

reduction [Van den Brand et al., 2003, Afroozeh et al., 2013], to generalised top-down pars-

ing (GLL Parsing) [Scott and Johnstone, 2010a, Scott and Johnstone, 2013], and to parser

combinator libraries that employ generalised parsing [Ridge, 2014, Izmaylova et al., 2016].

Contributions In part 1 of the thesis, we explore approaches to defining parser combina-

tor libraries that employ generalised parsing. Chapter 2 gives a purely functional description

of a GLL algorithm referred to as FUN-GLL. We explain GLL’s data structures as abstract

sets with basic operations, rather than specialised implementations, focussing on the al-

gorithm’s logic. We hope this alternative description makes GLL Parsing accessible to

functional programming communities. The FUN-GLL algorithm and its description have

been published as [Van Binsbergen et al., 2018]. The description benefits from a novel take

on representing derivations, which is to use sets rather than trees, making it generally easier

to turn recognisers into parsers. A detailed analysis of this alternative representation of

derivation information is under review at the time of writing [Scott et al., 2019].

Taking into account the works of many authors, Chapter 3 discusses conventional parser

combinators [Leijen and Meijer, 2001, Frost et al., 2008, Swierstra, 2009] and two methods

found in literature [Johnson, 1995, Ridge, 2014] to generalising the conventional approach.

In Chapter 4 we introduce our novel approach to combinators inspired by these methods.

By letting combinator expressions represent BNF grammars explicitly, it is possible to ex-

tract grammar information easily, which is required for generalised parsing. The result is a

collection of combinators for writing executable grammar specifications, referred to as BNF

combinators. An explicit grammar object is computed from a combinator expression and

given to the FUN-GLL algorithm. An implementation of these combinators is discussed in

Chapter 5 and published as [Van Binsbergen et al., 2018].

1.3 Part 2: Interpretation

Background Several frameworks have been developed for defining the semantics of pro-

gramming languages formally. In the framework of denotational semantics, program frag-

12

ments are structurally translated into objects within some semantic domain whose se-

mantics is already understood [Mosses, 1990]. In an axiomatic semantics, a collection of

axioms for a language is identified so that program properties can be proven by deduc-

tion [Hoare, 1969]. We focus on operational semantics, in which programs transition over

time, potentially changing the state of an abstract machine at each step. Examples of

frameworks for operational semantics are Plotkin’s SOS [Plotkin, 2004b, Plotkin, 2004a],

the K framework [Roşu and Şerbǎnuţǎ, 2014], and reduction semantics with evaluation con-

texts [Felleisen et al., 2009, Danvy and Nielsen, 2004]. Especially relevant to this thesis are

MSOS and I-MSOS, modular variants of SOS for writing extensible language definitions, de-

veloped by [Mosses, 2004] and [Mosses and New, 2009]. Chapter 6 discusses the background

material relevant to this thesis: Plotkin’s SOS framework [Plotkin, 2004b] and Mosses mod-

ular variants MSOS [Mosses, 2004] and I-MSOS [Mosses and New, 2009].

Recent developments Despite the availability of semantic frameworks, it is not com-

mon practice that programming languages are developed together with a formal seman-

tics. This may be due to the initial effort of writing a formal semantics and subsequently

maintaining the formal semantics as the language evolves. As explained in “A History of

Haskell” [Hudak et al., 2007], the requirement to maintain a formal definition discourages

proposals for changes to the language.

As an attempt to reduce these efforts, the plancomps project1 proposes a component-

based approach to writing formal language definitions. The central idea behind the approach

is that many programming languages, even languages from different paradigms, have a lot

in common, and that these commonalities can be captured in a library of highly reusable

fundamental language constructs, called funcons. The CBS language has been developed

by plancomps for defining the syntax of programming languages in a variant of BNF,

and the semantics of languages via a translation to funcons. The funcons themselves are

formally defined in CBS via I-MSOS inference rules. The intention is that CBS language

definitions are executable so that prototype implementations can be generated throughout

the development cycle.

1http://plancomps.org

13

Contributions The main goal of part 2 of this thesis is to develop sound interpreters

for funcon terms based on the formal definitions of funcons in CBS. The motivation is to

support the intention of the plancomps project to generate prototype implementations

from CBS language definitions. In this thesis we focus on operational semantic specifications

of deterministic programming languages.

The main practical result is the Haskell Funcon Framework and its funcon term inter-

preters2, generated from CBS specifications. The funcon term interpreters are used to verify

CBS specifications, replacing the Prolog interpreters previously used by the plancomps

project [Bach Poulsen and Mosses, 2014b]. The funcon term interpreters have been tested

through unit-tests developed for individual funcons. Chapter 9 presents some of the im-

plementation details of the framework, which have been extracted from papers about tool

support for CBS [Van Binsbergen et al., 2016, Van Binsbergen et al., 2019].

The main theoretical result is the Modular Rule-Based Semantics (MRBS) framework

for describing the operational semantics of programming languages. Compared to SOS

and (I-)MSOS, MRBS is less generic and more specialised, with specifications that involve

auxiliary semantic entities for modelling computational effects. MRBS has a notion of

derivations formed by production rules that do not have to mention all auxiliary semantic

entities, thereby improving the modularity of specifications, and interpreters are defined

as algorithms that find such derivations. The IML language is a formalism for develop-

ing MRBS specifications. The strength of IML is that inferences rules are restricted to a

form that admits a relatively straightforward mechanical treatment. MRBS and IML are

introduced together in Chapter 7.

In Chapter 8, we show that rules written at a higher-level of abstraction can be trans-

lated into IML rules, taking CBS funcon and datatype definitions as an example. In this

sense, IML is an Intermediate Meta-Language, and it is our expectation that inference rules

written in other SOS based semantic frameworks, such as DynSem [Vergu et al., 2015], can

be translated into IML as well. IML has been carefully designed to allow inference rules in

different styles (e.g. small-step or big-step) and to be free of unnecessary restrictions.

The translation from CBS funcon definitions to IML can be seen to give a formal oper-

ational semantics to funcon definitions. We have used the translation to experiment with

2Plural, to include the language-specific extensions of the main interpreter.

14

implementation strategies and to build confidence in the definitions of funcons. We also dis-

cuss the implementation of novel funcons for Homogeneous Generative Meta-Programming

(HGMP), expressing their behaviour in IML, and extending the Haskell Funcon Framework

with manual implementations of these funcons. The funcons for HGMP and a case study

that employs them are published as [Van Binsbergen, 2018].

1.4 Part 3: Evaluation

Part 1 and 2 of the thesis describe several formalisms supporting the development of deter-

ministic programming languages with executable and reusable components for both syntax

and semantics. Part 1 describes the core BNF combinators from which other reusable

components can be derived. Part 2 discusses CBS funcon definitions and approaches to

generating implementations of funcons. The BNF combinators, IML, and the CBS to IML

translation have been implemented in Haskell tools. The tools are available as supplemen-

tary (see Section 1.5), together with the Haskell Funcon Framework, as cabal packages. In

part 3 of these thesis, we evaluate the BNF combinators (gll package) and the funcon term

interpreters (funcons-tools package). The runtime efficiency of these tools is evaluated in

Sections 13.1 and 13.2 respectively.

We demonstrate, through case studies, that the reusable components provided by gll

and funcons-tools can be used together to develop programming languages in literate

Haskell form. The case studies are:

• Mini, a basic procedural language with exceptions and arrays (Chapter 11)

• Caml Light, a functional language with algebraic datatypes, pattern matching, muta-

ble data, and exceptions (Chapter 12)

In Section 13.3 we reflect on the case studies and on using the BNF combinators and funcon

terms interpreters generally.

15

1.5 Supplementary Material

The following tools and source files are available as supplementary material at http://www.

ltvanbinsbergen.nl/thesis:

File Description

gll.tar.gz The implementation of GLL parsing with flexible
BNF combinators

iml-tools.tar.gz The IML interpreter and tools
funcons-tools.tar.gz The Haskell Funcon Framework. Tools for ex-

ecuting funcon terms based on modular micro-
interpreters

funcons-values.tar.gz The implementation of the built-in types, values
and value operations of CBS

funcons-intgen.tar.gz The CBS to Haskell compiler, generating micro-
interpreters from funcon definitions. The compiler
also implements the CBS to IML translation

CBS-beta-website.zip An archive containing the CBS source files of the
funcons and the example languages as available at
the time of writing. References in the thesis to “the
CBS example languages” refer to the CBS speci-
fications in the Languages-beta subfolder. Ref-
erences to the “current funcons” and “funcons in
beta-release”, refer to the funcons defined in the
Funcons-beta subfolder

CBS2IML.zip An archive containing the IML implementation of
the current funcons, without static refocussing. The
archive contains all the files necessary to execute
tests and includes a large number of tests

CBS2IML.iml concatenation of the files in CBS2IML. Simply give
this file to the IML interpreter to execute a large
number of tests

CBS2IML-refocussed.zip Identical to CBS2IML.zip, except that funcon defi-
nitions have been translated with static refocussing

CBS2IML.iml concatenation of the files in CBS2IML-refocussed.
Simply give this file to the IML interpreter to exe-
cute a large number of tests

funcons-lambda-cbv-mp.tar.gz An executable specification of a basic
call-by-value lambda-calculus with meta-
programming [Van Binsbergen, 2018]

mini-reuse.tar.gz The Mini case study, including literate Haskell and
test programs

caml-light-reuse.tar.gz The Caml Light case study, including literate
Haskell and test programs

16

http://www.ltvanbinsbergen.nl/thesis
http://www.ltvanbinsbergen.nl/thesis

Part I

Syntax Analysis

17

Chapter 2

Generalised Parsing

In the context of syntax analysis, a language is defined as the set of sentences that can

be generated by applying the rules of the language’s grammar. A derivation proves that

a particular sentence is an element of a language, if the derivation steps are in accordance

with the rules of the grammar. A parser is an algorithm that finds a derivation of an input

sentence for a particular grammar, if one exists, and usually structures its output as a tree.

A complete parser finds all possible derivations, and often complete parsers present these

derivations in the form a forest, with sharing for efficiency. Generalised parsing involves the

construction of (complete) parsers for arbitrary context free grammars.

In this thesis we consider complete parsing algorithms that take an arbitrary grammar,

as well as a sentence, as input and yield all possible derivations of the sentence as output.

We treat such algorithms as interpreters for the language of all grammars. This treatment

underpins the discussion on parsing combinators in Chapters 3 and 4, in which combina-

tor libraries are seen as defining embedded domain-specific implementations of the BNF

grammar formalism.

This chapter formalises the aforementioned concepts and introduces a novel, unstruc-

tured data structure, called the extended packed node set, as an an alternative output for

complete parsing algorithms. The extended packed node set is the output of choice for the

parsing algorithms presented in this thesis. We give a purely functional generalised parsing

algorithm, called FUN-GLL, an instance of generalised LL (GLL) parsing. The algorithm

18

operates on abstract data structures, modelled as mathematical sets, rather than concrete

implementations. We hope this alternative description makes GLL parsing more accessible

to functional programming communities.

2.1 Preliminaries

2.1.1 Symbols and Grammars

Given a finite set of symbols S, a production is a pair 〈X,α〉 ∈ S × S∗ denoted as X ::= α

(with X and α referred to as the production’s left-hand side and right-hand side respec-

tively). For a set of productions p, N(p) = {X | 〈X,α〉 ∈ p} is the set of nonterminal

symbols of p and T (p) = {s | 〈X,αsβ〉 ∈ p} \ N(p) is the set of terminal symbols of p. A

context-free grammar is a pair γ = 〈Z, p〉, with p ⊂ S × S∗ a finite set of productions and

Z ∈ N(p) the start symbol of the grammar1. We write prods(γ) for p. Hereafter we use

‘grammar’ to mean context-free grammar. The set N(〈Z, p〉) of nonterminals of a grammar

is defined as N(p) and the set T (〈Z, p〉) of terminals of a grammar is defined as T (p). We

omit the argument to N and T when it is clear from context to which grammar or set of

productions is referred.

In this chapter, we let a sequence of n symbols be denoted by s1s2 . . . sn, let the empty

sequence be denoted by ε and sequence concatenation by juxtaposition. We use (possibly

subscripted) X, Y and Z as placeholders for nonterminals; capital alphabetical characters

for actual nonterminals; t as a placeholder for terminals; lowercase alphabetical characters

for actual terminals; s for symbols, α, β, and δ for (possibly empty) sequences of symbols;

p for sets of productions, γ for grammars; and u, v, and I for sequences of terminal symbols

(also called sentences). If I = t0 . . . tm−1 is a sentence, then Ik is the kth terminal in the

sentence (tk) and Ik,r is the subsentence ranging from k to r (exclusive) (tk . . . tr−1).

Figure 2.1 shows the example grammar used in this chapter. The example is taken

from [Aycock and Horspool, 2002].

1This definition excludes grammars with repeated rules and with production-less nonterminals.

19

γah = 〈S, {S ::= AA,A ::= a,A ::= E,E ::= ε}〉
N(γah) = {S,A,E}
T (γah) = {a}

Figure 2.1: Running example grammar γah.

2.1.2 Languages and Derivations

In the context of syntax analysis, a programming language is defined as the set of sentences

that can be generated by applying the production rules of a what is often called a concrete

grammar for the language. A concrete grammar describes the syntactically valid programs

of the language and captures the structure of programs as they appear. When analysing

semantics, a language may be defined as the set of trees that can be formed according to

the productions of a possibly different grammar, often called an abstract grammar for the

language. An abstract grammar leaves out concrete details, such as the delimiters around

blocks and the texts of keywords, and captures the structure of programs in a way that is

useful to describe their meaning.

In this chapter we define the set of all derivation trees of a grammar and define the

sentences of a language as being those sequences of terminals found at the frontiers of

derivation trees. Derivation trees capture the hierarchical structure embedded in sentences,

as determined by a grammar, and are used to represent programs unambiguously. Trees are

defined in the style of [Mosses, 1990].

In the context of generalised parsing algorithms, it is beneficial to use binarised parse

trees, as binarised trees admit more efficient sharing [Scott et al., 2007]. For reasons that

become clear later, we add indices to the labels of binarised parse trees. An intuitive

explanation of the following definition is given afterwards.

Definition 2.1.1. Given a grammar γ = 〈Z, p〉, a binarised parse tree (BPT) is a pair

〈〈s1 . . . sm, l, r〉, t1 . . . tn〉 with s1 . . . sm ∈ S∗, l ∈ N, r ∈ N, l 6 r, m > 0, 0 6 n 6 2 and

t1 . . . tn binarised parse trees, such that:

20

m = 1, s1 = Z ∨ ∃(X ::= s1 . . . smβ) ∈ p
n = 0, r = l ⇐⇒ m = 0

n = 0, r = l + 1 ⇐⇒ m = 1, s1 ∈ T (γ)

n = 1, t1 = 〈〈β, l, r〉, c1〉 ⇐⇒ m = 1, s1 ∈ N(γ), s1 ::= β ∈ p
n = 2, t1 = 〈〈s1 . . . sm−1, l, k〉, c1〉, t2 = 〈〈sm, k, r〉, c2〉 ⇐⇒ m > 2

The set bpts(γ) is the smallest set containing all BPTs with respect to γ. For any BPT

t0 = 〈〈α, l, r〉, t1 . . . tn〉 we let lb(t0) = 〈α, l, r〉, lbs(t0) = α, lbl(t0) = l, and lbr(t0) = r (l

and r are referred to as the left and right extent of the tree respectively).

The first property of a BPT determines that each node is labelled with the right-hand

side of a production, or that it is labelled with the start symbol. The second property

determines that a node labelled with ε has equal indices (l = r) and has no children. The

third property determines that a node labelled with a single terminal symbol has no children

and that the difference between its indices is 1. The fourth property determines that a node

labelled with a single nonterminal symbol has one child which is labelled with the same

indices and with the right-hand side of one of the productions of the nonterminal. Any

other node is labelled with a sequence of symbols of at least length 2 and has exactly two

children whose labels ‘compose’ to form the label of their parent. These kinds of nodes

show how a sequence of symbol derives a subsentence of the input sentence by inductively

showing how its symbols derive parts of the subsentence, one symbol at a time (right child).

The frontier of a BPT t is the sequence of terminal symbols encountered when performing

an order-respecting depth-first traversal on t.

Definition 2.1.2. For any BPT t0 ∈ bpts(γ), frontierγ(t0) ∈ T (γ)∗ is defined by:

frontierγ(〈〈α, l, r〉, t1 . . . tn〉) =

{
α if n = 0

frontierγ(t1) . . . frontierγ(tn) otherwise

Definition 2.1.3. A derivation tree of sentence I ∈ T (γ)∗, derived from α ∈ S∗, is a BPT

t1 ∈ bpts(γ) with lbs(t1) = α and frontierγ(t1) = I for some grammar γ. (It follows from

the definition of bpts(γ) and frontierγ that lbr(t1) = lbl(t1) + |I|.)

Figure 2.2 shows two valid BPTs with frontier a, respecting γah. The language defined

by a grammar is the set of all frontiers obtained from the set of all BPTs with a root symbol

node labelled by the start symbol of the grammar and a left extent of 0.

21

(S, 0, 1)

(AA, 0, 1)

(E, 0, 0)

(A, 0, 0) (A, 0, 1)

(ε, 0, 0)

(a, 0, 1)

(S, 0, 1)

(AA, 0, 1)

(E, 1, 1)

(A, 1, 1)(A, 0, 1)

(ε, 1, 1)

(a, 0, 1)

Figure 2.2: Binarised parse trees for the running example and sentence I = a.

Definition 2.1.4. The language of grammar γ = 〈Z, p〉 is the set of sentences L(γ) =

{frontierγ(t1) | t1 ∈ bpts(γ), lbs(t1) = Z, lbl(t1) = 0}

Definition 2.1.5. A nonterminal X ∈ N(p) is nullable, denoted by nullablep(X), if it

derives the empty sentence, i.e. ε ∈ L(〈X, p〉)

An algorithm is a recogniser for a grammar if it decides whether a given terminal sequence

is a sentence of the language generated by the grammar.

A BPT not only tells us that a certain sentence can be derived, it tells us how this

sentence can be derived from the productions of some grammar (reflected in the structure

of the tree). This information is used when interpreting sentences according to the semantics

of the language (Part 2 of this thesis). An algorithm is a parser for a grammar if it returns

a BPT for a given input sentence, if one exists.

Big-step proof derivations Derivations are traditionally defined as sequences of deriva-

tion steps. The derivation steps can be formalised as a Plotkin style small-step transition

system by giving logical inference rules (see [Plotkin, 2004b] and Chapter 6). The big-step

style inference system in Figure 2.3 defines a relation (for every grammar γ), capturing

transitions of sequence of symbols α into sequence of terminal symbols I in a single step

〈α, l, r〉 ⇒γ I. This system is insightful as it concisely and simultaneously captures the

definition of BPTs and their frontiers. If there is a proof for 〈α, l, r〉 ⇒γ I in the inference

system, then there exists a BPT with label 〈α, l, r〉 and frontier I. Conversely, if there is a

BPT with label 〈α, l, r〉 and frontier I, then there is a proof of 〈α, l, r〉 ⇒γ I. The proof of

22

t ∈ T (γ)

〈t, l, l + 1〉 ⇒γ t
(term)

(X ::= α) ∈ prods(γ) 〈α, l, r〉 ⇒γ u

〈X, l, r〉 ⇒γ u
(nterm)

〈ε, l, l〉 ⇒γ ε (eps)

〈s1 . . . sn−1, l, k〉 ⇒γ u 〈sn, k, r〉 ⇒γ v n > 1

〈s1 . . . sn−1sn, l, r〉 ⇒γ uv
(seq)

Figure 2.3: Rules defining ⇒γ for the grammar γ.

this equivalence is given in Appendix A.1. In our reasoning we often rely on the inference

system, assuming that it is clear (from intuition, or from the proof in the appendix) how

this reasoning relates to the BPTs that underpin the formal definitions of languages.

Ambiguity A sentence can be derived in more than one way. Rule nterm may be applied

with multiple choices of α to give the same conclusion. Similarly, seq might be applicable

for more than one choice of k and give the same conclusion. This shows that different BPTs

may have the same frontier and root label, i.e. there may be different derivations of the

same sentence. A grammar γ is ambiguous if there is a sentence I ∈ L(γ) such that there

is more than one BPT with frontier I. The example grammar is ambiguous, as shown by

the two alternative BPTs given in Figure 2.2 for sentence I = a. This particular ambiguity

arises from the two possible choices k = 0 or k = 1 in the application of seq to prove

AA⇒γah a. We define the set derivs(γ, I), the set that contains all derivation trees of I.

Definition 2.1.6. Given a grammar γ = 〈Z, p〉, the set of derivations of I from α ∈ S is

derivsγ(α, I) = {t1 | t1 ∈ bpts(γ), lb(t1) = 〈α, 0, |I|〉, frontierγ(t1) = I}. We write derivsγ(I)

as a shorthand for derivsγ(Z, I).

An algorithm is a complete parser for a grammar if given an input sentence it returns

all derivations of the sentence according to the grammar. A general and complete parsing

procedure is a procedure that given an arbitrary grammar and an input sentence returns all

possible derivations of that sentence according to the grammar.

23

e1 = 〈A ::= a·, 0, 0, 1〉
e2 = 〈S ::= A ·A, 0, 0, 1〉
e3 = 〈A ::= E·, 0, 0, 0〉
e4 = 〈S ::= A ·A, 0, 0, 0〉
e5 = 〈A ::= E·, 1, 1, 1〉

e6 = 〈S ::= AA·, 0, 1, 1〉
e7 = 〈A ::= AA·, 0, 0, 1〉
e8 = 〈S ::= AA·, 0, 0, 0〉
e9 = 〈E ::= ·, 0, 0, 0〉
e10 = 〈E ::= ·, 1, 1, 1〉

Figure 2.4: A set of EPNs for the running example grammar γah and sentence I = a.

γinf = 〈S, {S ::= ES, S ::= a,E ::= ε, E ::= e}〉
N(γinf) = {S,E}
T (γinf) = {a, e}

〈S ::= ES·, 0, 0, 1〉
〈S ::= E · S, 0, 0, 0〉
〈E ::= ·, 0, 0, 0〉
〈S ::= a·, 0, 0, 1〉

Figure 2.5: A set of EPNs embedding infinitely many derivations of the sentence I = a.

There are combinations of grammars and input sentences for which exponentially many

(with respect to the length of the input sentence), or even infinitely many, derivations exist.

It is therefore impossible for a complete parsing procedure to enumerate all possible deriva-

tions, for any combination of grammar and input sentence, in worst-case polynomial time.

In practice, complete parsers produce a parse forest with sharing to efficiently represent all

derivation trees. This forest often contains some subtrees that are not part of any of the

derivation trees for the input sentence. This is not a problem, as parse forests are easily

filtered to preserve only those derivation trees that represent full derivations of the input

sentence (see also Appendix A.4). In fact, some complete parsers employ disambiguation

strategies whilst filtering parse forests with the intention of preserving just one derivation

tree that (hopefully) corresponds to the interpretation of the programmer. The topic of

disambiguation is not studied in this thesis, but it will recur.

2.1.3 Extended Packed Nodes

Nodes in BPTs are labelled with a prefix α of the right-hand side of some production2

X ::= αβ. We could have chosen to label nodes with productions instead, given a way of

2With the exception of the root node, although a root node labelled with X can be viewed as being
labelled with the right-hand side of an auxiliary production S ::= X for some fresh S.

24

‘highlighting’ α (in order to distinguish labels of parent and child). A grammar slot is a

triple 〈X,α, β〉 ∈ S × S∗ × S∗, denoted as X ::= α · β, that can be used for this purpose.

(X ::= · is written when α = β = ε.) Rather than using grammar slots as labels for nodes,

we use grammar slots in what we call extended packed nodes. An extended packed node is

a quadruple 〈g, l, k, r〉 with g a grammar slot and 0 6 l 6 k 6 r natural numbers called the

left extent, pivot and right extent respectively.

Definition 2.1.7. Given a grammar γ, an extended packed node (EPN) is a quadruple

〈X ::= α · β, l, k, r〉, with X ::= αβ ∈ prods(γ), l 6 k 6 r natural numbers (the left extent,

pivot, and right extent respectively).

The indices l, k, and r indicate that α is matched by the substring Il,r, of some input

sentence I, and that the last symbol s of α is matched by Ik,r (or l = k if α = ε).

A set of EPNs can act as an efficient representation of one or more BPTs. The intuition

is that the information in the EPN reflects the choices that lead to the conclusion that a

particular sentence I is in the language of some grammar. There are two kinds of choices:

the choice of a production X ::= α when applying rule nterm in the big-step inference

system, and the choice of k when applying seq. The former is reflected in the grammar slot

of an EPN. The latter is reflected in the natural numbers l, k, and r, that determine that

u is the subsentence of I ranging from l to k (Il,k), and v is the subsentence of I ranging

from k to r (Ik,r) (k is called pivot because it splits sentences).

Definition 2.1.8. Given a set of extended packed nodes ∆, the set T (∆) is the smallest

set of BPTs such that:

〈X ::= ·, l, k, r〉 ∈ ∆ =⇒ 〈〈ε, k, r〉, []〉 ∈ T (∆)

〈X ::= αt · β, l, k, r〉 ∈ ∆, t ∈ T (γ) =⇒ 〈〈t, k, r〉, []〉 ∈ T (∆)

X ::= α ∈ prods(γ), t1 = 〈〈α, l, r〉, c1〉 ∈ T (∆) =⇒ 〈〈X, l, r〉, t1〉 ∈ T (∆)

〈X ::= αs · β, l, k, r〉 ∈ ∆, α 6= ε, t1 = 〈〈α, l, k〉, c1〉 ∈ T (∆), t2 = 〈〈s, k, r〉, c2〉 ∈ T (∆)

=⇒ 〈〈αs, l, r〉, t1t2〉 ∈ T (∆)

For T (∆) to be well-defined we must have that r = k for all 〈X ::= ε, l, k, r〉 ∈ ∆ and

r = k + 1 for all 〈X ::= αt · β, l, k, r〉 ∈ ∆. Figure A.2 shows a set of EPNs embedding the

trees of Figure 2.2. Figure 2.5 shows a set of EPNs embedding infinitely many binarised

parse trees.

25

In the subsequent sections we discuss generalised and complete parsing procedures that

compute sets of extended packed nodes embedding all possible derivation trees.

2.1.4 Discussion

We have given a big-step inference systems in which derivations correspond to binarised

parse trees, therefore deviating from a more conventional definition of derivations based on

derivation steps.

A Shared Packed Parse Forests (SPPF) is a graph that embeds a forest of parse trees

efficiently through sharing. Scott, Johnstone and Economopoulos have shown that a bina-

rised representation enables more sharing in SPPFs so that Binarised SPPFs (BSPPFs) have

worst-case cubic space complexity [Scott et al., 2007]. For further details on (B)SPPFs we

refer to [Scott and Johnstone, 2010b, Scott and Johnstone, 2013]. The notion of extended

packed node is derived from the packed nodes of BSPPFs3.

We introduce the extended packed node as a level of indirection that significantly simpli-

fies the discussion of the parsing procedures in this chapter, as well as the parser combinators

of Chapter 3 and 4. We can define post-processing algorithms that given a set of extended

packed nodes produce a particular outcome, e.g. a parse tree, a parse forest, an SPPF, a

semantic value, or a set of semantic values, and use these post-processors with any of our

parsing procedures. In Appendix A.4 we show how a BSPPF can be constructed from a

set of extended packed nodes. The constructed BSPPF contains no spurious derivations; it

contains no derivations of subsentences of I that are not used in any of the derivations of I.

In Chapter 4 we discuss a post-processor based on the semantic actions4 of a combinator ex-

pression. The algorithm in Chapter 4 is derived from Ridge who uses a data structure similar

to extended packed nodes (called “Earley productions”) for the same purpose [Ridge, 2014].

In the next section we begin our description of parsing algorithms building up to formu-

lations based on descriptors (similar to “Earley items”). As we shall see, algorithms based

on descriptors are easily extended to compute sets of extended packed nodes.

3An extended packed node is simply a packed node with its parent’s left and right extent.
4Parser generators often enable arbitrary code fragments, referred to as semantic actions, to be inserted

into production rules. These code fragments are added verbatim to the generated parser and typically
perform compilation or interpretation on the fly. Parser combinator libraries often enable the insertion of
semantic actions into combinator expressions for the same purposes.

26

2.2 Recursive Descent Parsing

Recursive Descent Parsing (RD) is a technique for (manually or mechanically) writing top-

down parsers based on the description of a context-free grammar. RD covers a collection of

algorithms rather than one particular algorithm.

RD parsers (RDPs) have in common that: every symbol is implemented by a piece of

code; these pieces of code can be placed in sequence, implementing a production’s right-

hand side; choice between (the pieces of code that implement) a nonterminal’s productions

is implemented by branching control-flow. The details of an RDP depend on the chosen

algorithm and the language in which the parser is written (the host language). A nonterminal

is typically implemented by a procedure (that we call a parse function) which, after one of

its branches has been fully executed, relies on the host language’s call-stack to return to the

next piece of code in the sequence from which the parse function was called.

In basic RD, parse functions choose a single production (branch) to execute. Different

RD algorithms choose between alternative productions differently. For example, the choice

can be made based on lookahead. Lookahead involves (pre-)computing for each alternative

the set of terminals it is capable of matching initially, and checking, during a parse, whether

the next terminal in the input sentence is a member of that set. Lookahead can thus be used

to rule out alternatives efficiently. In general, lookahead cannot be used to rule out each, or

all but one, alternative. The class of LL(k) grammars is defined to contain those grammars

for which it holds that, with k > 0 terminal symbols lookahead, no two alternatives are

simultaneously applicable. After choosing an alternative, different forms of backtracking

can be used to revert the decision and choose another alternative instead.

2.2.1 Generalising Recursive Descent Parsing

Earley notes about his generalised parsing algorithm — referred to as “Earley’s Algorithm”

— that it can be seen as a top-down parser by which all possible parses are performed

simultaneously in such a way that common execution paths appear only once [Earley, 1970].

By “a parse” Earley means a single execution of a top-down parser, resulting from a certain

combination of choices between alternatives. A different combination of choices results in a

different parse. We make the analogy between top-down parsing and algorithms similar to

27

Earley’s algorithm more precise by considering a particular style of RDPs.

In this style, parse functions have an integer parameter and return an integer. Both

integers are indices into the input sentence. We assume that each parse function has a local

variable for remembering the argument given to the parse function when it was called. We

can interpret a grammar slot X ::= s1 . . . · sj . . . sm as a unique identifier for a position

in the source code of F , the parse function implementing nonterminal X. The production

X ::= s1 . . . sj . . . sm uniquely identifies the code of a branch in F and the dot identifies a

position within that branch, namely the code for the jth symbol of the production. The

triple 〈X ::= s1 . . . · sj . . . sm, l, k〉 represents the state of a machine executing F , if we treat

l as the value for the local variable and k as the value of the parameter. Such a triple is a

descriptor5.

Definition 2.2.1. Given a grammar γ = 〈Z, p〉, a descriptor is a triple of the form 〈X ::=

α · β, l, k〉, with X ::= αβ ∈ p, and l 6 k natural numbers (referred to as the left extent and

index respectively).

A parser performing “all possible parses”, ignoring lookahead, is modelled by a set

U(γ, I) of descriptors as follows. If Z is the start symbol of γ, then 〈Z ::= ·δ, 0, 0〉 has

to be in U(γ, I), for all productions Z ::= δ ∈ P (γ) (all productions of the start symbol

as left-hand side are considered). If a parse reaches terminal t of production X ::= αtβ,

indicated by some descriptor 〈X ::= α · tβ, l, k〉 in U(γ, I), then the parse continues if and

only if Ik = t. If a parse reaches nonterminal Y of production X ::= αY β, indicated by

some descriptor 〈X ::= α · Y β, l, k〉 in U(γ, I), then all productions with left-hand side Y

are to be considered. If a parse reaches the end of a production, indicated by a descriptor

〈X ::= δ·, k, r〉 in U(γ, I), then Ik,r can be derived from X and the parse that resulted

in this alternative of X being considered may recommence. In fact, all parses that have

reached and will reach nonterminal X with index k may continue with index r. This idea

is formalised in the following definition.

Definition 2.2.2. Given a grammar γ = 〈Z, p〉 and a sentence I, the set U(γ, I) is the

smallest set of descriptors such that:

5A descriptor is effectively an Earley item with an added index. In Earley’s algorithm, a descriptor
〈g, l, k〉 appears as an item 〈g, l〉 in the state set Σk.

28

Z ::= δ ∈ p =⇒ 〈Z ::= ·δ, 0, 0〉 ∈ U(γ, I) (R(1))

〈X ::= α · tβ, l, k〉 ∈ U(γ, I), t = Ik =⇒ 〈X ::= αt · β, l, k + 1〉 ∈ U(γ, I) (R(2))

〈X ::= α · Y β, l, k〉 ∈ U(γ, I), Y ::= δ ∈ p =⇒ 〈Y ::= ·δ, k, k〉 ∈ U(γ, I) (R(3))

〈X ::= α · Y β, l, k〉 ∈ U(γ, I), 〈Y ::= δ·, k, r〉 ∈ U(γ, I)

=⇒ 〈X ::= αY · β, l, r〉 ∈ U(γ, I) (R(4))

A set that satisfies R(1)−R(4) is referred to as a closed set of descriptors. A minimal closed

set of descriptors is necessarily equal to U(γ, I).

The following definition captures the connection between descriptors and EPNs. To use

Earley’s terminology: there is an EPN whenever the dot of a grammar slot is ‘moved across

a symbol’ [Earley, 1970] between two descriptors.

Definition 2.2.3. Given a grammar γ and a set of descriptors U , the set ∆(U) is the

smallest set of extended packed nodes such that:

〈X ::= αt · β, l, k + 1〉 ∈ U =⇒ 〈X ::= αt · β, l, k, k + 1〉 ∈ ∆(U) (P(1))

〈X ::= α · Y β, l, k〉 ∈ U , 〈Y ::= δ·, k, r〉 ∈ U
=⇒ 〈X ::= αY · β, l, k, r〉 ∈ ∆(U) (P(2))

〈X ::= ·, l, r〉 ∈ U =⇒ 〈X ::= ·, l, l, r〉 ∈ ∆(U) (P(3))

The EPNs with a slot of the form X ::= · are a convenience; they avoid the need for

special cases for nullable nonterminals in certain definitions.

2.2.2 Discussion

In this chapter, we discuss descriptor processors: parsing procedures computing a set of

descriptors by processing descriptors sequentially. Sections 2.3 and 2.4 discuss descriptor

processors that compute exactly the set U(γ, I). This is a simplification, however, enabling

us to focus on the principles behind the algorithms. In practice, generalised parsing algo-

rithms like Earley’s algorithm and GLL parsers do not process all the descriptors in U(γ, I),

as, for example, they use lookahead to avoid descriptors that have no chance of success (are

not part of a complete parse).

The presented parsing procedures compute the set ∆(U(γ, I)) alongside U(γ, I), as it is

simple and efficient to do so. Appendix A.4 explains how a complete BSPPF without spu-

rious derivation trees is constructed from ∆(U(γ, I)), showing that our parsing procedures

29

can be extended to yield all derivation trees.

2.3 Descriptor Processing

Based on the definition of U(γ, I), we design an algorithm, called Closing a Descriptor

Set (cds), in the form of a closure algorithm. We show that cds computes U(γ, I) and

∆(U(γ, I)) and use cds as a basis to explain GLL Parsing. cds is essentially Earley’s algo-

rithm but considers descriptors in an unspecified order whereas Earley’s algorithm processes

descriptors in order of increasing index (a comparison between cds and Earley’s algorithm

is made in §2.3.4).

2.3.1 Closing a Descriptor Set (CDS)

Procedure 1 (cds-proc). The inputs are sentence I ∈ T ∗ and grammar γ = 〈Z, p〉. The

goal is to compute U(γ, I). This is achieved by repeatedly inspecting the set of currently

processed descriptors U to ‘discover’ descriptors until there are no more ‘new’ descriptors.

Initially, U = {(Z ::= ·β, 0, 0) | Z ::= β ∈ γ}. Set U is closed by repeatedly executing one of

the following actions, until U stabilises:

1. If 〈X ::= α·tβ, l, k〉 ∈ U , for any terminal symbol t with t = Ik add 〈X ::= αt·β, l, k+1〉

to U

2. If 〈X ::= α · Y β, l, k〉 ∈ U , for any nonterminal symbol Y , add 〈Y ::= ·δ, k, k〉 to U ,

for all Y ::= δ ∈ γ

3. If 〈Y ::= δ·, k, r〉 ∈ U and 〈X ::= α · Y β, l, k〉 ∈ U , add 〈X ::= αY · β, l, r〉 to U

cds-proc can be concretised by a worklist algorithm that runs on a worklistR containing

the descriptors that require processing and that processes each descriptor only once. A

descriptor is processed by inspecting its slot and determining which of the actions it enables

(if any).

Action 1 is only executed when a descriptor of the form 〈X ::= α · tβ, l, k〉 (t terminal)

is processed. If t = Ik, then the descriptor 〈X ::= αt · β, l, k + 1〉 is added to R. We call

this the match action.

30

Action 2 is only executed when a descriptor of the form 〈X ::= α · Y β, l, k〉 (Y nonter-

minal) is processed. All the descriptors corresponding to all valid choices of δ are added to

R. We call this the descend action.

Action 3 is executed when a descriptor of the form 〈Y ::= δ·, k, r〉 or 〈X ::= α · Y β, l, k〉

(Y nonterminal) is processed. In the former case, all the descriptors 〈X ::= αY · β, l, r〉, for

valid choices of X, α, β, and l, are added to R. We call this the ascend action. In the

latter case, all the descriptors 〈X ::= αY ·β, l, r〉, for valid choices of r, are added to R. We

call this the skip action.

Processing a descriptor of the form X ::= α · Y β requires a choice between the descend

and skip actions. At most one of these actions is capable of increasing the size of U . This is

because a skip action on X ::= α ·Y β only adds additional descriptors if a descend action on

that descriptor has already been performed and repeating a descend action does not result

in more descriptors. The shape of a descriptor, and the contents of U , therefore determine

uniquely which of match, ascend, descend, or skip is to be executed in order to process that

descriptor. And as we shall explain later, it is only necessary to process each descriptor

once. These observations enable the following straightforward formalisation of cds as a

worklist algorithm.

2.3.2 Formalisation

Formalisation 1 (cds-form). Function cds receives a grammar γ = 〈Z, p〉 ∈ Γ and a

sentence I ∈ T ∗ as input, and computes U(γ, I) and ∆(U(γ, I)). The extended packed

nodes are computed whilst descriptors are processed, rather than post-processing U(γ, I) to

obtain ∆(U(γ, I)).

cds(γ, I) = loopγ,I({〈Z ::= ·β, 0, 0〉 | Z ::= β ∈ p}, ∅, ∅)
where 〈Z, p〉 = γ

The core of the algorithm is formed by the recursive function loopγ,I , whose first argu-

ment is a worklist R. The second and third arguments of loop(γ, I) are sets of descriptors

and extended packed nodes. The descriptors are those that have already been processed

(U) and the extended packed nodes are those that have been ‘discovered’ so far (E).

31

loopγ,I(R,U , E) =

〈U , E〉 if R = ∅
loopγ,I(R∪R1 \ U ′,U ′, E ∪ E1) otherwise

where 〈R1, E1〉 = processγ,I(d,U ′)
and U ′ = {d} ∪ U

where d = select(R)

Function loop is defined such that loopγ,I(R,U , E) = 〈U , E〉 if R = ∅ and otherwise there is a

d ∈ R and loopγ,I(R,U , E) = loopγ,I(R∪R1∪U ′,U ′, E∪E1), where R1 and E1 are the results

of processing d and U ′ is the set of processed descriptors extended with d. Function process

executes a match, descend , skip, or ascend action leading to possible new descriptors R1

and extended packed nodes E1. Termination of loop is guaranteed by the fact that for every

grammar and input sentence there are finitely many descriptors that can be discovered by

process. Function select can be any function such that select(R) ∈ R if R 6= ∅.

processγ,I(〈X ::= α · sβ, l, k〉,U) =
matchγ,I(〈X ::= α · sβ, l, k〉) if s ∈ T
descendγ,I(s, k) if R = ∅
skipγ,I(〈X ::= αs · β, l, k〉, R) otherwise

where R = {r | (s ::= δ·, k, r〉 ∈ U}
processγ,I(〈Y ::= δ·, k, r〉,U) = 〈R1, E1 ∪ E2〉

where 〈R1, E1〉 = ascend(K, r)

and E2 = {〈Y ::= ·, k, r, r〉 | δ = ε}
and K = {〈X ::= αY · β, l, k〉 | 〈X ::= α · Y β, l, k〉 ∈ U}

A set R is computed to determine whether to execute a skip or descend action, when

processing a descriptor of the form 〈X ::= α · sβ, l, k〉 with s ∈ N . The set R contains r if

and only if there is a production s ::= δ whose symbols match the sentence Ik,r, indicated

by a descriptor 〈s ::= δ·, k, r〉 ∈ U . If there are such r, a descend action on Y must have

taken place; 〈Y ::= ·δ, k, k〉 must have been processed in order to get 〈Y ::= δ·, k, r〉 ∈ U . If

there are no such r a (possibly redundant) descend action will be executed.

32

processing action new E
1 〈S ::= ·AA, 0, 0) descend 2, 4
2 〈A ::= ·a, 0, 0) match 3 e1

3 〈A ::= a·, 0, 1) ascend 6 e2

4 〈A ::= ·E, 0, 0) descend 5
5 〈E ::= ·, 0, 0) ascend 8 e9, e3

6 〈S ::= A ·A, 0, 1) descend 7, 12
7 〈A ::= ·a, 1, 1) match
8 〈A ::= E·, 0, 0) ascend 9 e4

9 〈S ::= A ·A, 0, 0) skip 10, 11 e7, e8

10 〈S ::= AA·, 0, 1) ascend
11 〈S ::= AA·, 0, 0) ascend
12 〈A ::= ·E, 1, 1) descend 13
13 〈E ::= ·, 1, 1) ascend 14 e10, e5

14 〈A ::= E·, 1, 1) ascend 10! e6

Figure 2.6: Execution trace of cds-form with ascend > match > skip > descend.

matchγ,I(〈X ::= α · tβ, l, k〉) ={
〈{〈X ::= αt · β, l, k + 1〉}, {〈X ::= αt · β, l, k, k + 1〉}〉 if t = Ik

〈∅, ∅〉 otherwise

descendγ,I(Y, k〉 = 〈{〈Y ::= ·δ, k, k〉 | Y ::= δ ∈ γ}, ∅〉
ascendγ,I(K, r〉 = nmatch(K, {r})
skipγ,I(d,R) = nmatch({d}, R)

nmatchγ,I(K,R) = 〈R1, E1〉
where R1 = {〈X ::= αY · β, l, r〉 | 〈X ::= αY · β, l, k〉 ∈ K, r ∈ R}
and E1 = {〈X ::= αY · β, l, k, r〉 | 〈X ::= αY · β, l, k〉 ∈ K, r ∈ R}

Function nmatch is given a set of triples K of the form 〈X ::= αY ·β, l, k〉, with the same non-

terminal Y and integer k, and possibly different X, α, β, and l. For all 〈X ::= αY ·β, l, k〉 ∈

K and r ∈ R new descriptors 〈X ::= αY · β, l, r〉 are created. Function nmatch is called

either with a singleton set K (skip) or a singleton set R (ascend). The definitions of skip,

ascend , and nmatch are inspired by Johnson’s memoisation combinator [Johnson, 1995],

which is discussed in more detail in §3.3.2.

2.3.3 Completeness

By construction, cds computes a subset of U(γ, I) (soundness), for every grammar γ and

sentence I, as all the descriptors in the result are justified by the rules of Definition 2.2.2. It

33

processing action new E
1 〈S ::= ·AA, 0, 0〉 descend 2, 3
2 〈A ::= ·E, 0, 0〉 descend 4
3 〈A ::= ·a, 0, 0〉 match 8 e1

4 〈E ::= ·, 0, 0〉 ascend 5 e9, e3

5 〈A ::= E·, 0, 0〉 ascend 6 e4

6 〈S ::= A ·A, 0, 0〉 skip 7 e8

7 〈S ::= AA·, 0, 0〉 ascend
8 〈A ::= a·, 0, 1〉 ascend 9, 12 e2, e7

9 〈S ::= A ·A, 0, 1〉 descend 10, 11
10 〈A ::= ·E, 1, 1〉 descend 13
11 〈A ::= ·a, 1, 1〉 match
12 〈S ::= AA·, 0, 1〉 ascend
13 〈E ::= ·, 1, 1〉 ascend 14 e10, e5

14 〈A ::= E·, 1, 1〉 ascend 12! e6

Figure 2.7: Execution trace of cds-form with skip > descend > match > ascend.

is more complicated to argue that all descriptors in U(γ, I) are in the result (completeness).

Every descriptor required by R(1) (see Definition 2.2.2) is added as part of the initialisation.

Every descriptor in the final set of descriptors has been processed and each processed de-

scriptor results in either a match, descend, ascend, or skip action. The outcome of the match

and descend actions do not depend on the contents of U at the time they are called, so they

will add all the descriptors required by R(2) and R(3). The outcome of the skip and ascend

actions do depend on the contents of U . Thus, it seems, executing a skip or ascend action

a second time to the same descriptor may lead to new descriptors, if U grew in between.

However, if a skip action misses a descriptor at a given time, this descriptor is added later

by a subsequent ascend action. The same holds vice versa, and thus all descriptors required

by R(4) are added. Appendix A.2 formalises and proves the claim that csd computes the

set U .

Appendix A.3 gives a proof that cds computes ∆(U(γ, I)), i.e. 〈U(γ, I),∆(U(γ, i))〉 =

cds(γ, I).

Figures 2.6 and 2.7 show two alternative executions of cds-form, both computing

U(Γah, I) and ∆(U(Γah, I)) with I = a. The execution of Figure 2.6 discovers descriptor

〈S ::= AA·, 0, 1〉 through a skip action, whilst the execution of Figure 2.7 does so through

an ascend action.

34

2.3.4 Comparison with Earley’s algorithm

The cds algorithm is inspired by Earley’s algorithm [Earley, 1970] and Pingali and Bilardi’s

description of Earley’s algorithm [Pingali and Bilardi, 2015]. Earley’s algorithm uses a set

of “states” En for each possible index 0 6 n 6 |I| into input sentence I, where each state can

be represented by a pair of the form 〈X ::= α · β, l〉. cds and Earley’s algorithm are similar

in the sense that when cds processes a descriptor of the form 〈X ::= α · β, l, k〉, Earley’s

algorithm processes a state of the form 〈X ::= α · β, l〉 in the state set Ek. cds generalises

Earley’s algorithm by processing descriptors in any order, rather than in any order within

a state set and computing the state sets in ascending order. The most important difference

between cds-form and Earley’s algorithm is that Earley’s algorithm does not have an action

analogous to skip, whereas Earley’s predictor action is analogous to descend, completer

to ascend, and scanner to match.

As we have seen in Section 2.3.3, the skip action is important for the completeness of cds.

As explained next, the skip action is redundant when processing descriptors in an order with

ascending pivots and when the grammar has no nullable nonterminals. However, as Earley

noted, a problem arises with the ascend (completer) action when a grammar has nullable

nonterminals. When a descriptor of the form 〈Y ::= δ·, k, r〉 is processed, the algorithm

searches for descriptors of the form 〈X ::= α · Y β, l, k〉 ∈ U to create new descriptors with

‘the dot moved over Y ’. It follows that k < r if there are no nullable nonterminals in the

grammar (because δ is not nullable). If all previous descriptors were processed in an order

with ascending pivots, then, following k < r, all descriptors of the form 〈X ::= α · Y β, l, k〉

must already be in U . However, if Y is a nullable nonterminal it may be that k = r (e.g. if

δ = ε). In this case, there is no guarantee that all such descriptors have been added.

Earley solved this problem by suggesting an implementation that keeps track of ascend

actions that may not have added all necessary descriptors so that subsequent descend ac-

tions may yield the missing descriptors [Earley, 1970]. Grune and Jacobs suggest to keep

executing ascend and descend actions until no new descriptors are found [Grune, 2010].

This approach does not fit easily in our formalisation because it may involve process-

ing the same descriptor more than once. Aycock and Horspool give the simplest solu-

tion [Aycock and Horspool, 2002]: when performing the descend action on 〈X ::= α ·

Y β, l, k〉, and when Y is nullable, add 〈X ::= αY · β, l, k〉 to R (as well as the usual

35

descriptors arising from a descend action).

2.4 GLL Parsing

Like RDP, GLL Parsing is a technique for (manually or mechanically) writing, in this case,

complete top-down parsers. Like RDPs, GLL parsers can be based on different algorithms,

each with usage or performance benefits. GLL parsers can be written in any host language,

although the specifics of how aspects of the underlying algorithm are implemented may vary

considerably across host languages. The main complication is continuation management.

2.4.1 Continuation Management

A parse function of a complete RDP parser should execute all of its branches to be complete6.

And, rather than a single integer (right extent), a parse function must be able to produce

more than one right extent (1), because multiple of its branches may succeed with different

right extents. As well as finding multiple right extents, a parse function must have multiple

return locations or continuations (2), when it is called from different call sites. To realise this,

a generalised RDP parser needs a more powerful form of continuation management7 than

is provided by standard call-stacks.

Scott and Johnstone’s GLL parsers use a graph in which continuations are encoded

in nodes and edges [Scott and Johnstone, 2010a]. In a functional programming setting,

Johnson suggests a sophisticated form of memoisation which involves remembering the con-

tinuations of the parse functions as well as multiple return values [Johnson, 1995].

Scott and Johnstone explain GLL Parsing by means of a parser generator which writes

parsers in a low-level pseudo-code containing labels and GOTO statements. This specific

treatment of continuations makes it somewhat difficult to imagine GLL parsers in host

languages that do not support such constructs. In this chapter we do not focus on (man-

ually or mechanically written) GLL parsers. Instead, we give a parsing procedure that

shows how sentences are parsed in accordance to an input grammar. The chosen strategy

for finding all derivations is similar to that of a particular GLL parsing algorithm called

6The branches may be guarded by lookahead tests.
7We chose this term for referring, in a more general setting, to what is known as continuation passing in

the functional programming community.

36

RGLL [Scott and Johnstone, 2016]. We formalise the algorithm using abstract mathemati-

cal objects to model continuations. Labels and GOTO statements give a specific concreti-

sation of this model. In Chapter 3 on parser combinators, we see that parse functions

themselves can concretise continuations in a setting with higher-order functions.

2.4.2 The Graph Structured Stack

We model a continuation as a pair 〈s, l〉 of a slot s and left extent l (essentially a descriptor

missing its index). GLL parsers manage continuations themselves, rather than relying on a

host language’s call-stack. A call-stack can be represented by a linked-list of continuations.

There is potential overlap between the evolution of the call-stacks for alternative parses. The

Graph Structured Stack (GSS) is a data structure that efficiently represents multiple stacks

simultaneously, by maximising sharing between stacks. A GSS is a (possibly cyclic) directed

graph with continuations as nodes. All paths in a GSS end in the same sink, representing

the empty stack. Each path represents the stack consisting of those continuations found at

the nodes of the path. A GSS represents infinitely many stacks when it is cyclic, as infinitely

many paths exist that traverse the cycle.

Scott and Johnstone’s description of RGLL involves a modification of the GSS that

embeds the original GSS, retaining the strong connection between the GSS and the call-

stacks of RDP parsers [Scott and Johnstone, 2016]. In this variation, the GSS is a bipartite

graph in which continuations are interspersed with a new type of node 〈X, l〉, with X

a nonterminal and l an integer (left extent). We call such a pair a commencement (in

contrast to continuation), as it identifies the call to the parse function of X with argument

l. To construct a BSPPF, edges in the GSS are labelled with SPPF-nodes. Since we are

constructing an extended packed node set, rather than a tree-structure, we have no need for

this complication.

Unlike [Scott and Johnstone, 2016], we do not concern ourselves with maintaining a

strong connection between the call-stacks in RDP and the call-graph we use. We model

the call-graph as a binary relation G between commencements and continuations. A binary

relation P between commencements and natural numbers models the storage of the zero

or more right extents returned by a parse function, corresponding to the pop-set of GLL.

Together, the relations reflect for each unique function call, identified by the commencement

37

〈X, l〉, all the continuations C and the right extents R that have been discovered for 〈X, l〉 at

a particular time of the algorithm’s execution. The similarity with Johnson’s memoisation

combinator (see §3.3.2) is striking [Johnson, 1995].

2.4.3 Purely Functional GLL Parsing

We give a purely functional formalisation of a GLL algorithm, called FUN-GLL, operating

on the abstract data structures introduced in previous sections as G, P, extended packed

nodes, descriptors, and the worklist R of cds-form. As such, we side-step a discussion on

the implementation and efficiency of the data structures. Our claim is that, although the

data structures are crucial for the efficiency and worst-case complexity of the algorithms,

the specifics of the data structures’ implementations are not crucial to the understanding

of the algorithm. A thorough discussion of the data structures used by GLL algorithms is

found in [Johnstone and Scott, 2011].

Formalisation

FUN-GLL differs only from cds-form in that the set U is not inspected to determine

whether a skip or ascend action can be performed. G and P are specialised data structures

for retrieving that information. In cds-form, U is inspected to find all descriptors of

the form 〈X ::= α · Y β, l, k〉 whenever a descriptor 〈Y ::= δ·, k, r〉 is processed (the ascend

action), whereas in FUN-GLL all continuations of the form 〈X ::= αY ·β, l〉 are recorded in G

for commencement 〈Y, k〉 (δ is irrelevant). Similarly, in cds-form, U is inspected to find all

descriptors of the form 〈Y ::= δ·, k, r〉 whenever a descriptor of the form 〈X ::= α·Y β, l, k〉 is

processed (the skip action), whereas in FUN-GLL all right extents r currently discovered are

recorded in P for commencement 〈Y, k〉. In FUN-GLL, set U is only inspected to determine

whether a certain descriptor has already been processed8. We present FUN-GLL as a

variation on cds-form. The differences between cds-form and FUN-GLL are highlighted

in blue.

Formalisation 2 (FUN-GLL). Function fungll receives a grammar γ = 〈Z, p〉 ∈ Γ and a

sentence I ∈ T ∗ as input, and computes U(γ, I) and ∆(U(γ, I)).

8Because the algorithm only performs membership tests on U , it can thus be implemented as a (three-
dimensional) array with constant lookup.

38

fungll(γ, I) = loopγ,I({〈Z ::= ·β, 0, 0〉 | Z ::= β ∈ γ}, ∅, ∅, ∅, ∅)
where 〈Z, p〉 = γ

In the definition of loop that follows, the call to process is given G and P as arguments,

not U , showing that U is not needed to process the item. Processing a descriptor might

involve adding new entries to G and P in the recursive call of loop (G1 and P1).

loopγ,I(R,U ,G,P, E) =
〈U , E〉 if R = ∅
loopγ,I(R∪R1 \ U ′,U ′,G ∪ G1,P ∪ P1, E ∪ E1) otherwise

where 〈〈R1, E1〉,G1,P1〉 = processγ,I(d,G,P)

and U ′ = {d} ∪ U
where d = select(R)

The definition of process, given below, shows that G is extended when a nonterminal is

descended. P is extended when the end of a production is reached. The sets R and K are

computed from the P and G respectively, rather than U , as explained above. The functions

match, descend and skip have not changed.

processγ,I(〈X ::= α · sβ, l, k),G,P) =
〈matchγ,I(X ::= α · sβ, l, k), ∅, ∅〉 if s ∈ T
〈descendγ,I(s, k), {〈〈s, k〉, 〈X ::= αs · β, l〉〉}, ∅〉 if R = ∅
〈skipγ,I(〈X ::= αs · β, l, k〉, R), {〈〈s, k〉, 〈X ::= αs · β, l〉〉}, ∅〉 otherwise

where R = {r | 〈〈s, k〉, r〉 ∈ P}
processγ,I(〈Y ::= δ·, k, r),U ,G,P) = 〈〈R1, E1 ∪ E2〉, ∅, {〈〈Y, k〉, r〉}〉

where 〈R1, E1〉 = ascend(K, r)

and E2 = {〈Y ::= ·, k, r, r〉 | δ = ε}
and K = {〈X ::= αY · β, l, k〉 | 〈〈Y, k〉, 〈X ::= αY · β, l〉〉 ∈ G}

Figure 2.8 shows an execution of FUN-GLL, processing the same number of descriptors as

cds-form to find a closed set of descriptors and extended packed nodes.

39

processing action new G P E
1 〈S ::= ·AA, 0, 0〉 descend 2, 3 (k1, c1〉
2 〈A ::= ·a, 0, 0〉 match 4 e1

3 〈A ::= ·E, 0, 0〉 descend 5 (k2, c2)
4 〈A ::= a·, 0, 1〉 ascend 6 (k1, 1) e2

5 〈E ::= ·, 0, 0〉 ascend 7 (k2, 0) e9, e3

6 〈S ::= A ·A, 0, 1〉 descend 8, 9 (k3, c3)
7 〈A ::= E·, 0, 0〉 ascend 10 (k1, 0) e4

8 〈A ::= ·a, 1, 1〉 match
9 〈A ::= ·E, 1, 1〉 descend 11 (k4, c4)
10 〈S ::= A ·A, 0, 0〉 skip 12, 13 (k1, c3) e7, e8

11 〈E ::= ·, 1, 1〉 ascend 14 (k4, 1) e10, e5

12 〈S ::= AA·, 0, 1〉 ascend
13 〈S ::= AA·, 0, 0〉 ascend
14 〈A ::= E·, 1, 1〉 ascend 12! (k3, 1) e6

c1 = 〈S ::= A ·A, 0〉
c2 = 〈A ::= E·, 0〉
c3 = 〈S ::= AA·, 0〉
c4 = 〈A ::= E·, 1〉

k1 = 〈A, 0〉
k2 = 〈E, 0〉
k3 = 〈A, 1〉
k4 = 〈E, 1〉

Figure 2.8: Execution of FUN-GLL.

40

Chapter 3

Generalising Combinator

Parsing

Top down parsers implementing Recursive Descent (RD) parsers are written as a set of

mutually recursive parse functions, one for each nonterminal of a grammar. As such, there

is a strong correspondence between an RD parser and the grammar for which it has been

written. Parser1 combinators take this approach to a next level. Rather than (manually

or mechanically) writing a parser based on a grammar, more complex parse functions are

obtained by applying combinator functions to simpler parse functions. Fundamental to

the parser combinator approach is that existing parsers are easily composed to form new

parsers, relying on the ability to define higher-order functions in the host language. The ap-

proach enables the definition of combinators that capture common patterns like: arbitrarily

delimited program fragments, program fragments being repeated possibly many times, or

occurrences of left- or right-associative operators. The combinators can be used in multiple

language definitions without modifications; they are executable and reusable components.

In this chapter we introduce the topic of combinator parsing by developing ‘conven-

tional’ parser combinators in the style of [Wadler, 1985] and as found in many popular

libraries across functional programming languages. Conventional implementations of parser

1Until we introduce semantic actions in Chapter 5, the term recogniser combinator is more accurate. We
stick with established terminology however, and use the term ‘parser’ more liberally than in Chapter 2.

41

combinators have the same weaknesses as standard RD parsers; backtracking may result in

exponential runtimes and parsers fail to terminate when they are defined with left-recursion.

We discuss several approaches to overcoming these issues, focusing on two in particular. All

of these approaches use a form of observable sharing to make recursive calls detectable.

Some approaches use memoisation to prevent nontermination and the duplication of work

generally, bringing down the runtime complexity.

This chapter lays the groundwork for the development of explicit BNF combinators in

Chapter 4, the main contribution of this part of the thesis, bringing combinator parsing and

generalised parsing together.

3.1 Combinator Parsing

To introduce our approach to combinator parsing, we first present a conventional parser

combinator library in this section. In subsequent sections, we consider alternative definitions

of the same combinators in order to explain ways to generalise the combinator approach for

overcoming the drawbacks of the original definitions.

3.1.1 Elementary Combinators

Throughout this chapter we discuss several types of parse functions. A parse function

typically receives as arguments an input sentence I and an index into the sentence (left

extent l) and returns another index (right extent r). A sentence is a sequence of terminal

symbols taken from the set W , i.e. I ∈W ∗. A parser combinator library provides a number

of elementary parse functions, functions generating elementary parse functions, elementary

combinators, and derived combinators. Together these are (somewhat confusingly) referred

to as parser combinators. A parser combinator is called derived if it is defined in terms of

already existing parser combinators, otherwise the combinator is elementary. We refer to

an expression formed out of combinators as a combinator expression.

A typical parser combinator library provides implementations of a similar set of core

combinators and generators. Here we consider these to be: the parse function generator

term, elementary parse functions fails and succeeds, and elementary combinators seq and

alt . Figure 3.1 gives a standard definition to these combinators based on a backtracking RD

42

term(x)(I, i) =

{
{i+ 1} if Ii = x

∅ otherwise

seq(p, q)(I, i) = {r | k ∈ p(I, i), r ∈ q(I, k)}
alt(p, q)(I, i) = p(I, i) ∪ q(I, i)
succeeds(I, i) = {i}

fails(I, i) = ∅

recognise(p)(I) =

{
true if |I| ∈ p(I, 0)

false otherwise

term : W →M1

seq : M1 ×M1 →M1

alt : M1 ×M1 →M1

succeeds : M1

fails : M1

recognise : M1 → (W ∗ → B)

where M1 = W ∗ × N→ P(N)

Figure 3.1: Backtracking RD implementation of the conventional elementary combinators,
together with recognise for running a parse function.

algorithm2. In these definitions, the set M1 of all parse functions is defined as W ∗ × N →

P(N). Function term generates a parse function that matches and consumes the given

terminal symbol and no other terminals. Function seq ‘runs’ its first operand to get zero

or more right extents and then ‘runs’ its second argument with those right extents as the

index argument. Function alt generates a parse function that ‘runs’ both of its operands

and combines their result. Function succeeds consumes no input but always succeeds, whilst

fails consumes no input but always fails. Function recognise transforms a parse function p

into a function from an input sentence I to a Boolean by applying p to I and 0, the initial

left extent, and tests whether the length of I is part of the result. Function recognise(p)

is a recogniser for the language L(γ) if I ∈ L(γ) ⇐⇒ recognise(p)(I) = true. Section

§3.2.3 discusses the possibility of generating, from a combinator expression, a grammar γ

for which this holds.

3.1.2 Efficiency and Termination

Parsers are written in a host language that offers a mechanism for associating identifiers with

expressions. This enables recursive parsers that recognise infinitely many input sentences.

The mechanism also enables simple definitions of otherwise complicated parsers via reuse.

The alt combinator requires full evaluation of both its operands, which, in the combina-

2This is the first time we define higher-order functions, for which we use several layers of parenthesised
parameters. For example, the ‘curried’ version of a function with three parameters is defined as f(a)(b)(c) =
... and applied as f(1)(2)(3). The uncurried version is defined as f(a, b, c) = ... and applied as f(1, 2, 3).

43

pX = alt (term (’a’)
, alt (seq (term (’a’), pX)

, seq (term (’a’), seq (term (’a’), pX))))

Figure 3.2: A parser with exponential runtime.

pY = alt (term (’a’)
, alt (seq (term (’a’), term (’a’))

, seq (pY , pY)))

Figure 3.3: A parser failing to terminate on the empty sentence.

tion with named expressions, potentially causes repeated work and nontermination. In other

words, all branches introduced by alt are explored. Figure 3.2 shows a parser for which an

input sentence consisting of n terminals3 ’a’ can be recognised in exponentially-in-n many

ways4. Evaluating pX (I, 0) requires exponentially many reductions5 in the length of I, if I

consists only of ’a’s. Figure 3.3 defines pY , which fails to terminate on any sentence5, as

each call to pY can result in a call to pY without having consumed any input, i.e. the left

extent is unchanged. It is well known that standard RD parsers fail to terminate on left-

recursive grammars [Grune, 2010, Wadler, 1985] and the problem mentioned here is closely

related. This triggers the question whether, like GLL does for RD, parser combinators can

be generalised to allow for left-recursion. In later sections we discuss approaches to general-

ising the parser combinator approach so that parsers terminate efficiently for larger classes

of grammars.

3.1.3 Combinator Laws

Figure 3.4 presents a number of laws that hold for the parser combinators in Figure 3.1. From

these laws it follows that M1 forms a semi-ring with seq as its multiplication operation and

alt as its addition operation with respective identities succeeds and fails. The laws enable

3In our examples we choose W to be the set of characters, denoted by single quotation.
4The number of ways in which the string can be recognised grows like the Fibonacci sequence.
5In a strict (applicative-order) evaluation model.

44

alt(fails, q) = q (left-identity-alt)

alt(p, fails) = p (right-identity-alt)

alt(p, p) = p (idempotency-alt)

alt(p, q) = alt(q, p) (commutativity-alt)

alt(p, alt(q, r)) = alt(alt(p, q), r) (associativity-alt)

seq(succeeds, q) = q (left-identity-seq)

seq(p, succeeds) = p (right-identity-seq)

seq(fails, q) = fails (left-absorption-seq)

seq(p, fails) = fails (right-absorption-seq)

seq(p, seq(q, r)) = seq(seq(p, q), r) (associativity-seq)

seq(p, alt(q, r)) = alt(seq(p, q), seq(p, r)) (left-distributivity)

seq(alt(p, q), r) = alt(seq(p, r), seq(q, r)) (right-distributivity)

Figure 3.4: Properties maintained by the combinators definitions of Figure 3.1.

high-level reasoning about combinator expressions. For example, we can conclude that the

ordering of alternatives does not matter (commutativity), that duplicate alternates can be

removed (idempotency) and that we can perform left-factoring to avoid running a parse

functions multiple times (left-distributivity).

3.1.4 Extensions

The combinators term, seq , succeeds, alt and fails form the core of a basic combinator library.

The library can be extended by defining derived combinators and additional elementary

combinators.

Derived combinators As an example of a derived combinators, consider within:

within : M1 ×M1 ×M1 →M1

within(p,m, q) = seq(p, seq(m, q))

This useful combinator can be specialised to form a combinator that places a given parse

function in between parse functions matching opening and closing parentheses.

45

parens : M1 →M1

parens(p) = within(term(’(’), p, term(’)’))

The combinator sepBy is given two parse functions, and forms a parser that applies the first

argument one or more times, each time separated by a separator determined by the second

argument.

sepBy : (M1 ×M1)→M1

sepBy(p, s) = alt(p, seq(p, seq(s, sepBy(p, s))))

Together, the last two derived combinators can be used to define a derived combina-

tor for matching programming language tuples containing expressions, i.e. tuples(p) =

parens(sepBy(p, ’,’)), if p is a parse function for matching expressions.

Based on the laws in Figure 3.4 we can refactor the definition of sepBy to make it more

efficient. The underlying observation is that, in the definition above, p is applied twice, one

time at the start of each of the alternatives. The following equalities show how the original

definition of sepBy can be changed to a more efficient version using the left-distributivity

law.

alt(p, seq(p, seq(s, sepBy(p, s)))) (right-identity-seq)

=alt(seq(p, succeeds), seq(p, seq(s, sepBy(p, s)))) (left-distributivity)

=seq(p, alt(succeeds, seq(s, sepBy(p, s))))

Combinators can be higher-order in the sense of receiving a combinator, rather than a

parse function, as an argument. The combinator flatSeq defined below produces a parse

function that matches delimited sequences with a separator, where the elements of the

sequence may be delimited sequences of the same form. By abstracting over the delimiter

we obtain a higher-order combinator.

flatSeq : ((M1 →M1)×M1 ×M1)→M1

flatSeq(d , p, s) = alt(p, d(sepBy(flatSeq(d, p, s), s)))

(Comparing this definition with the definition of sepBy itself is insightful.) The parse

function flatSeq(parens, term(’a’), term(’,’)) recognises the strings "a", "(a)", "((a))",

"(a,a)", "(a,(a,a))", "(a,(a,a),(a))", etc.

46

Additional elementary combinators As an example of an additional elementary com-

binator, consider pred , a generalisation of term, which matches terminal symbols that satisfy

a certain predicate:

pred : (W → B)→M1

pred(f)(I, i) =

{
{i+ 1} if f(Ii)

∅ otherwise

Another useful elementary combinator checks whether a parse functions succeeds without

consuming input:

peek : M1 →M1

peek(p)(I, i) =

{
{i} if p(I, i) 6= ∅
∅ otherwise

Combinator not constructs a parse function that fails if the given parse function is successful.

not : M1 →M1

not(p)(I, i) =

{
∅ if p(I, i) 6= ∅
{i} otherwise

This combinator can be used to enforce a “longest-match” strategy, for example to greedily

match as many digits as possible:

digit = alt(term(’0’), alt(term(’1’), alt(. . . , alt(term(’8’), term(’9’))) . . .))

digits = alt(not(digit), seq(digit , digits))

3.1.5 Discussion

This section has shown how combinators can be implemented as recognisers, how identifiers

can be associated with combinator expressions to define succinct and cyclic parsers, and

that such parsers may be inefficient or fail to terminate entirely.

Several authors have suggested combinator implementations that ensure that parsers

are guaranteed to terminate within a polynomial order of steps (with respect to the length

of the input sentence). The efficiency of the parsers can be improved by memoisation, as

suggested by [Norvig, 1991]. To handle left-recursion, Frost, Hafiz and Callaghan add a

‘curtailment’ procedure to memoising combinators with the effect of limiting the number of

recursive calls based on the length of the input sentence [Frost et al., 2008]. [Johnson, 1995]

47

gives an elegant implementation of memoising combinators that store not only parse results

(right extents) but also continuation functions. The stored continuations are used to detect

recursion as well as to ensure that all possible derivation paths are explored.

A different approach was separately suggested by [Ljunglöf, 2002], [Ridge, 2014], and

[Devriese and Piessens, 2012]. Their approaches have in common that they generate a gram-

mar from a combinator expression and then apply a standalone parser to find one or more

derivations. A final process applies semantic actions based on the derivation(s).

Each of these approaches relies on ‘observable sharing’, a concept studied in the context

of embedding DSLs in purely-functional languages [Claessen and Sands, 1999, Gill, 2009].

A nice introduction to observable sharing is given by [Gill, 2009], discussing several methods

via which observable sharing can be achieved. Baars and Swierstra discuss observable shar-

ing in the context of parser combinators [Baars and Swierstra, 2004]. The inject combinator,

introduced in the next section, makes sharing observable by relying on the programmer to

associate unique labels with sharing positions. A combinator like inject is often seen as a

non-solution to observable sharing, as making sharing observable becomes the responsibility

of the programmer. However, in the context of this thesis we think it is both pragmatic

and practical, as demonstrated by the case studies of this thesis, and the work of oth-

ers [Ridge, 2014, Frost et al., 2008]. The main practical concern is that, as a program grows

over time, it becomes harder to guarantee that the labels are unique.

3.2 Generating a Binarised Grammar

[Ridge, 2014] introduces the combinator library P3 that is implemented so that the evalua-

tion of combinator expressions involves three phases. Firstly, a grammar is extracted from

a combinator expression. Secondly, the grammar is given, together with an input sentence,

to a parsing procedure (an implementation of Earley’s algorithm) to obtain an ‘oracle’ rep-

resenting all possible derivations of the input sentence according to the grammar. Thirdly,

the combinator expression is traversed a second time, in an RD fashion, parsing the input

sentence under the guidance of the oracle whilst applying semantic actions.

The second phase can be based on any parsing procedure that produces an oracle. In

§5.3.2, a variant of Ridge’s third phase (or ‘semantic phase’) is implemented in which a set

48

termR(x) = 〈nt(x), {nt(x) ::= x}〉
seqR(〈p1, p2〉, 〈q1, q2〉) = 〈p1 ×++ q1, {(p1 ×++ q1) ::= p1q1} ∪ p2 ∪ q2〉
altR(〈p1, p2〉, 〈q1, q2〉) = 〈p1 +++ q1, {(p1 +++ q1) ::= p1, (p1 +++ q1) ::= q1} ∪ p2 ∪ q2〉

Figure 3.5: Implementation of term, seq and alt computing a binarised grammar.

of extended packed nodes is used as an oracle, thus enabling FUN-GLL for use in the second

phase. In this section we explain Ridge’s first phase. An approach similar to Ridge’s was

developed independently by [Ljunglöf, 2002].

3.2.1 Basic Grammar Generation

The goal is to generate a grammar γ by evaluating a combinator expression e. This is

achieved by generating a string for each combinator expression based on the strings generated

for its subexpressions, thus capturing the precise structure of the expression. The string is

used as a nonterminal symbol in the generated grammar. We assume an injective function

nt from W to strings. Furthermore, we define the following operators for combining strings

(where ++ is string concatenation):

p×++ q = "*(" ++ p++ ”, ” ++ q ++ ”)”

p+++ q = "+(" ++ p++ ”, ” ++ q ++ ”)”

With these functions we define termR, seqR and altR in Figure 3.5. The terminal symbols

of the generated grammars are elements of W , whereas the nonterminals are strings. The

grammars generated this way are binarised in the sense that each nonterminal has one

production with at most two symbols or two productions with at most one symbol.

This definition of the combinators is problematic as recursive combinator expressions

cannot be reduced in a finite amount of steps. Consider a recursively defined combinator

expression e = alt(term(’a’), e). The definition of alt tells us that fst(e), the first component

of e, is nt(’a’) +++ fst(e), a contradiction. We use injectR to ‘break the cycle’6.

injectR(l, 〈p1, p2〉) = 〈show(l), p2〉

6In Ridge’s work, the equivalent combinator is called mkntparser .

49

The first argument of injectR is an element l ∈ L, where L is a set of labels, and show is

an injective function from labels to strings. From the definition of injectR we can directly

conclude7 that the first component of e′ = injectR("E", altR(termR(’a’), e′)) is "E". To find

the second component of e′ we use the observation that identical subexpressions have the

same ‘contribution’ to the set of productions of the generated grammar. If recursive calls can

be observed, we can decide not to add any productions whenever a combinator expression is

evaluated as part of a recursive call. If injectR is applied to recursive expressions, then the

recursion can be observed by propagating a set of injected labels, as we shall demonstrate

in the next section. In §3.1.4 we saw the combinator sepBy and parse function digits, which

are both defined using recursion.

3.2.2 Grammar Generation with Observable Sharing

If we assume that all recursively defined combinator expressions are wrapped in an occur-

rence of injectR, then we can use the inserted label to observe the recursion. Doing so, we

give an alternative definition of termR, seqR, altR and injectR in Figure 3.6. The second

component of a combinator expression is no longer a set of productions, but a function

that given a set of labels C and a set of productions P returns a (possibly extended) set

of labels C ′ ⊇ C and a (possibly extended) set of productions P ′ ⊇ P . C holds all the

injected labels encountered so far, whilst P holds all the productions of the computed gram-

mar discovered so far8. The grammar generated for a particular expression e = 〈n, gen〉

is 〈n, snd(gen(∅, ∅))〉, as captured by the definition of grammarOf , where snd(x) gives the

second component of x.

Function injectR performs a form of memoisation on the second component of its second

argument, and is useful to indicate not only recursive positions but sharing generally. The

introduction of injectR has provided the tools required to:

1. guarantee termination by applying injectR to recursive expressions

2. prevent repeated evaluation by applying injectR to associate identical labels with

equivalent subexpressions9

7Here we use strings for labels, thus show is the identity function on strings.
8The propagation of C and P determines a left-to-right traversal.
9As Ridge notes, two equal expressions generate the same productions automatically.

50

termR(x) = 〈nt(x), gen〉
where gen(C,P) = 〈C, {nt(x) ::= x} ∪ P 〉

seqR(〈p1, p2〉, 〈q1, q2〉) = 〈p1 ×++ q1, gen〉
where gen(C,P) = (q2 ◦ p2)(C, {(p1 ×++ q1) ::= p1q1} ∪ P)

altR(〈p1, p2〉, 〈q1, q2〉) = 〈p1 +++ q1, gen〉
where gen(C,P) = (q2 ◦ p2)(C, {(p1 +++ q1) ::= p1, (p1 +++ q1) ::= q1} ∪ P)

injectR(x, 〈p1, p2〉) = 〈show(x), gen〉

where gen(C,P) =

{
〈C,P 〉 if x ∈ C
p2(C ∪ {x}, P ∪ {show(x) ::= p1}) otherwise

grammarOf (〈n, p〉) = 〈n, snd(p(∅, ∅))〉

Figure 3.6: Alternative to Figure 3.5, sensitive to injected symbols.

The introduction of injectR does not rule out that nonterminating and costly-to-evaluate

expressions are written, as one may fail to use injectR where necessary. Moreover, compared

to conventional parser combinators, this set of elementary combinators is harder to extend,

as explained in the next subsection.

3.2.3 Limitations

Recursive parameterised combinators With conventional combinators, as defined in

§3.1.1, it is possible to define new combinators that receive combinator expressions as ar-

guments. As an example we have seen the derived combinator within. Since within is not

recursive, it can be defined in terms of seqR and termR just as easily. However, the re-

cursively defined derived combinator sepBy is more challenging to redefine. This requires

using injectR in such a way that a different symbol is injected when different arguments are

given to sepBy . For example, we expect sepBy(p, term(’.’)) and sepBy(p, term(’,’)) to

generate different nonterminals. In other words, the first argument of injectR must somehow

be based on the arguments of sepBy .

This problem is more acute when a combinator is defined recursively with an argument

that changes endlessly. The function scales is an example of such a combinator (parens is

easily redefined).

51

scales(p) = alt(p, seq(p, scales(parens(p))))

Function recognise(scales(term(’a’))) terminates on all input sentences and recognises the

infinite language {"a", "a(a)", "a(a)((a))", "a(a)((a))(((a)))", . . .}. It is not clear how

scales can be defined as a grammar generating combinator.

Another problem is that not all arguments can be converted into strings. A higher-order

combinator like flatSeq , discussed in §3.1.4, receives a combinator as an argument, which

cannot directly be converted to a (unique) string.

Additional elementary combinators Given that one understands the parsing algo-

rithm underlying the definitions of term, seq , alt , fails and succeeds, it is quite easy to add

additional elementary combinators, for which we have used pred , peek and not as examples.

So far, the set of elementary combinators for generating grammars consists only of termR,

seqR and altR. To define succeedsR we can nominate a terminal symbol s0 ∈ W that rep-

resents the empty sequence of symbols. This symbol should be reserved in the sense that

it cannot appear in any input sentence nor as an argument to termR. We can then define

succeedsR as follows.

succeedsR = 〈nt(s0), gen〉 where gen(C,P) = 〈C, {nt(s0) ::= ε)} ∪ P 〉

Similarly we can reserve a symbol s⊥ ∈W and use it to define failsR.

failsR = 〈nt(s⊥), gen〉 where gen(C,P) = 〈C, {nt(s⊥) ::= s⊥} ∪ P 〉

The production nt(s⊥) ::= s⊥ will never be used in a derivation since s⊥ is assumed not to

occur in any input sentence.

We have thus introduced special symbols that occur only in productions and not in input

sentences. It is not clear how elementary combinators like pred , peek and not can be defined

without such special symbols or without extending the notion of productions and grammars.

Combinator laws The laws from Figure 3.4 do not hold for the grammar generating com-

binators. For example, succeedsR is not an identity of seqR, as the presence of succeedsR

adds a production for the nonterminal nt(s0) to the generated grammar, as well as a pro-

duction (nt(s0) ×++ fst(q)) ::= nt(s0)fst(q). However, the grammars are equivalent under

52

certain interpretations. Similarly, altR and seqR are no longer associative. This may not

be a problem when such details of the grammar are irrelevant to the application. However,

library implementers cannot use the laws to justify refactorings when they do not wish to

make assumptions about the usage of their library.

Generating hash-codes It may be possible to generate grammars such that the laws

are upheld, if the nonterminals are generated as hash-codes rather than strings. This

would likely require an associative and commutative binary hash-function for composing

the hash-codes produced for the operands of alt , an associative and non-commutative bi-

nary hash-function for composing the hash-codes produced for the operands of seq and a

non-associative hash-function for combining the label of a recursive combinator with pa-

rameters and the hash-codes of its arguments.

3.3 Memoising Continuation-passing Combinators

In [Johnson, 1995], Johnson gives an elegant implementation in Scheme of memoising com-

binators that store not only parse results (right extents) but also continuation functions.

The stored continuation functions are used to detect recursion as well as to ensure that all

possible paths are explored (continuation management, related to §2.4.1). The stored right-

extents are used for classical memoisation, shortcutting certain execution paths and avoiding

repeated work. This section gives a purely functional formalisation of Johnson’s approach

using inject . The first step is to explain a basic definition of the elementary combinators

written in continuation-passing style.

3.3.1 Continuation-passing Recogniser

Section 2.4 explains that GLL parsing generalises standard recursive descent parsing by

managing continuations explicitly so as to avoid relying on the host language’s call-stack.

Continuations are stored in a data structure — the GSS — and are applied as many times

as necessary. [Johnson, 1995] takes a similar approach, implementing combinators for recog-

nition. In our formalisation of GLL, the continuations are return positions paired with a

left extent. In Johnson’s combinators, continuations are parse functions — we refer to them

53

term(x)(c)(I, i) =

{
c(i+ 1) if Ii = x

∅ otherwise

seq(p, q)(c0)(I, i) = p(c1)(I, i)

where c1(r) = q(c0)(I, r)

alt(p, q)(c)(I, i) = p(c)(I, i) ∪ q(c)(I, i)
succeeds(c) = c

fails(c)(I, i) = ∅

recognise(p)(I) =

{
true if |I| ∈ p(c)(I, 0) where c(r) = {r}
false otherwise

Figure 3.7: RD implementation in continuation-passing style.

as continuation functions — that when applied to a right extent ‘do the remaining work’ of

matching the input string. The continuation functions are stored in a memoisation table so

that they can be applied as many times as necessary. Our goal is to develop, in §3.3.2, a

collection of combinators in the style of Johnson based on FUN-GLL. As a lead-in, we give

a variation on the combinators of Figure 3.1, written in continuation-passing style (CPS).

As before, a parse function receives a fixed input string and an index as arguments and

returns a set of right extents. A continuation function is a parse function without the input

string argument. A combinator expression is no longer a parse function, but a function

from continuation functions to parse functions. The set of all parse functions M1 is defined

as S∗ × N → P(N) (as in §3.1.1), the set of all continuation functions Cp is defined as

N→ P(N). A combinator expression is thus an element of Cp → Fp. The definitions of the

elementary combinators are give in Figure 3.7.

In this implementation of the combinators, the nondeterminism of alt is ‘handled’ by

giving a copy of the current continuation function c to both alternates of alt . The same

continuation function may thus be applied many times. The results of all parse functions

are united (whether successful or not).

54

3.3.2 Memoising Combinators with Observable Sharing

Johnson defines a combinator memo that is applied to a combinator expressions and evalu-

ates to a closure containing the combinator expression and a (unique) reference to a mem-

oisation table. The reference is used to observe recursion and sharing generally. Instead

of the impure memo combinator of [Johnson, 1995], we use inject , forcing the user of the

combinator library — rather than the Scheme interpreter — to provide a unique label

to be associated with a particular combinator expression. We proceed by giving another

implementation to the elementary combinators term, seq , alt , inject , succeeds and fails.

The resulting combinator definitions are a purely functional formalisation of a variation on

Johnson’s combinators. The differences between this formalisation and Johnson’s imple-

mentation are that we use sets10 to hold continuation functions, rather than lists, and that

we use a different method for observable sharing, influencing the user-experience.

A memo-table M is a mapping from a label and extent pair 〈x, i〉 to a set of right extents

R and a set of continuation functions C. The functions addToR and addToC add a right

extent r and a continuation function c to a memo-table respectively11.

addToR(x, i, r,M) = M ′

where M ′(x′, i′) = 〈R ∪ {r | x′ = x, i′ = i}, C〉
and 〈R,C〉 = M(x, i)

addToC (x, i, c,M) = M ′

where M ′(x′, i′) = 〈R,C ∪ {c | x′ = x, i′ = i}〉
and 〈R,C〉 = M(x, i)

The output of a parse function is a function from a memo-table to an updated memo-table

and a set of right extents. To combine the outputs ψ ∈ Ψ of several parse functions, whilst

propagating the memo-table, the operator o
9 is introduced:

o
9 : Ψ→ Ψ→ Ψ

(ψ1
o
9 ψ2)(M0) = 〈M2, R1 ∪R2〉

where 〈M1, R1〉 = ψ1(M0)

and 〈M2, R2〉 = ψ2(M1)

10See also footnote 11.
11Function addToC may be difficult to implement since adding continuation functions to a set requires

the ability to compare continuation functions. Perhaps for this reason, Johnson uses lists in his formulation
in Scheme. As discussed later, using lists increases the worst-case runtime complexity.

55

There are two situations in which the information in a memo-table is used. Firstly, when

there is a subsequent call to a memoised combinator expression, recognised by the availability

of continuation functions in the table. In this case, the current continuation function c is to

be applied to all the right extents in the table. This is done by the function appToR:

appToR(x, i, c,M) = o
9{c(r) |M(x, i) = 〈R,C〉, r ∈ R}(M)

Here o
9{. . .} is the generalisation of o

9 that reduces a set12 {ψ1, . . . , ψk} to a single ψ′ such

that ψ′ = o
9{ψ1, . . . , ψk} = ψ1

o
9 . . . o

9 ψk o
9 ψ0, with ψ0(M) = 〈M, ∅〉. Note that, as before,

continuation functions are parse functions without an input string as argument.

Secondly, a continuation function is interrupted when it is applied to a right extent that

has already been encountered. If the right extent is new then all the continuation functions

currently stored in the table are to be applied to it. The latter is done by appToC :

appToC (x, i, r,M) = o
9{c(r) |M(x, i) = 〈R,C〉, c ∈ C}(M)

These continuation functions are specific to a particular label x and left extent i and are

generated by the function contFor as follows:

contFor(x, i)(r)(M) =

{
〈M, ∅〉 if M(x, i) = 〈R,C〉, r ∈ R
appToC (x, i, r,M ′) otherwise

where M ′ = addToR(x, i, r,M)

Note the symmetry between appToR and appToC and the correspondence to the similarly

symmetrical skip and ascend functions of FUN-GLL in §2.4.3.

A combinator expression is memoised by an application of inject , defined as follows:

inject(x, p)(c)(I, i)(M) =

〈M, ∅〉 if c ∈ C
appToR(x, i, c,M ′) if C 6= ∅ and c 6∈ C
p(contFor(x, i))(I, i)(M ′) otherwise

where 〈R,C〉 = M(x, i)

and M ′ = addToC (x, i, c,M)

The core combinators are defined in Figure 3.8.

Function recognise transforms a combinator expression p into a recogniser by applying

it to the base continuation function c(r)(M) = 〈M, {r}〉, input string I, index 0, and the

12The order in which the parse functions are executed may influence efficiency, not the outcome.

56

term(x)(c)(I, i)(M) =

{
c(i+ 1)(M) if Ii = x

〈M, ∅〉 otherwise

seq(p, q)(c0)(I, l) = p(c1)(I, l)

where c1(r) = q(c0)(I, r)

alt(p, q)(c)(I, i) = p(c)(I, i) o
9 q(c)(I, i)

succeeds(c)(I, i) = c(i)

fails(c)(I, i)(M) = 〈M, ∅〉

recognise(p)(I) =

true if |I| ∈ R
where 〈M ′, R〉 = p(c)(I, 0)(M)

and c(r)(M) = 〈M, {r}〉
and M(x, i) = 〈∅, ∅〉

false otherwise

Figure 3.8: Generalised continuation-passing combinators.

empty memo-table M(x, i) = 〈∅, ∅〉. The string I is recognised if its length is in the produced

set of right extents R.

The striking similarity between the algorithm underlying the combinators of this section

and FUN-GLL suggest that it is possible to define combinators based on FUN-GLL, and we

do so in Section 4.3. In Section 4.3 we also show that combinators can compute grammar

slots and use these to find extended packed nodes.

3.3.3 Duplicated Continuation Functions

Besides the base continuation function c, there are two positions where new continuation

functions are created: as part of inject , with the help of contFor , and as part of seq . In the

former case, continuation functions are memoised so that a second call with the same right

extent terminates directly. In the latter case, continuation functions are not memoised and

may result in duplication of work. Let p be a combinator expression that matches the first

n symbols in input sentence I and let q match the first m symbols, i.e. p(c)(I, 0) = c(n)

and q(c′)(I, 0) = c′(m) for all continuation functions c and c′. The following equations show

that the potentially costly and unmemoised continuation function ĉ may be used twice in

an application of inject .

57

seq(alt(p, q), inject(l, . . .))(ĉ)(I, 0)

=alt(p, q)(c1)(I, 0) (where c1(r) = inject(l, . . .)(ĉ)(I, r))

=p(c1)(I, 0) o
9 q(c1)(I, 0)

=c1(n) o
9 c1(m)

=inject(l, . . .)(ĉ)(I, n) o
9 inject(l, . . .)(ĉ)(I,m)

In Johnson’s Scheme implementation, memo-table entries hold a list of continuation func-

tions rather than a set13, meaning that the same continuation function may be stored

multiple times in the same entry (when n = m above), assuming that the condition c ∈ C

of inject is not implemented (e.g. for the same reason that lists are used instead of sets).

This has been observed by Izmaylova, Afroozeh and Van der Storm in their discussion

of [Johnson, 1995], on which their Meerkat library is based [Izmaylova et al., 2016]. By

performing classical memoisation on all continuation functions, they reduce the runtime

complexity from O(nm+1) to O(n3) where n is the size of the input sentence and m is the

length of the longest rule14 in the grammar.

The issue discussed here can be explained in comparison with FUN-GLL of §2.4.3. In

§2.4.3, continuations are modelled as a pair of a grammar slot and a left extent and can

be seen to uniquely identify the next recursive descent parse function to be executed, or to

continue its execution, corresponding to continuation functions in this section. A descriptor

— a grammar slot, a left extent and a right extent — then uniquely identifies the application

of a continuation function to a particular right extent. Thus, preventing the repeated

application of the same continuation function to the same right extent is similar to preventing

the repeated execution of a descriptor. As noted before, in Section 4.3 we give combinator

definitions inspired by the strong similarity between Johnson’s continuation management

and that of FUN-GLL.

3.3.4 Comparison

Left-recursive parameterised combinators In §3.2.3, several complications are dis-

cussed regarding the use of injectR to define recursive and parameterised combinators. The

same complications apply here, with the difference that only left-recursive definitions re-

13See also footnote 11.
14In their formulation, a rule is a collection of alternates.

58

quire the use of inject to prevent nontermination. (Although it is beneficial to use inject

wherever memoisation makes a difference.) It is therefore not straightforward to define a

left-recursive variant of sepBy or scales, introduced in §3.1.4 and §3.2.3 respectively.

In Johnson’s Scheme implementation, a combinator memo is defined which evaluates

to a memoised closure of the combinator expression to which it is applied. A memo-table

is created whenever an occurrence of memo is evaluated, and a reference to that table is

stored within the environment of the closure. It is therefore important to take evaluation

order into account. For example, when defining a left-recursive variant of sepBy it must be

ensured that a memo-table is created after sepBy has been given its arguments and that

the recursive call is replaced by the memoised closure. The following Scheme fragment

contains a working left-recursive definition of sepBy .

(define (sepBy P S)

(letrec ((REC (memo (lambda (I) ((alt P (seq REC (seq S P))) I)))))

REC))

Where we might expect a recursive call, we find REC instead, a memoised closure embedding

all of the ‘behaviour’ of sepBy (the closure waits for input sentence I to be given). The

following naive definition results in infinitely many applications of sepBy and thus infinitely

many applications of memo.

(define (sepBy P Q) (memo (alt P (seq (sepBy P Q) (seq Q P)))))

We cannot define a left-recursive variant of scales in this fashion. This is because the

recursive call of scales requires a modified argument, i.e. the recursive call in the definition

of scales(p) is scales(parens(p)).

Combinator laws We expect that it is possible to prove the laws of Figure 3.4 for the

combinators of this section, with the exception of (right-absorption-seq) because, as a second

operand of seq , fails will not remove any right extents or continuation functions added

to the memo-table as part of the execution of the first operand. Proving distributivity,

commutativity and idempotency of alt is difficult at best, since such proofs depend on

commutativity and idempotency of o
9, which in turn requires showing that certain invariants

over the memo-table are maintained. An example invariant is: applying a parse function

ψ a second time does not grow the memo-table and will yield the same set of right extents

59

as the original application (follows from the soundness of memoisation). When defining

additional elementary combinators, one needs to prove that the invariants still hold in order

to uphold the laws, making the library significantly harder to maintain.

Additional elementary combinators Although possible, it is more difficult to define

additional elementary combinators compared to §3.1.1. Firstly, because, as noted above,

in order to prove certain combinator laws, it is necessary that any additional elementary

combinators maintain certain memo-table invariants. Secondly, it may be necessary to define

new continuation functions, as shown by the definition of peek below.

peek(p)(c0)(I, i) = p(c1)(I, i) where c1(r) = c0(i)

The continuation c1 is necessary to ‘reset’ the current index, since peek is intended not

to consume any input. This definition is not ideal, as c1 may be applied multiple times.

This happens if p recognises multiple subsentences of the input sentence, or it recognises a

subsentence in more than one way, resulting in unnecessary applications of c0. Rather, we

prefer to use the initial continuation c to explicitly test whether p matches any subsentence.

peek(p)(c0)(I, i)(M) =

{
c0(i)(M ′) if 〈M ′, R〉 = p(c)(I, i)(M), R 6= ∅
〈M, ∅〉 otherwise

The usage of c is similar to that in the definition of recognise. Note that the current memo-

table M is used to evaluate p and that the resulting memo-table M ′ is used in the application

of c0, possible speeding up the evaluation of ‘future’ occurrences of p.

3.3.5 Discussion

This chapter revolves around a collection of elementary combinators of which variations are

found in many existing implementations of combinator libraries, and introduces a combi-

nator inject for making sharing observable. Throughout this chapter, several definitions of

these combinators are discussed and compared.

Without observable sharing, the core combinators are already very useful. Parsers, and

combinator expressions generally, can be written easily as the composition of existing ex-

pressions. Moreover, the collection of core combinators is relatively easy to extend. So-called

derived combinators can be defined to capture common patterns, simply by applying exist-

60

ing combinators. It is also possible to define additional elementary combinators, like pred

and not , although this requires a detailed understanding of the core definitions. Through

library extensions, we have a method for defining reusable and executable components for

syntax specification, the primary goal of this part of the thesis.

Most implementations of combinator libraries employ a simple recursive descent pars-

ing algorithm, thus inheriting the well-known drawbacks of recursive descent. We have

explained the work of several authors to overcome these drawbacks. By giving different

implementations to inject , we have explained Ridge’s grammar generating combinators and

Johnson’s memoising combinators. These implementation have limitations of their own. For

example, they make it harder to define new elementary combinators, since the underlying

algorithms are more complex. Ridge’s grammar-generating combinators generate binarised

grammars. In the next chapters we show that grammar binarisation can be avoided and

in Section 13.1 we demonstrate the negative effects of binarisation on the effectiveness of

FUN-GLL. Johnson’s combinators are for recognition only. Although not shown here, it

is possible to extend the underlying algorithm to produced extended packed node sets.

This involves further complicating the underlying algorithm, since grammar information is

required to compute the slots of the extended packed nodes.

61

Chapter 4

Explicit BNF Combinator

Parsing

The previous chapter presents a core collection of parser combinators commonly found in

libraries for functional programming languages like ML and Haskell. An essential feature of

these combinators is that they are freely composed. This makes parser combinators easy to

use and combinator libraries easy to extend. In the previous chapter we have seen the inject

combinator that makes it possible to detect repeated evaluation by injecting additional

informational into combinator expressions. The inject combinator was used to discuss the

methods of Ridge and Johnson to generalising the parser combinators.

In this chapter we go a step further and introduce a novel collection of core combinators

with stricter types so that combinator expressions have a richer, more informative struc-

ture. The combinator expressions represent BNF grammar specifications explicitly, and we

therefore refer to the combinators of this chapter as BNF combinators. We show that the

additional information of BNF combinator expressions can be exploited to generate gram-

mars in a straightforward manner, avoiding binarisation, resulting in grammars with fewer

nonterminals compared to their binarised counterparts. The additional information can also

be used to compute grammar slots, descriptors and extended packed nodes. It is therefore

possible to implement an algorithm like FUN-GLL directly, without the need for generating

a grammar object.

62

"E0" ::= "E1" ’+’ "E0"

| "E1"
"E1" ::= "E2" ’*’ "E1"

| "E2"
"E2" ::= "digits"

| ’(’ "E0" ’)’

pE0 = nterm ("E0", altOp (altOp (altStart
, seqOp (seqOp (seqOp (seqStart
, pE1), term (’+’)), pE0))

, seqOp (seqStart , pE1)))
pE1 = nterm ("E1", altOp (altOp (altStart

, seqOp (seqOp (seqOp (seqStart
, pE2), term (’*’)), pE1))

, seqOp (seqStart , pE2)))
pE2 = nterm ("E2", altOp (altOp (altStart

, seqOp (seqStart
, digits)), parens (pE0)))

parens (p) = seqOp (seqOp (seqOp (seqStart
, term (’(’)), p), term (’)’))

Figure 4.1: A combinator expression representing an arithmetic expression grammar.

4.1 Explicit BNF Combinators

Rather than one type of combinator expressions, the explicit BNF combinators introduced

in this section form symbol expressions, sequence expressions and choice expressions. Sym-

bol expressions represent symbols in BNF, a sequence expressions represents a sequence of

symbols (an alternate), whereas a choice expression represents the choice between several

alternates. The symbol expression term(w) simply represents the terminal w. The sequence

expression seqStart represents the empty sequence of symbols. Each application of seqOp

adds an additional symbol (second argument) to an alternate (first argument). Combinator

seqOp therefore relates to juxtaposition in BNF rules. Similarly, a choice expression con-

structed by altStart represents the empty sequence of alternates. Each application of altOp

adds an additional alternate (second argument) to a sequence of alternates (first argument).

Combinator altOp therefore relates to the | operator in BNF rules. An application of nterm

groups a sequence of alternates (second argument) under a single label (first argument).

Combinator nterm therefore relates to the ::= operator in BNF rules. For example, the

BNF rule opta ::= ε | ’a’ is represented by the following symbol expression:

nterm("opta", alt(alt(altStart , seqStart), seq(seqStart , term(’a’))))

Figure 4.1 shows the BNF description of a grammar and a BNF combinator expression

63

term(x) = 〈nt(x), gen〉
where gen(C,P) = 〈C, {nt(x) ::= x} ∪ P 〉

nterm(l, 〈α1 . . . αm, p2〉) = 〈x, gen〉
where x = show(l)

and gen(C,P) =

{
〈C,P 〉 if l ∈ C
p2(C ∪ {l}, P ∪ {x ::= αi | 1 6 i 6 m}) otherwise

seqStart = 〈ε, genid〉
seqOp(〈α, p2〉, 〈s, q2〉) = 〈αs, gencomp(p2, q2)〉
altStart = 〈ε, genid〉
altOp(〈α1 . . . αm−1, p2〉, 〈αm, q2〉) = 〈α1 . . . αm−1αm, gencomp(p2, q2)〉

genid(C,P) = 〈C,P 〉
gencomp(g1, g2)(C,P) = (g2 ◦ g1)(C,P)

Figure 4.2: Generating a grammar from explicit BNF combinators.

that represents it. (Combinator digits is defined similarly as in §3.1.4.) The combinator

expression is not very legible and cumbersome to write. In §5.3.3, a Haskell implementation

is discussed with which combinator expressions are written more comfortably using infix

operators. Moreover, the implementation uses coercions to automatically insert occurrences

of seqStart and altStart where necessary.

4.2 Generating a Grammar

This section shows how the combinators presented in the previous section can be defined

in order to generate the grammars explicitly represented by combinator expressions. The

definitions are explained in direct comparison with the definitions of the conventional com-

binators given in §3.2.2 on page 50. Figure 4.2 gives the definitions of term, nterm, seqOp,

seqStart , altOp and altStart , and relies on the functions nt and show , given in §3.2.2.

The first component of each type of combinator expression is the grammar fragment it

represents. As in §3.2.2, the second component of each type of combinator expression is

a function mapping a set of labels and a set of productions to a (possibly extended) set

of labels and a (possibly extended) set of productions. Combinator nterm injects labels

64

to detect recursion and prevent nontermination. Note that where in §3.2.2 applying inject

is optional, using nterm is required to produce non-trivial symbols expressions. In §3.2.2,

each combinator expression adds productions to the computed grammar. Here, only sym-

bol expressions add productions to the produced grammar. Combinator nterm adds one

production for each alternate represented by its choice expression argument, but only if

its label has not been encountered before. Combinator term is defined as termR in §3.2.2.

Operators seqOp and altOp behave identically: both add an element (the first component

of the second operand) to the end of a sequence (the first component of the first operand)

whilst composing the second components of the operands in the same order. However, the

operators work on combinator expressions of different types. Operator seqOp expects a

sequence expression and a symbol expression whereas altOp expects a choice expression and

a sequence expression.

We create a wrapper function, grammarOf , that given a label l and a symbol expression

yields a grammar:

grammarOf (l, 〈n, gen〉) = 〈show(l), P 〉
where 〈C,P 〉 = gen(∅, {show(l) ::= n})

The grammar is augmented with a start symbol based on the given label l, which is assumed

not to be used in any application of nterm occurring in the given symbol expression. The

definitions of Figure 4.2 are such that grammarOf ("Z", pE 0) evaluates to the grammar1

shown on the left-hand side of Figure 4.1 augmented with the production "Z" ::= "E0".

4.2.1 An Unrestricted Interface

This section shows that we can implement combinators inject , seq and alt in terms of nterm,

seqOp, seqStart , altOp and altStart . We define inject , seq and alt in Figure 4.3 as operators

on symbol expressions. (Note that in §3.2.2 all combinator expressions are essentially what

we refer to as symbol expressions here.) This is achieved by turning a symbol expression

representing symbol s into a sequence expression representing the singleton sequence s (using

singleS), or into a choice expression representing a single alternate which contains just the

1As in Chapter 3, we use strings as labels and characters for terminals, thus show is the identity functions
on strings and nt is a function from characters to strings.

65

inject(l, p) = nterm(l, singleA(singleS (p)))

seq(p, q) = nterm(fst(p)×++ fst(q), singleA(seqOp(singleS (p), q)))

alt(p, q) = nterm(fst(p) +++ fst(q), altOp(singleA(singleS (p)), singleS (q)))

singleA(s) = alt(altStart , s)

singleS (x) = seq(seqStart , x)

Figure 4.3: Combinators inject , seq and alt defined in terms of nterm, seqOp, seqStart ,
altOp and altStart .

symbol s (using singleA and singleS). In order to generate nonterminals for occurrences of

seq and alt , we use the operators ×++ and +++ introduced in §3.2.2.

We conjecture that combinator expressions formed by applications of term, inject , seq

and alt generate the same grammar if they were formed by applications of termR, injectR,

seqR and altR instead. A combinator library based on the explicit BNF combinators can

thus offer its users a choice between the somewhat restrictive interface provided by nterm,

seqOp, seqStart , altOp and altStart and the unrestricted interface provided by inject , seq

and alt , without implementing the underlying algorithms twice. In §5.3.3 we show that the

restrictive interface can be made more user-friendly in a Haskell implementation, resulting in

a flexible interface with automatic conversions between symbol expressions. In Section 13.1

we demonstrate the significant negative effects of grammar binarisation on the running times

of FUN-GLL.

4.3 Direct FUN-GLL Parsing

The additional structure of combinator expressions formed by application of the explicit

BNF combinators makes it possible to associate grammar slots with subexpressions. A

grammar slot can then be seen to contain information about the context of the subexpression

with which it is associated. This information can be used for several purposes. As shown

in this section, the grammar slots can be used to form extended packed nodes, and thus to

implement parsing algorithms. It is possible to define the combinators term, nterm, seqOp,

seqStart , altOp and altStart in the style of Johnson’s continuation-passing combinators

66

(§3.3.2) and to extend the algorithm to output extended packed nodes. Instead, this section

defines the combinators based on the FUN-GLL algorithm of §2.4.3, thus using a call-

graph (G) and a pop-set (P). The resulting combinator definitions are very similar to the

definitions of §3.3.2, and we explain the definitions of this section as a modification. The

functions appToR, appToC , and contFor will be redefined (they will have different types but

similar behaviour and intent). With respect to FUN-GLL, the call-graph used here is slightly

modified. The modified call-graph maps commencements to a descriptor without index

(referred to as a continuation in §2.4.3), but now paired with a continuation function — in

the sense of §3.3.2 — which ‘does the remaining’ work when applied. Continuations uniquely

identify continuation functions. In §3.3.2, a continuation function c is a higher-order function

that given an index r (right extent) returns a parse function. Here, a continuation function

is also given the continuation that identifies it (thus a continuation function receives a

grammar slot, a left extent and a right extent). This additional information is needed to

construct extended packed nodes and to use descriptor set (U) to avoid any repeated work

resulting from applying continuation functions (see also §3.3.3) as shown by the definitions

of continue and seqOp that follow.

State In §3.3.2, parse functions ψ are given a memo-table and return a possibly extended

memo-table and a set of right extents. The right extents are the final outcome of the

algorithm. Here, we are interested in computing a set of extended packed nodes E . The

memo-table is replaced by U (descriptor set), relation G (call-graph) and relation P (pop-

set). A parse function is then an endofunction over quadruples of the form 〈U ,G,P, E〉

referred to as a state. The o
9 operator is inverted function composition, e.g. ψ1

o
9ψ2 = ψ2 ◦ψ1.

Operator o
9 is generalised so that o

9{ψ1, . . . , ψn} is defined as ψ0
o
9 ψ1

o
9 . . . o

9 ψn with ψ0 the

identity function over states.

We introduce getP for obtaining the right extents for a particular commencement 〈s, i〉

from the pop-set in a given state. Similarly, getG obtains the continuations and continuation

function pairs for a particular commencement. The definitions of these functions are given in

Figure 4.4. Functions for extending the call-graph and pop-set are also given in Figure 4.4.

67

getP(〈U ,G,P, E〉)(X, k) = {r | 〈〈X, k〉, r〉 ∈ P}
getG(〈U ,G,P, E〉)(Y, k) = {〈X ::= αY · β, l, c〉 | 〈〈Y, k〉, 〈X ::= αY · β, l, c〉〉 ∈ G}

addP(X, k, r)(〈U ,G,P, E〉) = 〈U ,G,P ∪ {〈〈X, k〉, r〉}, E〉
addG(Y, k, g, l, c)(〈U ,G,P, E〉) = 〈U ,G ∪ {〈〈Y, k〉, 〈g, l, c〉〉},P, E〉

Figure 4.4: Accessor and modifier functions for parse function state.

Continuing In Johnson’s algorithm, there are three types of continuation functions.

There is the initial continuation function, which simply returns the right extent given to it

as a singleton set. There are the continuation functions constructed as part of the definition

of seq and the continuation functions constructed as part of the definition of inject (by

applying contFor). To avoid repeated work, we associate a continuation (X ::= α ·β, l) with

every continuation function c of the second kind. When c is applied to right extent r, we can

check for the presence of the descriptor (X ::= α · β, l, r) to determine whether c has been

applied to r before. Doing this only for continuations created as part of the definition of

seq (here seqOp) is sufficient as the continuations created as part of the definition of inject

(here nterm) immediately apply a continuation of the second or first kind.

The function continue is given a continuation, a continuation function, a pivot and a

right extent and applies the continuation function to the right extent, but only if it is the

first time.

continue(X ::= α · β, l, k, r, c)(〈U ,G,P, E〉) ={
〈U ,G,P, E ∪ E1〉 if (X ::= α · β, l, r) ∈ U
c(X ::= α · β, l, r)(〈U ∪ U1,G,P, E ∪ E1〉) otherwise

where U1 = {(X ::= α · β, l, r)}

and E1 =

{
{(X ::= α · β, l, k, r)} if α 6= ε ∨ β = ε

∅ otherwise

Function continue also adds an extended packed node of the form (X ::= α · β, l, k, r) but

does so only if α 6= ε, or if α = ε = β, implying l = k = r.

68

The core combinators Function continue is applied whenever all the symbols repre-

sented by a sequence expression have successfully matched some part of the input sentence.

An occurrence of seqStart immediately applies continue, as it represents the empty sequence

of symbols.

seqStart(c)(I,X, β, l) = continue(X ::= ·β, l, l, l, c)

A sequence expression receives the arguments (I,X, β, l) such that: X is the nonterminal

symbol representing the closest occurrence of nterm ‘above’ this sequence expression and β

represents the symbols occurring ‘later’ in the sequence. Left extent l is the index given to the

closest occurrence of nterm ‘above’ this sequence expressions. The definition of seqOp below

shows how this information is propagated. In this definition, q is the second component of a

symbol expression and the definitions of term and nterm, for creating symbol expressions,

are given later.

seqOp(p, 〈s, q〉)(c0)(I,X, β, l) = p(c1)(I,X, sβ, l)

where c1(X ::= α · sβ, l, k) = q(c2)(I,X, α, β, l, k)

where c2(X ::= αs · β, l, r) = continue(X ::= αs · β, l, k, r, c0)

When the first operand p of seqOp is applied, β is extended with the symbol s of the

second operand. When continuation c1 is applied to (X ::= α · sβ, l, k), this indicates that

the subsentence Il,k has been recognised by p and that this involved the symbols α of the

alternate X ::= αsβ. When c2 is applied, this must be to (X ::= αs ·β, l, r), indicating that

q has recognised Ik,r and thus that seqOp(p, 〈s, q〉) has recognised Il,r. The dot is ‘moved

across’ s, the symbol represented by the second operand, and the original continuation c0

is applied via continue with pivot k.

Above, q is the second component of a symbol expression, and receives as arguments X,

α and β — but not the symbol s it represents — and the pivot k as current index. If the

symbol expression recognises Ik,r for some r, it applies the given continuation, extending α

with s. This is shown by the definitions of term and nterm below.

term(t) = 〈t, f〉

where f(c)(I,X, α, β, l, k)(σ) =

{
c(X,αt, β, l, k + 1)(σ) if Ik = t

σ otherwise

69

As in the case of inject , the definition of nterm involves checking whether its label has

been used to match with the same current index before, for which FUN-GLL uses the pop-

set. In the definition below, p is a choice expression and the definitions of altOp and altStart ,

for creating choice expressions, are given later.

nterm(s, p) = 〈s, f〉
where f(c)(I,X, α, β, l, k)(σ) ={

appToR(s, k, 〈X ::= αs · β, l, c〉, R)(σ′) if R 6= ∅
p(contFor(s, k))(I, s, k)(σ′) otherwise

where R = getP(σ)(s, k)

and σ′ = addG(s, k,X ::= αs · β, l, c)(σ)

Note the subtle difference between the condition in nterm above and inject in §3.3.2. Here,

p may be applied a second time, if in the meantime no elements have been recorded in the

pop-set. In this case, the second call will result in an application of seqStart , which will

apply continue with the same arguments and terminate. This slight inefficiency has not

been removed to retain the close correspondence with FUN-GLL. The third argument of

appToR (which is redefined later) is a continuation and continuation function pair and its

fourth argument is a set of right extents.

When the continuation contFor(s, k) is applied to (x ::= α ·β, k′, r) we know that x = s,

that β = ε and that k′ = k. Continuation contFor(s, k) may be applied, multiple times, to

different values of r and α, however.

contFor(s, k)(s ::= α·, k, r)(σ) = appToC (s, k, r, C)(σ′)

where C = getG(σ)(s, k)

and σ′ = addP(s, k, r)(σ)

When contFor(s, k) is applied, this results in the application of all the continuation functions

stored in the call-graph to the given right extent r. These applications may terminate

directly when a duplicate descriptor is encountered.

The definitions of appToR and appToC are as follows:

appToR(s, k, 〈X ::= αs · β, l, c〉, R) = o
9{c(X ::= αs · β, l, r) | r ∈ R}

appToC (s, k, r, C) = o
9{c(Y ::= δs · ν, l, r) | 〈Y ::= δs · ν, l, c〉 ∈ C}

The second operand of nterm is a choice expression which receives a commencement as

70

argument, together with the input sentence. An occurrence of altStart corresponds to fails,

meaning that it does not apply the given continuation and returns the state unchanged.

The definition of altOp, given below, shows that the initial symbol sequence β given to a

sequence expression is empty (ε).

altStart(c)(I,X, l)(σ) = σ

altOp(p, q)(c)(I,X, l) = p(c)(I,X, l) o
9 q(c)(I,X, ε, l)

The function parse, defined below, generates a parser — a function from an input sen-

tence I to a set of extended packed nodes E — given a symbol expression p = 〈s, f〉. In

order to define parse, it is necessary to apply f , the second component of p, which requires

a symbol l, the empty state 〈∅, ∅, ∅, ∅〉, and the base continuation c(g, k, r)(σ) = σ.

parse(l, 〈s, f〉)(I) = E
where 〈U ,G,P, E〉 = f(c)(I, l, ε, ε, 0, 0)(〈∅, ∅, ∅, ∅〉)
and c(g, k, r)(σ) = σ

The first argument of parse is a symbol l which is assumed to be unique in the sense that

it does not occur as an argument to any occurrence of nterm within p. The symbol acts

as the parent of s, the first component of p, in the grammar slots of the continuations and

extended packed nodes that are created by the algorithm. Note that the set of extended

packed nodes E is not used in the definitions of the combinators; its only purpose is to collect

derivation information as output.

Comparison A definition of inject , seq and alt can be given based on the combinators

of this section, if labels are strings, exactly as we have done for the grammar-generating

variant in §4.2.1.

Compared to §3.3.2, the combinators defined here use a call-graph, a pop-set and a set

of descriptors. The set of descriptors is used to avoid more duplicate work, achieving a sim-

ilar effect to memoising all continuation functions as suggested by Izmaylova, Afroozeh and

Van der Storm [Izmaylova et al., 2016], briefly discussed in §3.3.3. Because of the similarity

with Johnson’s combinators, we can make similar arguments to those of §3.3.4 regarding

recursive parameterised combinators, adding additional elementary combinators and com-

binator laws. Continuation functions are more complicated, as they receive a descriptor as

71

argument, which is necessary for avoiding duplicate work and computing extended packed

nodes. Therefore, defining additional elementary combinators is more challenging. On the

other hand, extended packed nodes are only created when evaluating sequence expressions.

This means that only user-defined alternatives to seqStart and seqOp need to take extended

packed nodes into account.

4.3.1 Discussion

In this chapter we introduced a novel collection of core combinators with which BNF gram-

mar descriptions are explicitly represented by combinator expressions. The explicit rep-

resentation of BNF grammar descriptions is achieved by restricting the signatures of the

core combinators, giving combinator expressions more structure. It is possible to extract

grammars from combinator expressions and apply FUN-GLL to the extracted grammars.

The combinators can also be defined as parser combinators directly, computing extended

packed nodes. The parsing algorithms underlying both versions of the BNF combinators

are fully general with respect to the represented grammars, and can be combined with a

version of Ridge’s semantic phase in which semantic actions are executed. The next chap-

ter implements FUN-GLL, the grammar-generating version of the BNF combinators, and

a variant of Ridge’s semantic phase based on extended packed nodes, and shows how these

implementations are combined to form a practical combinator library.

72

Chapter 5

Haskell: Reusable Components

for Syntax Specification

References The implementations in Sections 5.1 and 5.3 of this chapter have been pub-

lished as [Van Binsbergen et al., 2018].

This chapter presents a literate Haskell implementation of the FUN-GLL algorithm of

Chapter 2 in Section 5.1 and of the grammar-generating BNF combinators of Chapter 4

in Section 5.3. The user-friendliness of the BNF combinators is enhanced using Haskell’s

type-class mechanism [Hall et al., 1994]. The resulting interface is flexible in the sense that

the user has the opportunity to avoid — or take advantage of — nonterminal generation

and that combinator expressions are freely composed.

Parsers written with conventional parser combinators typically perform semantic evalu-

ation on the fly by associating semantic functions with parsers. We explain the integration

of semantic functions by revisiting the conventional parser combinators of Chapter 3 in

Section 5.2 and show that they implement the Applicative and Alternative interfaces. To

integrate semantic functions into the BNF combinators, we implement a variant of Ridge’s

semantic phase driven by extended packed nodes.

73

5.1 FUN-GLL Implementation

This section discusses technical details of an implementation of the FUN-GLL algorithm of

2.4.3. The next subsection implements the relevant concepts from Chapter 2 and summarises

these concepts from an operational perspective.

5.1.1 Grammars and Derivations

A grammar is implemented as a mapping from nonterminals to sets of right-hand sides (also

called alternates), where a right-hand side is a list of symbols. A symbol is either a terminal

(a value of some type t) or a nonterminal (a value of some type n):

type Grammar n t = M .Map n (S .Set (Rhs n t))
type Rhs n t = [Symbol n t]
data Symbol n t = Term t | Nt n
type Input t = Array Int t

instance (Show a,Show b)⇒ Show (Symbol a b) where
show (Term t) = show t
show (Nt s) = show s

(Maps are imported from Data.Map under the qualified name M and sets are imported from

Data.Set under the qualified name S .) Parser input is represented as an array of terminals.

In our examples we use String for nonterminals and Char for terminals.

A nonterminal in a grammar derives a sequences of terminal symbols (sentences). Sen-

tence I is derived by nonterminal x if I can be obtained by choosing a right-hand side of

x and repeatedly replacing nonterminals within it by one of their right-hand sides. The

set of sentences that can be derived from a nonterminal x in a grammar gram is the lan-

guage generated by x in gram. For example, nonterminal "tuple" generates the language

{"()", "(a)", "(a,a)", . . .} in the grammar:

tupleRR = M .fromListWith S .union
[("tuple",S .singleton [Term ’(’,Nt "as",Term ’)’])
, ("as" ,S .singleton []) -- empty right-hand side
, ("as" ,S .singleton [Term ’a’,Nt "more"])
, ("more" ,S .singleton []) -- empty right-hand side
, ("more" ,S .singleton [Term ’,’,Term ’a’,Nt "more"])]

A recognition procedure is an algorithm that, given a grammar, a nonterminal x, and

a sentence I, determines whether I is in the language generated by x in the grammar.

74

A parsing procedure is a recognition procedure that provides proof that this is the case,

typically in the form of a derivation tree. A recognition or parsing procedure is general if

it terminates and gives correct results for all grammars. A procedure is complete if it is

general and provides proof for all possible derivations of the input sentence. A grammar is

ambiguous if one sentence has multiple derivations.

FUN-GLL construct sets of extended packed nodes (EPNs) containing sufficient infor-

mation to construct a complete BSPPF (see §2.1.4).

type Slot n t = (n,Rhs n t ,Rhs n t)
type EPN n t = (Slot n t , Int , Int , Int)
type EPNs n t ≡ S .Set (EPN n t)

We use ≡ to suggest a possible definition for EPNs. In actuality we use a more efficient

definition based on Patricia trees [Okasaki and Gill, 1998].

A grammar slot is a triple (x , α, β) where αβ is an alternate of nonterminal x . An EPN

is a quadruple ((x , α, β), l , k , r), with (x , α, β) a grammar slot and integers l 6 k 6 r.

The following operations are used to construct EPN sets:

emptyPNs :: EPNs n t
singlePN :: EPN n t → EPNs n t
unionPNs :: EPNs n t → EPNs n t → EPNs n t
unionsPNs :: [EPNs n t]→ EPNs n t
unionsPNs = foldr unionPNs emptyPNs
fromListPNs :: [EPN n t] → EPNs n t
fromListPNs = foldr (unionPNs ◦ singlePN) emptyPNs

We can use standard equality (Haskell’s type-class Eq) to match the terminal symbols

of an input sentence to the terminals in a grammar. However, it may be useful to use a

different notion of equality. A particular use case is that terminals are produced by lexers

such that the terminals embed their lexemes. These kinds of terminals can be implemented

as shown by the Token type defined below:

data Token = Char Char
| Keyword String
| IntLit (Maybe Int)
| FloatLit (Maybe Double)
| BoolLit (Maybe Bool)
| StringLit (Maybe String)
| CharLit (Maybe Char)
| IDLit (Maybe String)
| AltIDLit (Maybe String)
| Token String (Maybe String)

75

The second argument of the Token constructor, and the arguments of constructors for

the different kind of literals, are optional lexemes. The intention is that, for example,

IDLit Nothing appears in a grammar, whereas IDLit (Just "blueberry") is produced by a

lexer.

We introduce a type-class containing those types whose values can be ‘matched’. The

default definition of the method matches is equality.

class (Ord a,Eq a)⇒ IsTerminal a where
matches :: a → a → Bool
matches = (≡) -- defaults to equality

The case studies of this thesis use the Token type as the instantiation for terminals in

grammars and input sentences. The Token constructor can be used to extend the Token

type arbitrarily, using Strings to identity additional forms. To extend the Token type in a

way that gives more type-safety, the Token type can be wrapped in a type that provides

additional token forms. Such a wrapper type is said to ‘subsume’ the Token type if there is

a projection and injection function defined between the two types:

class SubsumesToken a where
upcast :: Token → a -- inject a Token into the wrapper type
downcast :: a → Maybe Token -- project a if a is indeed a wrapped Token

5.1.2 Summary of FUN-GLL

Nontermination due to left-recursion, and other kinds of ‘repeated work’, are prevented by

introducing descriptors (Section 2.3). The complexity is potentially O(n3) in both space

and runtime, depending on the implementation of the data structures.

A descriptor is a triple containing a slot, a left extent and another index:

type Descr n t = (Slot n t , Int , Int)

A worklist R contains descriptors that require processing; its elements are processed one by

one by calling a function called process. A set U of descriptors remembers the descriptors

added to R, and is used to ensure that no descriptor is added to the worklist a second time.

Preventing repeated processing avoids nontermination due to left-recursion, but may result

in the omission of derivation information.

76

Consider the situation in which the descriptor ((x , α, s : β), l , k) has been processed,

with s a nonterminal, having resulted in further descriptors ((x , α ++ [s], β), l , ri), for all

ri in some set R. If the next processed descriptor is of the form ((y , δ, s : ν), l ′, k), then

no further descriptors are added to R, as all descriptors of the form ((s, [], µ), k , k) have

already been encountered. However, since s derives the subsentences ranging from k to

ri − 1, with ri ∈ R, we should still add the descriptors ((y , δ ++ [s], ν), l ′, ri) and EPNs

((y , δ ++ [s], ν), l ′, k , ri). To avoid missing these descriptors and EPNs, the binary relation

P between pairs of commencements and right extents is used, where a commencement is a

pair of a nonterminal and a left extent. In the example situation, the set R is embedded in

P as specified by the equation R = {r | ((s, k), r) ∈ P}.

This is not sufficient; some of the descriptors of the form ((s, [], µ), k , k), or descriptors

that follow from these, may not have been processed yet. This means that there may

be right extents R′, with R′ ∩ R = ∅, for which it holds that s derives the subsentences

ranging from k to rj − 1, with rj ∈ R′. When the right extents in R′ are ‘discovered’, it

is necessary to add the descriptors ((y , δ ++ [s], ν), l ′, rj) and ((x , α ++ [s], β), l , rj) as well

as the EPNs ((y , δ ++ [s], ν), l ′, k , rj) and ((x , α ++ [s], β), l , k , rj). The binary relation G

between commencements and continuations is used for this purpose, where a continuation

is a pair of a slot and a left extent (i.e. a descriptor missing an index).

type Comm n t = (n, Int)
type Cont n t = (Slot n t , Int)

The FUN-GLL algorithm is summarised as follows: While there are descriptors in the

worklist, arbitrarily select the next descriptor ((x , α, β), l , k) to be processed, and

• If β = w :β′ and w is terminal, match the terminal at position k in the input sentence

with w . Only if the match is successful, add the descriptor ((x , α++ [w], β′), l , k + 1)

to the worklist and add EPN ((x , α++ [w], β′), l , k , k + 1) to the EPN set.

• If w is nonterminal, find R = {r | ((w, k), r) ∈ P} and extend G with ((w , k), ((x , α++

[w], β′), l)). If R is empty, descend w by adding ((w , [], δ), k , k), for all alternates

δ of w , to the worklist (if not in U). If R is not empty, skip w by adding the

descriptors ((x , α ++ [w], β′), l , ri), for all ri ∈ R (if not in U) and adding the EPNs

((x , α++ [w], β′), l , k , ri) to the EPN set.

77

type RList n t ≡ S .Set (Descr n t)
popRList :: RList n t → (Descr n t ,RList n t)
emptyRList :: RList n t
singletonRList :: Descr n t → RList n t
unionRList :: RList n t → RList n t → RList n t
fromListRList :: [Descr n t]→ USet n t → RList n t
fromListRList ds U = foldr op emptyRList ds

where op d R | hasDescr d U = R
| otherwise = unionRList (singletonRList d) R

type USet n t ≡ S .Set (Descr n t)
emptyUSet :: USet n t
addDescr :: Descr n t → USet n t → USet n t
hasDescr :: Descr n t → USet n t → Bool

type GRel n t ≡ S .Set (Comm n t ,Cont n t)
emptyG :: GRel n t
addCont :: Comm n t → Cont n t → GRel n t → GRel n t
conts :: Comm n t → GRel n t → [Cont n t]

type PRel n t ≡ S .Set (Comm n t , Int)
emptyP :: PRel n t
addExtent :: Comm n t → Int → PRel n t → PRel n t
extents :: Comm n t → PRel n t → [Int]

Figure 5.1: Types of FUN-GLL data structures and operations.

• If β = [], extend P with ((x , l), k), and ascend x by finding all continuations K =

{(slot , l ′) | ((x , l), (slot , l ′)) ∈ G}, adding (slot , l ′, k) to the worklist for all (slot , l ′) ∈ K

(if not in U), adding EPNs (slot , l ′, l , k) to the EPN set and, if α = β = [], add EPN

((x , [], []), k , k , k) as well.

5.1.3 Data Structures

The types of the data structures and their operations are given in Figure 5.1. The efficiency

and worst-case complexity of FUN-GLL is strongly influenced by the implementation of the

data structures. We described the essential data structures — R, U , G and P — as sets,

but a direct implementation as Haskell sets (from Data.Set) is inefficient. For example, we

need to be able to determine quickly whether a descriptor has already been encountered by

inspecting U . This operation needs to be performed in constant time for FUN-GLL to have

a worst-case complexity of O(n3) [Johnstone and Scott, 2011]. We do not discuss actual

78

implementations of these data structures and operations as we focus on the logic of the

algorithm instead. We use ≡ in the type definitions to suggest a simple implementation, as

we did for EPNs.

The operation popRList arbitrarily removes an element from worklist R :: RList . The

worklist is constructed by applying fromListRList to a list of descriptors, guaranteeing that

the resulting worklist contains no elements already in the given U :: USet . The relation

G :: GRel , between commencements and continuations, is extended by applying addCont .

Operation conts returns all the continuations paired with a given commencement in G.

The relation P :: PRel , between commencements and right extents, is extended by applying

addExtent . Similar to conts, extents returns all the right extents paired with a particular

commencement in P.

5.1.4 The Algorithm

Function fungll implements FUN-GLL. It is given a grammar, a nonterminal, and an input

sentence and returns the processed set of descriptors U and the set of discovered EPNs,

recursively applying function loop to R to process one descriptor at a time.

fungll gram x inp = loop gram inp R emptyUSet emptyG emptyP emptyPNs
where R = fromListRList (descend gram x 0) emptyUSet

The initial R contains the descriptors resulting from ‘descending’ the given symbol x

with left extent 0. Descending a nonterminal x with index k requires the descriptors

((x , [], β), k , k) to be processed, for each alternate β of x .

descend gram x k = [((x , [], β), k , k) | β ← alts]
where alts = maybe [] S .toList (M .lookup x gram)

Function loop, defined below, recurses over R, removing a descriptor d (using popRList)

for processing, until R is empty. The order in which descriptors are selected is irrelevant to

the correctness (and worst-case complexity) of the algorithm, but might influence efficiency.

An analysis of the influence of the order on efficiency is found in [Scott and Johnstone, 2016].

Processing a descriptor may result in descriptors, which are added to R if not in U , as

well as some EPNs. Processing a descriptor may also result in an extension to G or P.

Thus, process returns (a list of) descriptors, a (set of) EPNs, an optional commencement

79

and continuation pair, and an optional commencement and right extent pair. The list of

descriptors returned by process is converted into an RList using fromListRList .

loop gram inp R U G P ns
| null R = (U ,ns) -- base case: R is empty
| otherwise = loop gram inp rset ′′ uset ′ grel ′ prel ′ (unionPNs ns ns ′)
where ((rlist ,ns ′),mcont ,mpop) = process gram inp d G P

(d , rset ′) = popRList R
rset ′′ = unionRList rset ′ (fromListRList rlist uset ′)
uset ′ = addDescr d U
grel ′ | Just (k , v)← mcont = addCont k v G

| otherwise = G
prel ′ | Just (k , v)← mpop = addExtent k v P

| otherwise = P

There are two cases to distinguish when a descriptor ((x , α, β), l , k) is processed: β =

w : β′ and β = [].

process gram inp ((x , α, []), l , k) G P =
((rlist , unionPNs ns ns ′),Nothing , Just ((x , l), k))
where (rlist ,ns) = ascend l K k

ns ′ | α ≡ [] = singlePN ((x , [], []), l , k , k)
| otherwise = emptyPNs

K = [(slot , l ′) | (slot , l ′)← conts (x , l) G]

The code above implements the latter case, in which it is discovered that x derives the

subsentence ranging from l to k − 1 and thus that k is a right extent for (x , l). This is

‘remembered’ by returning the commencement and right extent pair ((x , l), k) to extend

P. All continuations K, ‘waiting’ for the discovery of additional right extents such as k,

are obtained by applying conts to (x , l) and G. The descriptors and EPNs obtained by

combining the continuations in K with l and k are returned by ascend (given later). The

former case, β = w : β′ is implemented by the code below.

process gram inp ((x , α,w : β′), l , k) G P = case w of
Term t → (match inp ((x , α,w : β′), l , k),Nothing ,Nothing)
Nt y
| R ≡ []→ ((descend gram y k , emptyPNs), Just cc,Nothing)
| R 6≡ []→ (skip k ((x , α++ [w], β′), l) R, Just cc,Nothing)

where R = extents (y , k) P
cc = ((y , k), ((x , α++ [w], β′), l))

When w is a nonterminal symbol, the commencement and continuation pair ((w , k), ((x , α++

[w], β′), l)) is returned for extending G. Operation extents is used to find any right extents

r ∈ R, providing the information that w derives the subsentence ranging from l to r − 1.

80

If R ≡ [], w is descended with left extent k (potentially for a second time). Otherwise,

if R 6≡ [], function skip computes the descriptors and EPNs that follow from the earlier

discovery that w derives the subsentence ranging from k to r − 1. Function skip combines

a single continuation with perhaps many right extents, whereas ascend combines a single

right extent with potentially many continuations.

skip k d R = nmatch k [d] R
ascend k K r = nmatch k K [r]
nmatch k K R = (rlist , fromListPNs elist)

where rlist = [(slot , l , r) | (slot , l)← K, r ← R]
elist = [(slot , l , k , r) | (slot , l)← K, r ← R]

If β = w : β′, and w is terminal, then matches from type-class IsTerminal is applied

to check whether w matches the terminal at position k in the input sentence. If so, the

descriptor ((x , α++ [w], β′), l , k + 1) and the EPN ((x , α++ [w], β′), l , k , k + 1) are returned.

match inp (slot@(x , α,Term t : β), l , k)
| lb 6 k , k 6 ub,matches (inp ! k) t =

([((x , α++ [Term t], β), l , k + 1)], singlePN ((x , α++ [Term t], β), l , k , k + 1))
| otherwise = ([], emptyPNs)
where (lb, ub) = bounds inp

We demonstrate the generality of fungll by applying it to one of Ridge’s example gram-

mars [Ridge, 2014]:

tripleE = M .fromListWith S .union
[("E",S .singleton [Nt "E",Nt "E",Nt "E"])
, ("E",S .singleton [Term ’1’])
, ("E",S .singleton [])]

Grammar tripleE is left-recursive and cyclic1, admitting infinitely many derivations of the

sentences in the language it generates. Applied to tripleE , nonterminal "E", and the input

sentence "1", fungll returns the following EPNs:

> printPNs (snd (fungll tripleE "E" (listArray (0, 0) "1")))
1 : (("E", [], []), 0, 0, 0)
2 : (("E", ["E"], ["E", "E"]), 0, 0, 0)
3 : (("E", ["E", "E"], ["E"]), 0, 0, 0)
4 : (("E", ["E", "E", "E"], []), 0, 0, 0)
5 : (("E", [’1’], []), 0, 0, 1)
6 : (("E", ["E"], ["E", "E"]), 0, 0, 1)
7 : (("E", ["E", "E"], ["E"]), 0, 0, 1)

1A cyclic nonterminal can derive itself via one or more steps.

81

8 : (("E", ["E", "E"], ["E"]), 0, 1, 1)
9 : (("E", ["E", "E", "E"], []), 0, 0, 1)
10 : (("E", ["E", "E", "E"], []), 0, 1, 1)
11 : (("E", [], []), 1, 1, 1)
12 : (("E", ["E"], ["E", "E"]), 1, 1, 1)
13 : (("E", ["E", "E"], ["E"]), 1, 1, 1)
14 : (("E", ["E", "E", "E"], []), 1, 1, 1)

5.2 Backtracking Recursive Descent Evaluators

In this section we revisit the definition of the conventional parser combinators given in §3.1.1,

and give an implementation based on the list-of-successes method from [Wadler, 1985], show-

ing especially how semantic functions are integrated.

5.2.1 Semantic Values

The type Parser t a captures parse functions matching terminals of type t and returning

semantic values of type2 a.

newtype Parser t a = Parser (Input t → Int → [(Int , a)])

Values of type Parser correspond closely to the parse functions of §3.1.1 with the difference

that right extents are paired with semantic values and that a multitude of results is collected

in a list rather than a set. If p is a parse function and (r, a) is in p inp l , then p matches

inpl,r, the subsentence of inp ranging from l to r − 1, and a is the semantic interpretation

of inpl,r. An example is provided by the term combinator.

term :: IsTerminal t ⇒ t → Parser t t
term t = Parser pf

where pf inp k | lb 6 k , k 6 ub,matches (inp ! k) t = [(k + 1, inp ! k)]
| otherwise = []

where (lb, ub) = bounds inp

The semantic value is the matched terminal, taken from the input sentence rather than the

grammar.

In what follows we use three methods for ‘running’ parse functions, e.g. recognition,

evaluating, and counting.

2Given as a newtype rather than a type synonym to give type-class instances later.

82

evaluator :: Parser t a → [t]→ [a]
evaluator (Parser pf) str = map snd $ filter complete $ pf inp 0

where inp = listArray (0,m − 1) str
m = length str
complete (k , a) = k ≡ m

counter :: Parser t a → [t]→ Int
counter p = length ◦ evaluator p

recogniser :: Parser t a → [t]→ Bool
recogniser p = (0 6≡) ◦ counter p

Function evaluator p is a function producing all interpretations of an input sentence3 ac-

cording to p, but only those interpretations that correspond to a complete match of the

sentence. Function counter p produces a function that computes how many interpretations

exist according to p. Function recogniser p is a function returning True if and only if the

entire input sentence can be matched by p.

Curried semantic functions To explain how arbitrary semantic functions can be inte-

grated in combinator expressions, we first show the signature of seq :

seq :: Parser t (a → b)→ Parser t a → Parser t b

(Note that we only combine parsers that match the same type of terminal symbols.) An

occurrence of seq constructs a parse function that produces semantic values of type b, given

a parse function producing a semantic values of type a → b, and a parse function producing

semantic values of type a. The value of type b can only be obtained by applying the value of

the first operand to the value of the second operand (since the type variables are universally

quantified implicitly). The type b can be a function type, and thus we have a way of applying

arbitrary curried functions4 to parse results.

seq (Parser p) (Parser q) = Parser pf
where pf inp l = [(r , f a) | (k , f)← p inp l , (r , a)← q inp k]

What remains is to show how arbitrary functions are introduced ‘to the world of the

parse functions’. In other words, how do we turn a value of type a → b into a value of type

Parser t (a → b)? The succeeds combinator is used for this purpose:

succeeds :: f → Parser t f
succeeds f = Parser pf

where pf inp k = [(k , f)]

3We use input sentence ambiguously for values of type [t] and Input t .
4We use “semantic functions” rather than “semantic actions” to emphasise the purity of the functions.

83

alt fails q = q (left-identity-alt)

alt p fails = p (right-identity-alt)

alt p (alt q r) = alt (alt p q) r (associativity-alt)

seq (succeeds id) q = q (left-identity-seq)

seq fails q = fails (left-absorption)

seq p fails = fails (right-absorption)

seq (seq (seq (succeeds (◦)) p) q) r = seq p (seq q r) (composition)

seq (succeeds f) (succeeds a) = succeeds (f g) (homomorphism)

seq p (succeeds a) = seq (succeeds (λf → f a)) p (interchange)

seq p (alt q r) = alt (seq p q) (seq p r) (left-distributivity)

seq (alt p q) r = alt (seq p r) (seq q r) (right-distributivity)

Figure 5.2: Combinator laws for alt and seq .

Since f is a placeholder for any type, it can be a function type. If we ignore the semantic

value f , then the definition corresponds exactly to the definition of succeeds in §3.1.1. The

same holds for seq , and in §3.1.1 we showed that seq is associative with identity succeeds.

Here seq is left-associative — as function application is left-associative — and indeed we

can prove that seq (succeeds id) q = q . In §5.2.2 we present additional laws satisfied by the

combinators of this section.

The alt and fails combinators are defined as follows:

fails :: Parser t a
fails = Parser pf

where pf inp k = []

alt :: Parser t a → Parser t a → Parser t a
alt (Parser p) (Parser q) = Parser pf

where pf inp k = p inp k ++ q inp k

Two parse functions are only alternatives of each other if they produce the same type of

semantic values (besides matching the same type of terminals).

5.2.2 Combinator Laws

Figure 5.2 shows a collection of laws that can be proven for alt . Compared to the laws

of Figure 3.4 in §3.1.3, idempotency and commutativity no longer hold. This follows from

84

seq (succeeds id) q inp l
= concat (map (λ(k , f)→ map (λ(r , a)→ (r , f a)) (q inp k)) (succeeds id inp l))
= concat (map (λ(k , f)→ map (λ(r , a)→ (r , f a)) (q inp k)) [(l , id)])
= concat [(λ(k , f)→ map (λ(r , a)→ (r , f a)) (q inp k)) (l , id)]
= (λ(k , f)→ map (λ(r , a)→ (r , f a)) (q inp k)) (l , id)
= map (λ(r , a)→ (r , id a)) (q inp l)
= map (λ(r , a)→ (r , a)) (q inp l)
= map id (q inp l)
= q inp l

Figure 5.3: Proof that succeeds id is a let identity of seq (see Figure 5.2.

seq (succeeds f) (succeeds a) inp l
= concat (map (λ(k , f)→ map (λ(r , a)→ (r , f a)) [(k , a)]) [(l , f)])
= concat (map (λ(k , f)→ [(λ(r , a)→ (r , f a)) (k , a)]) [(l , f)])
= concat [(λ(k , f)→ [(λ(r , a)→ (r , f a)) (k , a)]) (l , f)]
= (λ(k , f)→ [(λ(r , a)→ (r , f a)) (k , a)]) (l , f)
= [(λ(r , a)→ (r , f a)) (l , a)]
= [(l , f a)]
= succeeds (f a) inp l

Figure 5.4: Proof of the homomorphism property of Figure 5.2.

the usage of lists to collect multiple results, as lists are ordered (breaks commutativity)

and may contain duplicates (breaks idempotency). The laws are trivial to prove, using the

associativity of (++) to prove the associativity of alt .

Figure 5.2 also shows a collection of laws that can be proven for seq . Compared to the

laws of Figure 3.4 in §3.1.3, right identity and associativity are lost. This follows from the

left associativity of function application. The laws for absorption are easy to prove after

replacing the use of list-comprehension in the definition of seq with the equivalent expression

in terms of map and concatMap:

seq p q inp l = concat (map (λ(k , f)→ map (λ(r , a)→ (r , f a)) (q inp k)) (p inp l))

If in the definition above, either p or q yields the empty list, then the resulting list is empty.

As examples, we prove that succeeds id is a left identity for seq in Figure 5.3 and we prove

the homomorphism property in Figure 5.4. The composition and interchange properties

can be proven in similar fashion.

85

instance Applicative (Parser t) where
pure = succeeds
p 〈∗〉 q = seq p q

instance Alternative (Parser t) where
empty = fails
p 〈|〉 q = alt p q

instance Functor (Parser t) where
fmap f p = pure f 〈∗〉 p

Figure 5.5: Applicative and Alternative instances for Parser t .

5.2.3 An Applicative Interface

Haskell parser combinators are often defined as instances of the Applicative and Alternative

type-classes, showing that parse functions are a member of a particular class of computa-

tions [Mcbride and Paterson, 2008]. This involves showing how the computations performed

by parse functions can be done one after the other so that their results are somehow combined

(by implementing 〈∗〉), how a value forms (the result of) a computation (by implementing

pure), how a computation can be formed out of two alternatives (by implementing 〈|〉), what

it means to have no alternatives (by implementing empty), and that certain laws hold on

these functions and operators.

Based on the laws of Figure 5.2 we conclude that we can make Parser t (for all t)

an instance of the Applicative type-class [Swierstra and Duponcheel, 1996] as well as the

Alternative type-class. Figure 5.5 gives these instances. (Note that 〈∗〉 is a left-associative

infix operator with higher priority than the associative infix operator 〈|〉.) The applicative

type-class provides a number of useful methods5, defined in terms of pure and 〈∗〉 (in other

words, derived combinators). For example, in parser combinator terminology, operator 〈$〉

applies a semantic function to a parse function directly.

(〈$〉) :: (a → b)→ Parser t a → Parser t b
f 〈$〉 p = pure f 〈∗〉 p -- infix version of fmap

The combinators 〈∗ and ∗〉 are variants of 〈∗〉 used to ignore the semantic value of the right

and left operand respectively.

5The definitions of these methods, as presented in this section, are available by default.

86

(〈∗) :: Parser t a → Parser t b → Parser t a
p 〈∗ q = const 〈$〉 p 〈∗〉 q

(∗〉) :: Parser t a → Parser t b → Parser t b
p ∗〉 q = flip const 〈$〉 p 〈∗〉 q

The following derived combinators apply a given parse functions zero or more and one or

more times, respectively, combining the possibly many results in a list:

many , some :: Parser t a → Parser t [a]
some p = (:[]) 〈$〉 p 〈|〉 p 〈∗〉 some p -- one repetition of p or more
many p = pure [] 〈|〉 some p -- zero or more repetitions of p

With these combinators, it is easy to develop a parser for the grammar of Figure 4.1:

pE0 = (+) 〈$〉 pE1 〈∗ term ’+’ 〈∗〉 pE0 〈|〉 pE1

pE1 = (∗) 〈$〉 pE2 〈∗ term ’*’ 〈∗〉 pE1 〈|〉 pE2

pE2 = term ’(’ ∗〉 pE0 〈∗ term ’)’ 〈|〉 digits
digits = read 〈$〉 some digit -- read interprets a string of digits as a number
digit = foldr (〈|〉) empty (map term "01234567890")

The next section implements the explicit BNF combinators, and compares their func-

tionality and usability with the combinators implemented here.

5.3 Explicit BNF Combinators

In this section we implement a BNF combinator library. The implementation is given in

§5.3.3 and is based on the internal combinator libraries developed in §5.3.1 and §5.3.2.

These combinator libraries are internal in the sense they are not exposed to the user and

that their expressions are generated from, and with the same structure as, BNF combinator

expressions. An internal expression of the first kind evaluates to a grammar, which is given

to fungll to produce a parser. The parser is applied to a input sentence to yield a set of

EPNs. An internal expression of the second kind builds a function that applies semantic

functions based on derivation information extracted from the set of EPNs (Ridge’s semantic

phase).

The goal of this section is to define the core external BNF combinators term, 〈::=〉,

seqStart , 〈∗∗〉, altStart , and 〈||〉 in Section 5.3.3. The combinators term and 〈::=〉 construct

symbol expressions (based on a terminal and alternates respectively), seqStart and 〈∗∗〉

construct sequence expressions, and altStart and 〈||〉 construct choice expressions. The

definition of combinator 〈∗∗〉 overrides the definition from Haskell’s standard library.

87

gram term :: t → GramSymb l t
gram nterm :: (Ord t ,Ord l)⇒ l → GramCh l t → GramSymb l t
gram altStart :: GramCh l t
gram alt :: GramCh l t → GramSeq l t → GramCh l t
gram seqStart :: GramSeq l t
gram seq :: GramSeq l t → GramSymb l t → GramSeq l t

Figure 5.6: Signatures of the grammar combinators.

5.3.1 Grammar Combinators

In this subsection we implement a library of internal grammar combinators. The type signa-

tures of the grammar combinators are given in Figure 5.6. The rich structure of the grammar

combinator expressions makes it possible to generate grammars without binarisation.

Grammar generation In Ridge’s combinator library P3 [Ridge, 2014], a unique nonter-

minal is generated for each combinator expression by combining the nonterminals generated

for its subexpressions. The grammars generated this way are binarised in the sense that

each nonterminal has one alternate with at most two symbols or two alternates with at most

one symbol. When grammar descriptions are recursive, nonterminals need to be inserted

to side-step nonterminal generation, thus avoiding nontermination6. We also rely on the

insertion of nonterminals, via 〈::=〉 and gram nterm internally, to avoid nontermination.

The types GramSymb, GramSeq , and GramCh are as follows:

type GramSymb l t = (Symbol l t ,GrammarGen l t)
type GramSeq l t = (Rhs l t ,GrammarGen l t)
type GramCh l t = ([Rhs l t],GrammarGen l t)

The first component of each combinator expression is the grammar fragment represented

by it, e.g. the first component of a choice expression is the sequence of alternates it rep-

resents. The second component of each combinator expression is a ‘grammar generator’: a

function that (possibly) extends a given grammar and a given set of nonterminals. The set

of nonterminals is used to detect recursion and to avoid nontermination.

6This is a crude solution to the well-studied problem of making sharing observable in the implementation
of embedded domain-specific languages [Claessen and Sands, 1999, Ljunglöf, 2002, Gill, 2009]. We consider
it a pragmatic choice for our purposes.

88

gram term t = (Term t , id)
gram nterm n p = (Nt n, gen)

where (alts, pgen) = p
gen (nts, gram) | S .member n nts = (nts, gram)

| otherwise = pgen (nts ′, gram ′)
where nts ′ = S .insert n nts

gram ′ = M .insertWith S .union n
(S .fromList alts) gram

gram altStart = ([], id)
gram alt (as, pgen) (α, qgen) = (as ++ [α], qgen ◦ pgen)
gram seqStart = ([], id)
gram seq (α, pgen) (s, qgen) = (α++ [s], pgen ◦ qgen)

Figure 5.7: Definitions of the grammar combinators.

type GrammarGen n t =
(S .Set n,Grammar n t)→ (S .Set n,Grammar n t)

The definitions of gram term, gram nterm, gram altStart , gram alt , gram seqStart and

gram seq are given in Figure 5.7 and correspond closely to the definitions in Section 4.2.

Only gram nterm extends the grammar with additional productions, one for each alternate

represented by subexpression p. If the nonterminal n occurs in the set of nonterminals

encountered so far (nts), no productions are added and the choice expression p is ignored.

This is valid because the contribution of each nonterminal to the generated grammar is

context-independent7.

Grammars are obtained from symbol expressions by applying the function grammarOf .

The generated grammars are augmented with a start symbol.

grammarOf :: n → GramSymb n t → Grammar n t
grammarOf start (n, pgen) = snd (pgen (S .empty , gram))

where gram = M .singleton start (S .singleton [n])

Function parserFor applies fungll to the grammar generated for a symbol expression and

produces a function from an input sentence to set of EPNs.

parserFor :: (Ord l , IsTerminal t)⇒ l → GramSymb l t → Input t → EPNs l t
parserFor start p inp = snd (fungll (grammarOf start p) start inp)

7This assumes that nonterminals are inserted uniquely by the user.

89

type SemSymb n t a = (Symbol n t ,OracleParser n t a)
type SemSeq n t a = (Rhs n t ,n → Rhs n t → OracleParser n t a)
type SemCh n t a = (n → OracleParser n t a)

sem term :: t → SemSymb n t t
sem nterm :: (Ord n)⇒ n → SemCh n t a → SemSymb n t a
sem altStart :: SemCh n t a
sem alt :: SemCh n t a → SemSeq n t a → SemCh n t a
sem seqStart :: a → SemSeq n t a
sem seq :: (Ord n,Ord t)⇒ SemSeq n t (a → b)→ SemSymb n t a → SemSeq n t b

Figure 5.8: The signatures of the semantic combinators.

5.3.2 Semantic Combinators

In this subsection we describe and implement semantic combinators, based on Ridge’s se-

mantic phase [Ridge, 2014], modifying it to our setting of non-binarised grammars (we omit

memoisation). Ridge explains his combinators as parser combinators ‘guided by an oracle’,

where the oracle — here a set of EPNs — provides a pre-computed set of pivots. The

following type definition captures oracle-guided parsers:

type OracleParser n t a = Input t → EPNs n t → Int → Int → S .Set n → [a]

The signatures of the semantic combinators are given in Figure 5.8. Besides type vari-

ables n and t for nonterminals and terminals, the signatures also include the types of se-

mantic values, similar to the parser combinators in Section 5.2. Besides a set of EPNs,

an oracle-guided parser receives an input sentence (in order to yield elements of the input

sentence as semantic values), a set of nonterminals, a left extent l and a right extent r. The

set of nonterminals is used to detect recursion and avoid non-termination, as in Section 4.2.

The left extent and right extent are used to select pivots from the EPN set. The pivots are

obtained by applying the operation pivots:

pivots :: (Slot n t , Int , Int)→ EPNs n t → [Int]

The semantic combinators compute grammar slots in order to apply pivots. The first

component of a symbol expression is the symbol represented by the expression. Similarly,

the first component of a sequence expression is the sequence of symbols represented by the

expression. These are used to compute the required grammar slots. The argument of a

90

sem term t = (Term t , gen)
where gen inp ns l r nts | l + 1 ≡ r = [inp ! l]

| otherwise = []
sem nterm x p = (Nt x , gen)

where gen inp ns l r nts | S .member x nts = []
| otherwise = p x inp ns l r (S .insert x nts)

sem alt p (α, q) = gen
where gen x inp ns l r nts = p x inp ns l r nts ++ q x [] inp ns l r nts

sem altStart = gen
where gen x inp ns l r nts = []

sem seqStart a = ([], gen)
where gen x β inp ns l r nts | l ≡ r = [a]

| otherwise = []
sem seq (α, p) (s, q) = (α++ [s], gen)

where gen x β inp ns l r nts = [f a | k ← pivots ((x , α++ [s], β), l , r) ns
, f ← p x (s : β) inp ns l k (leftLabels nts l k r)
, a ← q inp ns k r (rightLabels nts l k r)]

leftLabels nts l k r | k < r = S .empty
| otherwise = nts

rightLabels nts l k r | k > l = S .empty
| otherwise = nts

Figure 5.9: Definitions of the semantic combinators.

choice expression, and the arguments of the second component of a sequence expression, are

used for the same purpose.

The semantics combinators are implemented in Figure 5.9. The semantic value of

sem term t is t ′, where t ′ is at position l in the input sentence (assuming that the EPN

set determines that matches t t ′ ≡ true). The second component of a sequence expression

receives nonterminal x and a list of symbols β as arguments. The arguments of sem seq

provide a list of symbols α and a symbol s (first component). This information is used to

extract all the pivots [k1, . . . , kn] from the EPN set such that ((x , α, β), l , ki, r) is an EPN

in the set, for all 1 6 i 6 n. For each ki, p is applied with left extent l and right extent ki

to give semantic function [f1, . . . , fm] and q is applied with left extent ki and right extent

r to give semantic values [a1, . . . , ao]. The semantic values of the sequence are the result of

applying all fi to all aj , with 1 6 i 6 m and 1 6 j 6 o. Ambiguity reduction is required to

keep the number of combinations under control.

The set nts is extended by x as part of the definition of sem nterm, where x is a

91

nonterminal name, so that recursive calls can be detected. The set nts is emptied whenever

a call is made to an oracle parser with a larger left extent, or a smaller right extent. Thus,

if a recursive call is detected by inspecting nts, the call is guaranteed to be with the same

left and right extent and it is implied that the nonterminal x can derive itself (according to

the rules of the grammar described by the overarching combinator expression). If x derives

a subsentence of the input, then it follows that there are infinitely many derivations of this

subsentence, because the steps by which x derives itself can be repeated infinitely many

times, each time giving a larger derivation (e.g. a BPT with more nodes). By terminating

these recursive calls, we get only the interpretations of the smallest derivation, without the

steps by which x derives itself. In Ridge’s terminology, this means that ‘bad’ derivations

are ignored [Ridge, 2014].

An evaluator is obtained by applying evaluatorFor to a symbol expression, an input

sentence, initial left and right extents, and EPNs:

evaluatorFor :: SemSymb n t a → Input t → Int → Int → EPNs n t → [a]
evaluatorFor (, p) inp l r ns = p inp ns l r S .empty

5.3.3 Flexible BNF Combinators

This subsection implements the BNF combinators by applying the internal combinators

discussed in the previous subsections. A brief introduction to the BNF combinators was

given at the start of this section, but the signatures of the combinators shown there were

simplified. The actual signatures present a more general and flexible interface. The flexibility

is achieved by automatic conversions between different types of combinator expressions.

Using Haskell’s type-classes, these conversions are realised as implicit coercions.

A BNF combinator expression is a pair of a grammar combinator expression (§5.3.1) and

a semantic combinator expression (§5.3.2). The types SymbExpr , ChExpr , and SeqExpr are

defined as follows:

newtype SymbExpr t a = Symb (GramSymb String t ,SemSymb String t a)
newtype SeqExpr t a = Seq (GramSeq String t ,SemSeq String t a)
newtype ChExpr t a = Ch (GramCh String t ,SemCh String t a)

The type of nonterminals is no longer left abstract. Strings are chosen to support nonter-

minal generation.

92

SymbExpr

ChExpr

SeqExpr

(a)

(b)

(c)

class IsSeq seq where
toSeq :: (Ord t ,Show t)⇒ seq t a → SeqExpr t a

instance IsSeq SeqExpr where
toSeq = id

instance IsSeq SymbExpr where
toSeq p = seqStart id 〈∗∗〉 p -- (a)

instance IsSeq ChExpr where
toSeq = toSeq ◦ toSymb -- (c) then (a)

class IsCh ch where
toCh :: (Ord t ,Show t)⇒ ch t a → ChExpr t a

instance IsCh ChExpr where
toCh = id

instance IsCh SeqExpr where
toCh p = altStart 〈||〉 p -- (b)

instance IsCh SymbExpr where
toCh = toCh ◦ toSeq -- (a) then (b)

class IsSymb symb where
toSymb :: (Ord t ,Show t)⇒ symb t a → SymbExpr t a

instance IsSymb SymbExpr where
toSymb = id

instance IsSymb ChExpr where
toSymb p = genNt p 〈::=〉 p -- (c)

instance IsSymb SeqExpr where
toSymb = toSymb ◦ toCh -- (b) then (c)

Figure 5.10: Conversions between types of expressions.

Consider the diagram in Figure 5.10. The edge labelled (a) represents a function

SymbExpr t a → SeqExpr t a, converting symbol expressions into sequence expressions.

Similarly, edge (b) represents a function SeqExpr t a → ChExpr t a and (c) represents

a function ChExpr t a → SymbExpr t a. The core idea of this section is to implement

these conversions as methods in a type-class and apply them in combinator definitions. For

example, if p and q are symbol expressions, we can then write p 〈||〉 q , which is automatically

converted to altStart 〈||〉 p 〈||〉 q .

The type-classes and instances of Figure 5.10 implement the conversions (a), (b), and

(c) of the diagram in Figure 5.10, as well as their compositions. To implement conversion

(c), from a choice expression to a symbol expression, we use Ridge’s technique, generating a

string based on the structure of the choice expression. As shown by the following definitions,

symbols are combined with "*" and alternates with "|":

93

term :: (Show t)⇒ t → SymbExpr t t
term t = Symb (gram term t , sem term t)

infixl 2 〈::=〉
(〈::=〉) :: (IsCh ch,Ord t ,Show t)⇒ String → ch t a → SymbExpr t a
l 〈::=〉 p = Symb (gram nterm l pgram, sem nterm l psem)

where Ch (pgram, psem) = toCh p

infixl 4 〈∗∗〉
(〈∗∗〉) :: (IsSeq seq , IsSymb symb,Ord t ,Show t)⇒

seq t (a → b)→ symb t a → SeqExpr t b
p 〈∗∗〉 q = Seq (gram seq pgram qgram, sem seq psem qsem)

where Seq (pgram, psem) = toSeq p
Symb (qgram, qsem) = toSymb q

seqStart :: a → SeqExpr t a
seqStart a = Seq (gram seqStart , sem seqStart a)

infixl 3 〈||〉
(〈||〉) :: (IsCh ch, IsSeq seq ,Ord t ,Show t)⇒

ch t a → seq t a → ChExpr t a
p 〈||〉 q = Ch (gram alt pgram qgram, sem alt psem qsem)

where Ch (pgram, psem) = toCh p
Seq (qgram, qsem) = toSeq q

altStart :: ChExpr t a
altStart = Ch (gram altStart , sem altStart)

Figure 5.11: Flexible BNF combinators with coercions.

showRhs :: (Show n,Show t)⇒ Rhs n t → String
showRhs [] = "__()"

showRhs (x : xs) = "__(" ++ show x ++ foldr comb "" xs ++ ")"

where comb s acc = "*" ++ show s ++ acc
showRhss :: (Show n,Show t)⇒ [Rhs n t]→ String
showRhss [] = "__()"

showRhss (x : xs) = "__(" ++ showRhs x ++ foldr comb "" xs ++ ")"

where comb s acc = "|" ++ showRhs x ++ acc
genNt :: (Show t)⇒ ChExpr t a → String
genNt (Ch ((alts,),)) = showRhss alts

The BNF combinators are defined in Figure 5.11. Each combinator is defined as a

straightforward application of the corresponding grammar combinator and semantic com-

binator to the subexpressions obtained by converting the combinator’s arguments. The

interface provided by the BNF combinators is flexible in the sense that the combinators

〈::=〉, 〈||〉, and 〈∗∗〉 can be applied to arbitrary BNF combinator expressions, as conversions

between all combinator expressions are available. Perhaps the combinators are too flexible,

94

(〈::=〉bin) :: (Ord t ,Show t)⇒ String → SymbExpr t a → SymbExpr t a
(〈::=〉bin) = (〈::=〉)

(〈||〉bin) :: (Ord t ,Show t)⇒ SymbExpr t a → SymbExpr t a → SymbExpr t a
p 〈||〉bin q = toSymb (p 〈||〉 q)

(〈∗∗〉bin) :: (Ord t ,Show t)⇒ SymbExpr t (a → b)→ SymbExpr t a → SymbExpr t b
p 〈∗∗〉bin q = toSymb (p 〈∗∗〉 q)

succeedsbin :: (Ord t ,Show t)⇒ a → SymbExpr t a
succeedsbin = toSymb ◦ seqStart

Figure 5.12: Binarising BNF combinators.

as recursive combinator expressions can be written without the use of 〈::=〉, thus causing

nontermination. As a decision in the design of the library, we could have ignored conversion

(c) — by omitting type-class IsSymb and the instances that involve toSymb, thereby forcing

the user to insert nonterminal names manually with 〈::=〉. Instead, we decided to offer

the most flexible interface. When aware of this risk, a user can avoid writing expressions

involving conversion (c).

Function execute is given a start nonterminal, a symbol expression, and a sentence, and

applies functions parserFor and evaluatorFor to yield all the interpretations of the sentence:

execute :: (IsTerminal t)⇒ String → SymbExpr t a → [t]→ [a]
execute start (Symb (pgram, psem)) str =

evaluatorFor psem inp 0 (ub + 1) (parserFor start pgram inp)
where (, ub) = bounds inp

inp = listArray (0, length str − 1) str

5.3.4 Binarising BNF Combinators

The types of the flexible BNF combinators of the previous section are rather complex,

in part due to their dependence on type-classes. Figure 5.12 defines variations on the

core BNF combinators with much simpler types. As with conventional parser combinators,

users encounter only one type of expressions — symbol expressions, in this case — when

working with these combinators. The combinators are defined in terms of the flexible BNF

combinators by applying toSymb to convert choice expressions and sequence expressions to

symbol expressions where necessary. The grammars generated by the underlying grammar

combinator expressions are binarised in the same sense as P3’s internal grammars, because

95

of the explicit conversions with toSymb, and because of the implicit coercions on the symbol

expression arguments, in the definitions of 〈||〉bin and 〈∗∗〉bin. Taking the (explicit and

implicit) conversions into account, the definitions of 〈::=〉bin, 〈||〉bin, and 〈∗∗〉bin correspond

directly to the definitions of inject , alt , and seq in Figure 4.3 of §4.2.1 respectively.

In Section 13.1 we use binarising BNF combinators to demonstrate the negative effects

of grammar binarisation on the runtime efficiency of fungll .

96

Part II

Interpretation

97

Chapter 6

Transition System Semantics

This chapter introduces the topic of operational semantics for programming languages in

the style of Plotkin (1970), commonly known as Structural Operational Semantics (SOS).

Semantic specifications are written as a collection of inference rules that define transition

relations over configurations, where a configuration provides an abstract model for the state

of a machine executing a program. Transition relations formalise how a machine changes over

time, as influenced by the program in its configuration. Other entities in the configuration

influence the behaviour of the machine as well. For example the contents of the machine’s

store (also called heap) or any available input.

SOS specifications are not modular with respect to these auxiliary entities. If the struc-

ture of a configuration changes (for example to encode an additional entity), all inference

rules given thus far need to be updated to reflect this change. This problem is addressed

by Modular SOS (MSOS) introduced by Mosses (2004). MSOS is a generalisation of SOS

in which each auxiliary entity is modelled by a category. The morphisms of the category

specify how the entity can change as the machine transitions. In MSOS rules, an entity only

needs to be mentioned if its transition deviates from the default specified by the composition

operator of the category.

This chapter uses a simple imperative While language as a running example to explain

the differences between SOS and MSOS specifications.

98

6.1 Transition Systems

This definition is due to [Plotkin, 2004b].

Definition 6.1.1. A Transition System (TS) is a structure 〈Γ,−→〉 where Γ is a set of

configurations, and −→ ⊆ Γ × Γ a transition relation (〈γ1, γ2〉 ∈ −→ is written γ1 −→ γ2).

We call γ1 the source, and γ2 the target, of a transition γ1 −→ γ2. A stuck configuration is

a configuration that does not appear as the source of any transition, i.e. γ1 ∈ Γ is stuck if

for all γ2 ∈ Γ 〈γ1, γ2〉 6∈ −→.

An infinite computation from γ1 in TS 〈Γ,−→〉 is an infinite sequence of transitions

γ1 −→ γ′1, γ2 −→ γ′2, . . . with γ′i = γi+1 for all i > 1. A finite computation of length n > 0

from γ1 to γn+1 is a finite sequence of transitions γ1 −→ γ2, . . . , γn −→ γn+1.

In the context of programming languages, it is useful to distinguish between successful

and unsuccessful finite computations, under some notion of success. Successful termina-

tion of a computation is captured by terminal configurations, a nominated subset of stuck

configurations that are considered the results of successful computations.

Definition 6.1.2. A Terminal Transition System (TTS) is a structure 〈Γ,−→, T 〉 where

〈Γ,−→〉 is a TS, and T ⊆ Γ a set of terminal configurations such that for all γ1 ∈ T and

γ2 ∈ Γ it holds that (γ1, γ2) 6∈ −→.

An infinite computation from γ1 in TTS 〈Γ,−→, T 〉 is an infinite sequence of transitions

γ1 −→ γ′1, γ2 −→ γ′2, . . . with γ′i = γi+1 for all i > 1. A finite computation of length n > 0

from γ1 to γn+1 is a finite sequence of transitions γ1 −→ γ2, . . . , γn −→ γn+1 with γn+1 ∈ T .

Plotkin generalises terminal transition systems to allow for transitions with ‘labels’.

Definition 6.1.3. A Labelled Terminal Transition System (LTTS) is a structure 〈Γ, A,−→

, T 〉 where Γ is a set of configurations, A is a set of labels (or actions), −→⊆ Γ× A× Γ is a

labelled transition relation (〈γ1, α, γ2〉 ∈ −→ is written γ1
α−→ γ2), and T is a set of terminal

configurations, such that for all γ1 ∈ T and γ2 ∈ Γ it holds that (γ1, γ2) 6∈ −→.

A infinite computation from γ1 in LTTS 〈Γ, A,−→, T 〉 is an infinite sequence of transitions

γ1
α1−→ γ′1, γ2

α2−→ γ′2, . . . with γ′i = γi+1 for all i > 1. A finite computation of length n > 0

from γ1 to γn+1 is a finite sequence of transitions γ1
α1−→ γ2, . . . , γn

αn−−→ γn+1 with γn+1 ∈ T .

99

The yield of a sequence of labelled transitions γ1
α1−→ γ2, γ3

α2−→ γ4, . . . is the sequence of

labels α1, α2,

6.2 An Exemplary Language Definition

Plotkin demonstrates in his lecture notes how transition systems formalise different con-

cepts in formal language theory such as finite automata and context-free grammars, as

well as the semantics of programming language constructs [Plotkin, 2004b]. This section

presents an operational semantics in the style of Plotkin for While, a small imperative

programming language with commands and expressions inspired by Astesiano’s lecture

notes [Astesiano, 1991]. The resulting specification does not have the modularity required

for giving operational semantics to reusable components, a primary goal of this part of the

thesis. In the next section we introduce MSOS and show that MSOS specifications do have

the desired modularity.

6.2.1 Concrete and Abstract Syntax for While

The basis of our formal description of the syntax of While is formed by the sets B =

{true, false} of Booleans, Z = {0, 1, 2, . . .} ∪ {−1,−2, . . .} of integers, and Id = {x, y, . . .}

of identifiers. Following Plotkin’s lecture notes [Plotkin, 2004b], we call these basic syntactic

sets. The other syntactic objects of the language are elements of derived syntactic sets. The

derived sets are defined inductively over basic and derived syntactic sets. To define derived

syntactic sets, we use a particular form of grammar notation, inspired by the BNF-style of

popular parser generator tools like Yacc. The grammar of While is presented in Figure 6.1.

In this style, a grammar rule is the formal name of a set (e.g. E) followed by an informal

name of the set (expression) and a number of alternatives with associated actions. Each

grammar rule generates a nonterminal, and each alternative of the rule a production, of

a context-free grammar. The context-free grammar describes the concrete syntax of the

language formally. Moreover, we let each grammar rule define a derived syntactic set, by

generating inference rules (abstract syntax rules) from the actions associated with each of

the grammar rule’s alternatives. The derived syntactic sets formally define the abstract

100

C : command ::= C ; C {seq(C1, C2)}
| Id := E {assign(Id1, E1)}
| print E {print(E1)}
| while E do C od {while(E1, C1)}
| D {D1}

D : done ::= done {done}
E : expression ::= E + E {plus(E1, E2)}

| E 6 E {leq(E1, E2)}
| L {L1}
| Id {Id1}

L : literal ::= B {B1}
| Z {Z1}

Figure 6.1: Grammar description for the While language.

syntax of the language (at the end of this section we briefly discuss the distinction between

concrete and abstract syntax).

For example, alternative E + E defines a production E ::= E + E in which E is a

nonterminal (because it is the name of a derived syntactic set) and + is a terminal symbol

(because it is not the name of a derived set). The set of all symbols is thus inferable from

the grammar description. The set of terminals is the union of all basic syntactic sets and (a

representation of) all keywords (e.g. print, od, and +). The set of all nonterminals has

a distinct element for each derived syntactic set.

The alternative E + E has the action {plus(E1, E2)} associated with it, generating the

following abstract syntax rule:

Y1 ∈ E Y2 ∈ E

plus(Y1, Y2) ∈ E

A variable Xi in an action refers to the ith occurrence of the set X in the right-hand

side of the alternative. The subscripts are thus used to form the bridge between concrete

and abstract syntax (in a translation we do not formalise). The conditions of abstract

syntax rules depend on sets mentioned in the action, e.g. the sets Id and E in the action

{assign(Id1,E1)} associated with the second alternative of command . In this example, the

conclusion of the abstract syntax rule is assign(Y1, Y2) ∈ C. Here, C is the derived syntactic

101

set defined by the alternative. Therefore, this action generates the rule:

Y1 ∈ Id Y2 ∈ E

assign(Y1, Y2) ∈ C

As another example, the action associated with the first alternative of the grammar rule for

L generates:

Y1 ∈ B

Y1 ∈ L

Axioms are generated when no variables appear in the action. For example, the action

{done} generates the rule (axiom):

done ∈ D

Together, the abstract syntax rules generated for each alternative of a grammar rule with

formal name S define the derived syntactic set S.

Remarks on abstract syntax An element of abstract syntax is either an element of a ba-

sic syntactic set or the application of a constructor to zero or more syntactic elements. Con-

structor application is written in traditional functional style (e.g. assign(S1, S2)). Parenthe-

ses are omitted when a constructor is not applied to any elements (e.g. done). Constructors

do not always have a fixed arity, i.e. some constructors are variadic.

An element of abstract syntax forms a tree called an abstract syntax tree (AST). An

abstract syntax tree is an ordered tree with internal nodes labelled by constructor names,

and leaf nodes labelled by a constructor name or an element from a basic syntactic set.

Constructor application F (S1, . . . , Sn) forms a leaf node labelled by F if n = 0, or an

internal node labelled by F with the n children formed by S1, . . . , Sn. An element B of a

basic syntactic set forms the leaf node labelled by B.

When discussing the semantics of programming languages, we take the abstract syntax

of the language as a starting point. The informal inductive description of AST construction

given above can be implemented by adding ‘semantic actions’ to parsers (as discussed in the

context of parser combinators in Chapter 5). We can thus rely on the implementation of a

102

parser to provide an AST1.

There is no clean-cut distinction between concrete syntax and abstract syntax. In fact,

when describing a translation from programs of language S into language T it is often useful

to gradually abstract over aspects of S, via several abstract syntaxes, and to subsequently

introduce the concrete details of T . In this thesis we say that the (one and only) concrete

syntax of a language is the set of productions from a context-free grammar for that language.

The (one and only) abstract syntax of the language is a collection of basic syntactic sets

and of abstract syntax rules: inference rules defining derived syntactic sets. Looking back

at our example, one might say that the concrete syntax of While is actually quite abstract,

as it does not specify the precedence or associativity of operators.

6.2.2 Operational Semantics for While

The operational semantics of a While program involves executing commands and evaluat-

ing expressions. Both types of operations change the state of the underlying machine by

modifying its internal representation of the program. (This change is usually small.) The

execution of a command may cause a change, a side-effect, to an other component of the

machine. The evaluation of an expression is side-effect free, although it does depend on an

other component of the machine (without changing it), namely to find the values assigned

to identifiers.

An SOS specification models the state of a machine with a configuration: a tuple of

elements containing the program, called the program component of the configuration. The

other elements of a configuration are called auxiliary entities, modelling any additional com-

ponents of the machine. The possible behaviours of a machine are modelled by the com-

putations within a transition system. In the example of While, we define two transition

systems, for evaluating expressions and executing commands. A small-step style specifica-

tion is given to introduce the small-step style with which funcons are defined in Chapter 8

and to enable a straightforward discussion on step size and computations towards the end

of this section.

The behaviour of printing is to add a literal value (an element of the set L, obtained by

evaluating an expression) to a sequence of values printed thus far (called the output of the

1In the case of a complete parser, this requires disambiguation.

103

A : out = L∗

σ : sto = Id → L

Figure 6.2: Auxiliary entity sets for While commands.

program). We follow the convention of modelling the storage of a machine as a function

mapping identifiers to assigned values, called the store. The store and the program’s output

are auxiliary entities, formalised by the auxiliary entity sets of Figure 6.2. Here σ is the

formal name of the set and sto is an informal name (later referred to as an entity identifier)

associated with the set.

Small-step semantics for expressions We give a TTS for the evaluation of expressions

by defining a transition relation via inference rules. The only auxiliary entity in a configu-

ration is the store, for looking up assigned values. There is no output, and the store never

changes; an expression has no side-effects. The transition relation −→E ⊆ (E×σ)× (E×σ)

is defined in Figure 6.3. The meaning of + and 6 are assumed.

Note that we choose variable names merely to suggest that they are placeholders for

elements of a certain set. Plotkin and Astesiano associate meaning with the chosen variable

names so that conditions like Z1 ∈ Z can be left implicit. The conditions that do not involve

a transition relation (also called side-conditions) are often written separately, ‘besides the

bar’, from the conditions that do involve a transition relation (also called premises). Instead

we mix both types of conditions and write them ‘above the bar’.

The rules define a deterministic relation because each constructor in the abstract syntax

has one or more mutually exclusive rules. For example, Rules (plus-1), (plus-2), and (plus)

are mutually exclusive because an arbitrary expression E1 cannot be literal (i.e. E1 ∈ L)

and be part of a transition simultaneously. These rules determine that the operands of plus

(and similarly leq) are evaluated in a strictly left-to-right order, although small-step SOS is

especially suitable to specify an interleaved evaluation of operands. An arbitrary evaluation

order for the operands of plus can be specified by removing the condition Z1 ∈ Z from

Rule (plus-2) (and for consistency also replacing Z1 with E1). The resulting specification

is no longer deterministic as Rules (plus-1) and (plus-2) are simultaneously applicable to

all expressions plus(E1, E2) for which E1 and E2 require (and permit) computation.

104

〈E1, σ1〉 −→E 〈E′1, σ1〉
〈plus(E1, E2), σ1〉 −→E 〈plus(E′1, E2), σ1〉

(plus-1)

Z1 ∈ Z 〈E2, σ1〉 −→E 〈E′2, σ1〉
〈plus(Z1, E2), σ1〉 −→E 〈plus(Z1, E

′
2), σ1〉

(plus-2)

Z1 ∈ Z Z2 ∈ Z Z3 = Z1 + Z2

〈plus(Z1,Z2), σ1〉 −→E 〈Z3, σ1〉
(plus)

〈E1, σ1〉 −→E 〈E′1, σ1〉
〈leq(E1, E2), σ1〉 −→E 〈leq(E′1, E2), σ1〉

(leq-1)

Z1 ∈ Z 〈E2, σ1〉 −→E 〈E′2, σ1〉
〈leq(Z1, E2), σ1〉 −→E 〈leq(Z1, E

′
2), σ1〉

(leq-2)

Z1 ∈ Z Z2 ∈ Z B1 = Z1 6 Z2

〈leq(Z1,Z2), σ1〉 −→E 〈B1, σ1〉
(leq)

L1 = σ1(Id1) Id1 ∈ Id

〈Id1, σ1〉 −→E 〈L1, σ1〉
(assigned)

Figure 6.3: Small-step transition relation for While expressions.

There are configurations for which no rule is applicable. For example, there is no transi-

tion from 〈plus(B1, E1), σ1〉, for any Boolean B1, expression E1, and store σ1. A less obvious

example is 〈plus(x, 3), σ1〉, for any identifier x and for any σ1 that is not defined on x. Can-

didate (plus-1) is not applicable as there is no transition 〈x, σ1〉 −→E 〈E′1, σ1〉 (for any E′1),

because the premise of rule (assigned) cannot be established. These configurations are not

terminal configurations as they are not the result of successful computation. We say that

terminal configurations must have a literal as a program component. The TTS for While

expressions is ttsWhile-expr = 〈E × σ,−→E , L× σ〉.

Small-step semantics for commands A While program is a single command, typically

a binarised sequence of commands constructed by applications of seq . Whereas expressions

are evaluated to obtain a value, commands are executed for their side-effects. To determine

successful execution of a command, Plotkin uses a special kind of terminal configuration

without a program component. Instead we follow Mosses, and introduce a distinctive com-

105

〈C1, σ1, α1〉 −→C 〈C ′1, σ2, α2〉
〈seq(C1, C2), σ1, α1〉 −→C 〈seq(C ′1, C2), σ2, α2〉

(seq)

〈seq(done, C2), σ1, α1〉 −→C 〈C2, σ1, α1〉 (done)

〈E1, σ1〉 −→E 〈E′1, σ1〉
〈assign(Id1, E1), σ1, α1〉 −→C 〈assign(Id1, E

′
1), σ1, α1〉

(assign-2)

L1 ∈ L σ2 = σ1[Id1 7→ L1]

〈assign(Id1, L1), σ1, α1〉 −→C 〈done, σ2, α1〉
(assign)

〈E1, σ1〉 −→E 〈E′1, σ1〉
〈print(E1), σ1, α1〉 −→C 〈print(E′1), σ1, α1〉

(print-1)

L1 ∈ L α2 = α1 ++ [L1]

〈print(L1), σ1, α1〉 −→C 〈done, σ1, α2〉
(print)

Figure 6.4: Small-step transition relation for While commands (part 1).

mand, done ∈ D, to denote a fully executed command [Mosses, 2004]. Note that set D has

a grammar rule in Figure 6.1, and done is therefore part of the concrete syntax of While.

If preferred, D can be defined in the abstract syntax only.

The configurations of the transition system for While commands have stores and output

as auxiliary entities. The small-step transition relation −→C is defined for most commands

in Figure 6.4.

Astesiano suggests several possible semantics for the while construct [Astesiano, 1991].

The difficulty of a small-step semantics is that, say while(E1, C1), requires potentially many

steps to evaluate the condition E1. The command seq(C1,while(E1, C1)) is to be executed

when the condition evaluates to true, where E1 is the condition before it was evaluated.

Thus the original condition needs to be remembered. One of Astesiano’s suggestion defers

evaluation of the condition to an if-then-else command with seq(C1,while(E1, C1)) as its

then-branch, thus ‘making a copy’ of the condition. A second suggestion is to close −→E

under transitivity, effectively evaluating the condition in one step. A similar approach is

discussed later. Rather than introducing if-then-else to the language, we allow the while

constructor to take three arguments: two expressions and a command. The variant of while

106

Y1 ∈ E Y2 ∈ E Y3 ∈ C
while(Y1, Y2, Y3) ∈ E

(while-aux-syntax)

〈while(E1, E1, C1), σ1, α1〉 −→C 〈C2, σ2, α2〉
〈while(E1, C1), σ1, α1〉 −→C 〈C2, σ2, α2〉

(while-aux)

〈E1, σ1〉 −→E 〈E′1, σ1〉
〈while(E1, E2, C1), σ1, α1〉 −→C 〈while(E′1, E2, C1), σ1, α1〉

(while-1)

〈while(false, E2, C1), σ1, α1〉 −→C 〈done, σ1, α1〉 (while-ff)

〈while(true, E2, C1), σ1, α1〉 −→C 〈seq(C1,while(E2, E2, C1)), σ1, α1〉 (while-tt)

Figure 6.5: Small-step transition relation for While commands (part 2).

with three arguments is for ‘internal’ use only, storing a copy of the condition before it is

evaluated. The first expression is the condition as it is being evaluated, the second expression

is the copy of the condition prior to evaluation. The rules are given in Figure 6.5, including

the abstract syntax extension (rule (while-aux-syntax)). Rule (while-aux) defers the

semantics of while with two arguments to the variant with three arguments by making a

copy of the condition. Rule (while-1) evaluates the first argument of while. Rule (while-

tt) shows that the original condition (E2) is used to reinstate the while expression with the

condition before it was evaluated.

Instead of writing rules (while-aux-syntax) and (while-aux) we could use the fol-

lowing grammar rule alternative for while instead:

C : command | while E do C od {while(E1, E1, C1)}

The TTS for executing commands is ttsWhile = 〈C × σ ×A,−→C , D × σ ×A〉.

Remarks on step size The small-step transition relations −→E and −→C describe small

steps indeed, and computations for non-trivial programs require many transitions. Consider

the following computation:

107

〈seq(assign(x, leq(plus(1, plus(2, 3)), 7)), print(x)), σ0, [·]〉 −→C

〈seq(assign(x, leq(plus(1, 5), 7)), print(x)), σ0, [·]〉 −→C

〈seq(assign(x, leq(6, 7)), print(x)), σ0, [·]〉 −→C

〈seq(assign(x, true), print(x)), σ0, [·]〉 −→C

〈seq(done, print(x)), σ0[x 7→ true], [·]〉 −→C

〈print(x), σ0[x 7→ true], [·]〉 −→C

〈print(true), σ0[x 7→ true], [·]〉 −→C

〈done, σ0[x 7→ true], [true]〉

The example is a computation in the TTS for commands and does not involve the transition

relation −→E . The fact that the transition relation −→C is defined in terms of −→E is not

visible in the computation. However, three steps are required to evaluate the subexpression

leq(plus(1, plus(2, 3), 7)). We may wish to ‘hide’ the steps that evaluate subexpressions from

computations in the TTS for commands. One way to achieve this is closing −→E under

transitivity and reflexivity, adding the following rules:

γ1 −→E γ1

γ1 −→E γ2 γ2 −→E γ3

γ1 −→E γ3

Now leq(plus(1, plus(2, 3), 7)) −→E true and the example computation shortens to:

〈seq(assign(x, leq(plus(1, plus(2, 3)), 7)), print(x)), σ0, [·]〉 −→C

〈seq(assign(x, true), print(x)), σ0, [·]〉 −→C

〈seq(done, print(x)), σ0[x 7→ true], [·]〉 −→C

〈print(x), σ0[x 7→ true], [·]〉 −→C

〈print(true), σ0[x 7→ true], [·]〉 −→C

〈done, σ0[x 7→ true], [true]〉

The rule for reflexivity, however, violates the termination property of terminal transitions

systems, i.e. there are transitions from terminal configurations. This is easily solved by

adding a termination condition to the rule, restricting its applicability. The rule for transi-

tivity makes a specification ambiguous, as potentially many proofs are possible of a single

transition. This is because a sequence of transitions γ1 −→E . . . −→E γn can be split in

multiple ways to establish the premises of transitivity. Moreover, both rules make it difficult

108

to find proofs mechanically because they introduce nondeterminism to a specification. In

particular, the rule for reflexivity is always applicable (without the termination condition)

and the transitivity rule is applicable in many ways. For these reasons, we introduce a sep-

arate relation 99KE , capturing the finite computations in the TTS for While expressions,

defined as follows:

γ1 ∈ L× σ

γ1 99KE γ1

(6.1)

γ1 −→E γ2 γ2 99KE γ3

γ1 99KE γ3

(6.2)

We refer to 99KE as the iterative closure of −→E .

We replace rules (assign-2) and (assign) by:

〈E1, σ1〉 99KE 〈L1, σ1〉 σ2 = σ1[Id1 7→ L1]

〈assign(Id1, E1), σ1, α1〉 −→C 〈done, σ2, α1〉
(assign-eval)

Since leq(plus(1, plus(2, 3)), 7) 99KE true, the example computation shortens to:

〈seq(assign(x, leq(plus(1, plus(2, 3)), 7)), print(x)), σ0, [·]〉 −→C

〈seq(done, print(x)), σ0[x 7→ true], [·]〉 −→C

〈print(x), σ0[x 7→ true], [·]〉 −→C

〈print(true), σ0[x 7→ true], [·]〉 −→C

〈done, σ0[x 7→ true], [true]〉

The semantics of while loops is simplified by applying this method to evaluate loop

conditions. Figure 6.6 shows the simplified semantics for while loops, removing the need for

the variant of while with three arguments.

The style in which rules are written influences the structure of the computations, as well

as that of the proofs showing these computations exist.

Remarks on notation The semantics of While has been defined such that expressions

do not modify the store. All transitions involving −→E , occurring in the rules defining −→E

and −→C , have the same store component in source and target. We can introduce syntactic

109

〈E1, σ1〉 99KE 〈false, σ1〉
〈while(E1, C1), σ1, α1〉 −→C 〈done, σ1, α1〉

(while-ff)

〈E1, σ1〉 99KE 〈true, σ1〉
〈while(E1, C1), σ1, α1〉 −→C 〈seq(C1,while(E1, C1)), σ1, α1〉

(while-tt)

Figure 6.6: Alternative semantics for while loops.

sugar to capture this common pattern and to improve the readability and maintainability

of the rules. In the example of While, we can let σ1 ` E1 −→E E′1 denote 〈E1, σ1〉 −→E

〈E′1, σ1〉. A selection of simplified rules for While expressions is given in Figure 6.7.

σ1 ` E1 −→E E′1
σ1 ` plus(E1, E2) −→E plus(E′1, E2)

(plus-1)

Z1 ∈ Z σ1 ` E2 −→E E2

σ1 ` plus(Z1, E2) −→E plus(Z1, E
′
2)

(plus-2)

Z1 ∈ Z Z2 ∈ Z Z3 = Z1 + Z2

σ1 ` plus(Z1,Z2) −→E Z3

(plus)

L1 = σ1(Id1) Id1 ∈ Id

σ1 ` Id1 −→E L1

(assigned)

Figure 6.7: Variation of some rules in Figure 6.3 with syntactic sugar.

6.3 Generalised Transition Systems

The goal of the PLanCompS project has been to establish a formal and component-based

approach to programming language development. The approach requires that the opera-

tional semantics of language constructs can be given in isolation whilst being composable.

In an SOS specification, however, all inference rules that mention a particular transition

relation have to be modified if we wish to change the structure of the configurations of the

transition relation, for example to add or remove an auxiliary entity. A symptom of the

110

problem is observed in Figure 6.4. The rules for assign mention the unrelated output entity,

and the rules for print mention the store.

To write modular rules we need the ability to omit references to auxiliary entities in rules

for constructs independent of these auxiliary entities. When an auxiliary entity is added to

a specification, the current set of rules should still be valid, although they do not mention

the auxiliary entity. Simultaneously, the rules should specify how the new auxiliary entity

should be propagated between the source and target of a transition and between transitions

in a rule. In the next subsection we introduce Generalised Terminal Transition Systems

(GTTSs), defined by MSOS rules that have these properties.

6.3.1 MSOS

Generalised transition systems have their basis in category theory. We follow [Mosses, 2004]

and take a category to be: a set of objects O, a set of morphisms A, functions source : A→ O

and target : A → O, a partial composition operator o
9 : A × A → A, and a function

id : O → A, giving an identity morphism to each object. The operator o
9 and the identity

morphisms are required to satisfy associativity and identity laws.

The following definition is by [Bach Poulsen, 2016] and is derived from [Mosses, 2004].

Definition 6.3.1. A Generalised Terminal Transition System (GTTS) is a structure

〈Γ,C,−→, T 〉 where C is a category with morphisms A, such that 〈Γ, A,−→, T 〉 is an LTTS.

A computation in a GTTS is a computation in the underlying LTTS such that its yield

is a path in the category C: whenever a transition labelled a is followed immediately by a

transition labelled a′, the labels a and a′ are required to be composable in C.

[Mosses, 2004] introduces Modular SOS (MSOS) a modular variant of SOS in which

MSOS rules define the transition relations of GTTSs. In MSOS, configurations are re-

stricted to programs, and therefore only programs — not semantic entities — determine

termination. Instead of in configurations, entities occur in the labels of transitions. For

each entity a category is identified so that the morphisms of the category represent the

possible changes to the entity. Identity morphisms represent ‘no change’, and the compo-

sition operator o
9 restricts which changes can occur after each other. The categories of all

entities are combined into a single product category. The product category forms a GTTS

111

together with a transition relation defined via MSOS rules. In MSOS rules, a variable can

be a placeholder for a morphism in the product category, thus referring to entities without

explicitly mentioning them. Conditions may include such label variables to restrict the ways

in which they can be instantiated. For example, a condition unobs(X) expresses that X

must be a placeholder for a product of identity morphisms. A condition X o
9 Y expresses

that the morphisms in the products X and Y must compose. A transition in an MSOS rule

is written as follows (where n > 0):

P1
{K1=a1,...,Kn=an,X}−−−−−−−−−−−−−−−→ P2

In the entity reference K1 = a1, the left-hand side K1 is the name of an entity (an index

in an indexed product) and a1 is a morphism. If the transition relation −→ has, as labels,

morphisms from a J-indexed product category, then {K1, . . . ,Kn} ⊆ J , and X is a label

variable referring to a (J \ {K1, . . . ,Kn})-indexed product of morphisms. For MSOS rules

with constraints like X o
9 Y to be well-defined, X and Y must be products with the same

set of indices. Therefore, if entity K is mentioned explicitly in some transition of an MSOS

rule, then all transitions within that rule must mention K explicitly. Moreover, all transition

relations defined by an MSOS specification must involve the same entities (the same set of

indices J). However, crucially, different MSOS rules may refer to different entities.

6.3.2 MSOS Specification of While

We revisit the running example and define GTTSs capturing the semantics of While ex-

pressions and commands and show that the GTTS for commands is modularly extensible.

Expressions The GTTSs share a {sto, out}-indexed product C of two preorder categories

Csto and Cout with object sets σ and A respectively. The GTTS for While expressions is

〈E,C,−→E , L〉 and the GTTS for commands is 〈C,C,−→C , D〉. The transition relation −→E

is defined by the MSOS rules in Figure 6.8, together with the iterative closures of −→E and

−→C . When both arguments of plus(Z1,Z2) are integers, then plus(Z1,Z2) is replaced by

the sum of the arguments, without any side-effects. The latter follows from the condition

unobs(X), specifying that X is an identity morphism. In the case of sto and out, this

112

λ1 ∈ L unobs(X)

λ1

{X}
9999K E λ1

λ1
X−→E λ2 λ2

Y
99K E λ3 Z = X o

9 Y

λ1
Z
99K E λ3

unobs(X)

done
{X}
9999K C done

γ1
{X}−−−→C γ2 γ2

{Y }
9999K C γ3 Z = X o

9 Y

γ1

{Z}
9999K C γ3

E1
{X}−−−→E E′1

plus(E1, E2)
{X}−−−→E plus(E′1, E2)

Z1 ∈ Z E2
{X}−−−→E E′2

plus(Z1, E2)
{X}−−−→E plus(Z1, E

′
2)

Z1 ∈ Z
Z2 ∈ Z Z3 = Z1 + Z2 unobs(X)

plus(Z1,Z2)
{X}−−−→E Z3

Id1 ∈ Id L1 = σ1(Id1) unobs(X)

Id1
{sto=〈σ1,σ1〉,X}−−−−−−−−−−−→E L1

Figure 6.8: MSOS rules for 99KE , 99KC , and While expressions (omitted leq).

means that the store is unchanged and that no values have been appended to the output.

Importantly however, no assumptions are made about which entities are ‘present’. The

rules for evaluating the arguments of plus specify that if the evaluation of the argument has

side-effects, then the evaluation of plus has the same side-effects (label variable X is used in

both transitions). (Note that, unlike before, expressions may now have side-effects, if new

forms of expressions are added to the language later.) The rules for leq are similar and have

been omitted.

Since in preorder categories there is exactly one morphism a for every pair of objects

〈o1, o2〉, with source(a) = o1 and target(a) = o2, we can identify a by writing 〈o1, o2〉. An

example is in the rule for evaluating identifiers, which involves inspecting the store to find

values assigned to identifiers. An identifier evaluates without side-effects, following from the

condition unobs(X) and from the fact that 〈σ1, σ1〉 is an identity morphism.

Commands The MSOS rules that define −→C are given in Figure 6.9. To simplify com-

putations in the GTTS for commands, we use single-step evaluation of subexpressions.

The rule for executing the first command in a sequence of commands specifies that the

command may execute with side-effects and that these effects propagate as the effects of

executing the sequence. A fully executed command is discarded from a sequence without

113

C1
{X}−−−→C C ′1

seq(C1, C2)
{X}−−−→C seq(C ′1, C2)

(seq-cong)

unobs(X)

seq(done, C2)
{X}−−−→C C2

(seq-done)

E1

{X}
9999K E false

while(E1, C1)
{X}−−−→C done

(while-false)

E1

{X}
9999K E true

while(E1, C1)
{X}−−−→C seq(C1,while(E1, C1))

(while-true-a)

E1

{sto=〈σ1,σ2〉,X}
9999999999999K E L1 σ3 = σ2[Id1 7→ L1]

assign(Id1, E1)
{sto=〈σ1,σ3〉,X}−−−−−−−−−−−→C done

(assign)

E1

{out=〈α1,α2〉,X}
9999999999999K E L1 α3 = α2 ++ [L1]

print(E1)
{out=〈α1,α3〉,X}−−−−−−−−−−−→C done

(print)

Figure 6.9: MSOS rules for While commands.

side-effects. A step to evaluate the expression of an assignment may have side-effects which

are propagated as the side-effects of the assignment. As an additional effect, the store is

updated so that the first argument (an identifier) refers to the value of the second argument.

The rule for print is similar to that of assign but acts on the output rather than the store.

Note that the rules for assign do not mention out and the rules for print do not mention

sto. The rules for the while construct follow the same pattern: any side-effects resulting

from the evaluation of the condition of a loop propagate as the side-effects of the loop.

Extending While

We demonstrate the modularity of MSOS specifications by showing how While is extended,

without the need to revisit the rules written so far. As an example we add the continue

command. Informally, the semantics of continue are to jump to the next iteration of the

114

(innermost) loop in which it occurs. The grammar fragment below provides a modular

extension to the concrete and abstract syntax defined by the grammar in Figure 6.1.

C : command ::= continue {continue}

To define the semantics of continue formally, we introduce an additional auxiliary entity by

defining the following auxiliary entity set:

Sig : sig = {none, cnt}

Informally, a cnt signal is ‘emitted’ when a continue command is executed. (By default,

transitions emit the signal none.) The body of a loop is wrapped inside a special constructor

listen cnt for responding to cnt signals. This is the only reason listen cnt exists and it has

no counterpart in the concrete syntax (listen cnt is part of the auxiliary abstract syntax).

C1 ∈ C
listen cnt(C1) ∈ C

The auxiliary entity set Sig provides the objects of a new category Csig, an instance of

Bach Poulsen’s abrupt termination category [Bach Poulsen, 2016]. The product category

C is extended with index sig. The morphisms of the category Csig are 〈none,none〉,

〈none, cnt〉, and 〈cnt, cnt〉. The set of morphisms is closed under composition, and the

identity morphisms are 〈none,none〉 and 〈cnt, cnt〉. Despite the change to C, the rules

given earlier in Figures 6.8 and 6.9 are still valid and meaningful.

The semantics of continue is given in Figure 6.10. Note that rule (while-true-b)

is a replacement for (while-true-a). The rule shows that the body of a while loop is

‘wrapped’ within listen cnt before it is executed. The continue command transition to done,

accompanied by a cnt signal. Command listen cnt is fully executed once its argument is

fully executed or once its argument emits a cnt signal.

Only programs in which a continue command occurs outside a loop cause the morphisms

〈none, cnt〉 and 〈cnt, cnt〉 to appear in computations. A static semantics for While might

determine that such programs are not valid.

115

E1
{X}−−−→E true

while(E1, C1)
{X}−−−→C seq(listen cnt(C1),while(E1, C1))

(while-true-b)

unobs(X)

continue
{sig=〈none,cnt〉,X}−−−−−−−−−−−−−→C done

(continue)

C1
{sig=〈none,none〉,X}−−−−−−−−−−−−−−→C C ′1

listen cnt(C1)
{sig=〈none,none〉,X}−−−−−−−−−−−−−−→C listen cnt(C ′1)

(listen-cnt-none)

C1
{sig=〈none,cnt〉,X}−−−−−−−−−−−−−→C C ′1

listen cnt(C1)
{sig=〈none,none〉,X}−−−−−−−−−−−−−−→C done

(listen-cnt-cnt)

unobs(X)

listen cnt(done)
{X}−−−→C done

(listen-cnt-done)

Figure 6.10: MSOS rules for While extended with the continue command.

6.3.3 I-MSOS Rules

In the MSOS rules given for While in the previous subsection, the usage of label variables

and the conditions unobs(X) and X o
9 Y follow a certain pattern. When a rule is written

without a premise (e.g. rules (continue), and (seq-done)), the rule includes unobs(X) as a

side-condition, where X is the label variable of the conclusion. Thus, entities not mentioned

in axioms do not change. When a rule is written with one premise (e.g. rules (seq-cong)

and (while-true-b)), then the same label variable is used in both premise and conclusion.

The described pattern is common for programming language definitions. This observa-

tion is at the heart of I-MSOS rules [Mosses and New, 2009], a variation on MSOS rules.

In I-MSOS rules, there are no explicit label variables. Instead, label variables and condi-

tions on label variables are left implicit (I-MSOS stands for Implicitly-Modular SOS). For

example, rule (print) can be replaced by the following I-MSOS rule:

E1 −→E L1 α2 = α1 ++ [L1]

〈print(E1), out = α1〉 −→C 〈done, out = α2〉

116

Entity references are no longer written on top of transition arrows. As a result, I-MSOS rules

look similar to conventional SOS rules. Entity references are written differently depending

on how the morphisms of the entity’s category can be identified. We shall see more examples

when we consider the I-MSOS rules of the CBS meta-language in Chapter 8.

I-MSOS rules define GTTSs indirectly, through underlying MSOS. Depending on the

number of premises in an I-MSOS rule, different label variables and conditions are used

in the underlying MSOS rule. To explain precisely what MSOS rules underlie I-MSOS

rules, we let k be the number of premises in some I-MSOS rule. In the underlying MSOS

rule, we take X0 for the conclusion’s label variable and Xi for the label variable of the

ith premise. We explain, based on different values of k, which side conditions are active

in the underlying MSOS rule. When k = 0, the underlying MSOS rule has the condition

unobs(X0). When k = 1, we have X0 = X1 in the underlying MSOS rule. When k > 1,

the underlying MSOS rule has the side condition X0 = X1
o
9 . . . o

9Xk. The latter guarantees

that all changes in entity values represented by the morphisms in X1 . . . Xk are composable

and that their effects accumulate to form the effects of the conclusion. Since o
9 is not

commutative, this ‘implicit propagation scheme’ implies that I-MSOS rules are not truly

declarative; the order in which premises are written matters. This topic is discussed in more

detail in [Mosses and New, 2009], together with alternative implicit propagation schemes

affecting the case k > 1. As an example of an I-MSOS rule with multiple premises, consider

the following rule, (partially) defining the iterative closure of some −→.

λ1 −→ λ2 λ2 99K λ3

λ1 99K λ3

I-MSOS rules may seem significantly less expressive than MSOS rules as they do not have

explicit label variables. However, I-MSOS rules have proven to be widely applicable in the

context of programming language semantics [Churchill et al., 2015, Sculthorpe et al., 2016],

and are certainly sufficient for the purposes of this thesis.

117

Chapter 7

Modular Rule-Based Semantics

The previous chapter shows how MSOS specifications give semantics to programming lan-

guage constructs with a high degree of modularity. This chapter introduces modular rule-

based semantics (MRBS) inspired by MSOS. A detailed comparison between MRBS and

MSOS is made at the end of §7.1.1.

The transition systems of SOS and MSOS are very abstract and they can be used to

model more than programming language semantics. In particular, transitions systems do

not mention auxiliary entities or program fragments and they can be defined via other

means than inference rules. MRBS is designed specifically for the purposes of this thesis

and formalises transition relations over configurations consisting of program fragments and

auxiliary entities. Most importantly, MRBS has a notion of derivations based on produc-

tion rules. Using the notion of derivations, we formalise interpreters as algorithms that find

derivations, similar to the parsers of Chapter 2. Modularity is achieved by allowing deriva-

tions to refer to entities that do not occur in production rules when they satisfy certain

propagation conditions.

This chapter also introduces a meta-language called IML for writing MRBS specifica-

tions, and shows how interpreters are generated from IML programs. IML is designed to

enable mechanical treatment on the one hand. On the other hand, it is intended to be suf-

ficiently general so that many operational aspects of deterministic programming languages

can be specified and that different ‘styles’ of rules can be written.

118

7.1 Modular Rule-Based Specifications

A Modular Rule-Based Semantic Specification (MRBS) defines multiple transition relations

such that each defines its own Terminal Transition System (TTS). The transitions are over

configurations whose program components are taken from an abstract set of program frag-

ments. All transition relations use the same auxiliary entities. Program fragments are

considered terminating or not relative to a particular relation. That is, a program fragment

may be considered the result of a computation according to one relation but not according

to another. Entities determine termination as well as program fragments. A configuration

is considered terminal with respect to a relation −→ if its program component is termi-

nating with respect to −→, or if any of its auxiliary entities is considered terminating (the

termination property of an entity is not specific to a particular relation). These aspects of

MRBS specifications are captured by the following definitions.

Definition 7.1.1. A signature Σ consists of a set of program fragments ΛΣ, a set of relation

symbols RΣ, a set of entity identifiers EΣ, with RΣ and EΣ distinct, and a family of sets of

program terminals {ΛTΣ,k}k∈(RΣ∪EΣ) with ΛTΣ,k ⊆ ΛΣ for each k ∈ RΣ ∪ EΣ.

The subscript Σ is omitted when it is clear from context to which signature is referred.

A configuration is formalised as a pair of a program component and an entity record, a

partial function mapping entity identifiers to program fragments.

Definition 7.1.2. Given a signature Σ, a configuration γ is a pair 〈λ, δ〉 with prgm(γ) =

λ ∈ Λ (the configuration’s program component), rec(γ) = δ ∈ E ⇀ Λ (the configuration’s

entity record), and dom(γ) = dom(δ) = {j ∈ E | δ(j) defined} (the domain of the entity

record and the configuration). A configuration γ is complete if dom(γ) = E. A configuration

γ is terminal in r ∈ R if prgm(γ) ∈ ΛTr or if there is an entity identifier j ∈ dom(γ) with

rec(γ)(j) ∈ ΛTj . Two configurations γ = 〈λ, δ〉 and γ′ = 〈λ′, δ′〉 are similar, written as

γ ' γ′, if and only if for all j ∈ (dom(γ) ∩ dom(γ′)) we have that δ(j) = δ′(j) and if we

have that λ = λ′.

A transition is a triple of two configurations γ1, γ2, and a relation symbol r, such that

the configurations have the same domain and such that γ1 is not terminal in r.

119

Definition 7.1.3. Given a signature Σ, a transition p0 is a triple 〈γ1, r, γ2〉, with γ1 and

γ2 configurations such that dom(γ1) = dom(γ2) and γ1 not terminal in r, src(p0) = γ1 (the

source of the transition), tgt(p0) = γ2 (the target of the transition), rel(p0) = r ∈ R (the

relation symbol of the transition) and dom(p0) = dom(γ1) (the domain of the transition). A

transition p0 is complete if dom(p0) = E. Two transitions p = 〈γ1, r, γ2〉 and p′ = 〈γ′1, r′, γ′2〉

are similar, written as p ' p′, if and only if we have that γ1 ' γ′1, γ2 ' γ′2 and r = r′.

Inspired by context-free grammars, we define productions. A production has a conclusion

and zero or more premises, each a transition with possibly different relation symbols.

Definition 7.1.4. Given a signature Σ, a production ψ is a pair 〈p0, ρ〉, with p0 a transition,

ρ = {p1, . . . , pk} a (possibly empty) set of transitions such that dom(p0) = dom(pi), for all

1 6 i 6 k, conc(ψ) = p0 (the production’s conclusion), prem(ψ) = ρ (the production’s

premises), rel(ψ) = rel(p0) (the relation (partially) defined by ψ), and dom(ψ) = dom(p0)

(the domain of the production). A production ψ is complete if dom(ψ) = E.

Definition 7.1.5. A rule-based specification Φ consists of a set of program fragments ΛΦ,

a set of relation symbols RΦ, a set of entity identifiers EΦ, a family of sets of program

terminals {ΛTΦ,k}k∈(RΦ∪EΦ) (together forming a signature), and a set of productions ΨΦ.

The subscript Φ is omitted when it is clear from context to which specification is referred.

The semantics of a language is expressed by the possible transitions over configurations

for which derivations can be formed by applying productions. We formalise the notion of a

derivation tree, enabling us to discuss interpreters that find derivations automatically.

Definition 7.1.6. Given a specification Φ, a derivation t0 is a pair 〈s0, t1 . . . tk〉, with

root(t0) = s0 a transition (the root of the derivation), chn(t0) = t1 . . . tk a sequence of

derivations (the children of t0), and ti = 〈si, ci〉 with dom(s0) = dom(si), for all 1 6 i 6

k, for which there is a production 〈p0, {p1, . . . , pk}〉 ∈ Ψ (the production producing the

derivation) with J = dom(s0) ⊆ E, JM = dom(p0) ⊆ J , JU = J \ JM and ∀06i6k(pi ' si)

such that:

∀j∈JU k = 0 =⇒ rec(src(s0))(j) = rec(tgt(s0))(j) (unobservability-prop)

∀j∈JU k > 0 =⇒ rec(src(s0))(j) = rec(src(s1))(j) (conclusion-prop(1))

∀j∈JU k > 0 =⇒ rec(tgt(sk))(j) = rec(tgt(s0))(j) (conclusion-prop(2))

∀j∈JU ,16i<k k > 1 =⇒ rec(tgt(si))(j) = rec(src(si+1))(j) (premises-prop)

120

The domain of a derivation t0 is the domain of its root, i.e. dom(t0) = dom(root(t0)). A

derivation t0 is complete if dom(t0) = E. A configuration γ is stuck in r ∈ R if there is no

derivation t0 with root 〈γ1, r, γ2〉 and dom(γ) ⊆ dom(t0) such that γ ' γ1. It follows from

the definition of productions and transitions that all configurations terminal in r ∈ R are

stuck in r.

The root of a derivation often refers to entities that are not mentioned in the production

producing that derivation. The definition of derivations relies on the similarity of transi-

tions to relate the transitions in derivations to the transitions in productions. To restrict

the unreferenced entities (JU), the definition of derivations specifies how any unreferenced

entities must be ‘propagated’. The constraints placed on unmentioned entities are based on

the implicit propagation scheme for entities in I-MSOS, discussed in §6.3.3.

As explained in §6.2.2, we use the iterative closure 99K of a transition relation −→ to

capture the finite computations involving −→. The relation 99K can be defined within our

framework. We can therefore prove the existence of finite computations using our notion of

derivations. Proving the existence of infinite computations may be possible with co-inductive

reasoning [Gordon, 1995], but this is not considered in this thesis.

We formalise interpreters as algorithms finding one or more derivations.

Specification 1. An algorithm is a rule-based interpreter if given a rule-based specification

Φ, a configuration γ1 and a relation symbol r ∈ R, it returns a derivation with a root of the

form 〈γ1, r, γ2〉 if there is any.

Specification 2. An algorithm is a complete rule-based interpreter if given a rule-based

specification Φ, a configuration γ1 and a relation symbol r ∈ R, it returns the set T of all

derivations with a root of the form 〈γ1, r, γ2〉.

The purpose of the next sections of this chapter is to explain the IML meta-language

in which MRBS specifications are defined, considering again the While example, and to

formalise how rule-based interpreters are generated for, and invoked by, IML programs.

Remark on the connection with transition systems A rule-based specification Φ

defines a TTS 〈Γr,−→r,Γ
T
r 〉 for each relation symbol r ∈ R with Γr = Λ× (E → Λ), ΓTr =

{γ | γ ∈ Γr, γ terminal in r}, and γ1 −→r γ2 if and only if there is a complete derivation

121

λ1 ∈ L
{λ1} 99KE {λ1}

{λ1} −→E {λ2} {λ2} 99KE {λ3}
{λ1} 99KE {λ3}

{done} 99KC {done}

{γ1} −→C {γ2} {γ2} 99KC {γ3}
{γ1} 99KC {γ3}

{E1} −→E {E′1}
{plus(E1, E2)} −→E {plus(E′1, E2)}

Z1 ∈ Z {E2} −→E {E′2}
{plus(Z1, E2)} −→E {plus(Z1, E

′
2}

Z1 ∈ Z Z2 ∈ Z Z3 = Z1 + Z2

{plus(Z1,Z2)} −→E {Z3}

Id1 ∈ Id L1 = σ1(Id1)

{Id1, sto = σ1} −→E {L1, sto = σ1}

Figure 7.1: Rules for 99KE , 99KC and for While expressions (omitting leq).

with root 〈γ1, r, γ2〉 in Φ, for all γ1, γ2 ∈ Γr. We have that γ1 −→r γ2 =⇒ γ1 6∈ ΓTr as there

is no derivation with root 〈γ1, r, γ2〉 if γ1 is terminal in r.

7.1.1 MRBS Specification for While

We revisit the running example and define an MRBS specification Φ for While.

The productions of Φ are defined through inference rules in the following manner. In

inference rules, a configuration is written as follows:

{λ0, j1 = λ1, . . . , jm = λm}

This denotes the configuration 〈λ0, δ〉 with domain {j1, . . . , jm} and δ(ji) = λi for all 1 6

i 6 m. A transition 〈γ1,−→, γ2〉 is written as:

{λ1
0, j1 = λ1

1, . . . , jm = λ1
m} −→ {λ2

0, j1 = λ2
1, . . . , jm = λ2

m}

Here γ1 = 〈λ1
0, δ1〉 and γ2 = 〈λ2

0, δ2〉 with δ1(ji) = λ1
i and δ2(ji) = λ2

i for all ji ∈ {j1 . . . , jm}.

Inference rules, like productions, have premises and conclusions. However, the conclusion

and premises of an inference rule may contain variables as placeholders for program frag-

ments, and a rule may have side-conditions to restrict the possible instantiations of the

variables. As such, an inference rule represents the (possibly infinite) set of productions

containing those productions formed by each ‘valid’ combination of instantiations. An in-

122

stantiation is not valid if one or more of the side-conditions are not satisfied by it or if one

of the transitions has a terminating source configuration. (We do not place restrictions on

the instantiations of variables based on their names.) Side-conditions are written alongside

premises rather than to the side of an inference rule. They are recognisable as those con-

ditions that do not describe transitions. In what follows we use ‘rule’ for inference rules,

not for productions. The following example rule has no premises and a single side-condition

X1 6 X2:
X1 6 X2

{leq(X1, X2)} −→ {true}

This rule defines the set of productions {〈〈〈leq(z1, z2), δ0〉,−→, 〈true, δ0〉〉, ∅〉 | z1, z2 ∈

Z, z1 6 z2}, if we assume that 6 is only defined on elements of Z and that any term

leq(z1, z2) is not terminal with respect to −→. Entity record δ0 is the entity record with

dom(δ0) = ∅.

Returning to the specification Φ for While, the set of program fragments Λ is the union

of all syntactic sets and auxiliary entity sets defined for While in Chapter 6. The set

of entity identifiers E is defined as {sto, out, sig}. Two transition relations −→E , and

−→C are defined, together with their iterative closures 99KE and 99KC , i.e. R = {−→E

, 99KE ,−→C , 99KC}. Literals are program terminals for expressions, and done is the single

program terminal for commands, i.e. ΛT−→E
= L and ΛT−→C

= {done}. An uncaught signal

cnt results in termination. We specify that any configuration with sig = cnt is terminal

by defining ΛTsig = {cnt}. The other sets of program terminals are empty, i.e. ΛTk = ∅

for all k ∈ {99KE , 99KE , sto, out}. The inference rules in Figures 7.1 and 7.2 define the

productions of Φ. Commands evaluate any subexpressions in one transition as specified by

the premises {E1} 99KE {L1}. An example derivation is given in Figure 7.3 on page 148.

Comparison with MSOS MRBS and MSOS rules achieve modularity with respect to

auxiliary entities by allowing irrelevant entity references to be omitted from rules. In MSOS

rules, any unreferenced entities are still represented, collectively, by label variables. Side-

conditions on label variables limit the possible instantiations of label variables. In I-MSOS

rules, label variables and side-conditions on label variables are only implicitly present. In

MRBS productions, any unreferenced entities are not present in any way. It is when pro-

duction rules come together as part of a derivation that any missing entities are added.

123

{C1} −→C {C ′1}
{seq(C1, C2)} −→C {seq(C ′1, C2)}

{seq(done, C2)} −→C {C2}

{E1} 99KE {false}
{while(E1, C1)} −→C {done}

{E1} 99KE {true}
{while(E1, C1)} −→C {seq(listen cnt(C1),while(E1, C1))}

{E1, sto = σ1} 99KE {L1, sto = σ2} σ3 = σ2[Id1 7→ L1]

{assign(Id1, E1), sto = σ1} −→C {done, sto = σ3}

{E1, out = α1} 99KE {L1, out = α2} α3 = α2 ++ [L1]

{print(E1), out = α1} −→C {done, out = α3}

{continue, sig = none} −→C {done, sig = cnt}

{C1, sig = none} −→C {C ′1, sig = none}
{listen cnt(C1), sig = none} −→C {listen cnt(C ′1), sig = none}

{C1, sig = none} −→C {C ′1, sig = cnt}
{listen cnt(C1), sig = none} −→C {done, sig = none}

{listen cnt(done)} −→C {done}

Figure 7.2: Rules for While commands.

Restrictions on how the entities can be added are part of the definition of derivations. This

definition follows the implicit propagation scheme suggested for I-MSOS and discussed in

§6.3.3.

In MRBS, entities are part of configurations rather than part of a label. This makes

it possible for entities to determine termination, as we have seen for the cnt signal in the

While specification. This is not directly possible in MSOS, as only configurations determine

termination in an LTTS. However, it can be achieved by wrapping programs inside one or

more auxiliary constructors that inspect entities and transition to values whenever a termi-

nating entity is encountered. In his thesis, Bach Poulsen develops XSOS, a variant of MSOS

124

in which entities are part of configurations as well as of labels [Bach Poulsen, 2016]. A (non-

)termination side-condition is added to rules to ensure that they do not define transitions

over terminal configurations. This side-condition is implicitly present in Abbreviated XSOS

rules, in a fashion similar to the implicit side-conditions of I-MSOS rules. In MRBS, there

is no need for such a side-condition, as transitions are over non-terminating configurations.

In §6.2.2, it was suggested that the iterative closure of some relation −→ captures the

finite computations of the TTS for −→. This is does not hold in the case of While, as

there are computations in the TTS for −→C that terminate because of a terminal entity

sig = cnt, whereas there is no base case in the definition of 99KC to capture this situation.

For example, there is no derivation for the transition {seq(continue, done), sto = σ, out =

α, sig = none} 99KC {seq(done, done), sto = σ, out = α, sig = cnt}, for all stores σ and

output α. We cannot add the following rule, as {λ, sig = τ} is terminal if τ ∈ ΛTsig.

τ ∈ ΛTsig

{λ, sig = τ} 99KC {λ, sig = τ}

We can, however, add the following base case for computations that involve at least one

transition:

{λ, sig = none} −→C {λ′, sig = τ} τ ∈ ΛTsig

{λ, sig = none} 99KC {λ′, sig = τ}

If a computation terminates in a configuration with a non-terminating program compo-

nent, the computation has terminated abruptly.

7.2 The Syntax of IML Programs

This section introduces the meta-language IML for developing MRBS specifications. IML

programs are executable in the sense that each program defines an underlying interpreter

for constructing derivations. The top-level transitions for which derivations are constructed

are referred to as ‘queries’. IML is intended as an intermediate meta-language; that is,

specifications written in other meta-languages should be translatable into IML specifications.

In Chapter 8 we employ IML as an intermediate language and give a translation from CBS

125

to IML.

This section defines the concrete and abstract syntax of IML programs. The core of an

IML program is an IML specification consisting of relation declarations, entity declarations,

terminal declarations, variable declarations and inference rule declarations. An IML pro-

gram is an IML specification plus queries. Section 7.3 formalises the operational semantics

of IML, showing how an interpreter is obtained from an IML program and showing how

derivations are established for queries by calling the interpreter. The primary target is the

function interpreterφ that given a program fragment λ, an entity record δ and a relation

symbol r returns a derivation 〈〈λ, δ〉, r, γ2〉 or fails if there is none (according to Specifica-

tion 1). We do not consider complete interpreters, computing all derivations, as we restrict

ourselves to deterministic programming languages.

Whilst introducing the syntax of IML programs, this section describes informally how

the declarations of an IML specification determine interpreterφ, starting with the following

high-level summary.

Inference rules are generally read in a top-down fashion: if everything above the bar is

true (the conditions) then we can conclude what is written below the bar (the conclusion).

However, a derivation is typically established in a bottom-up fashion: beginning with the

goal, we try to find a rule with a ‘matching’ conclusion such that all conditions are satisfied.

Determining whether all conditions are satisfied involves finding sub-derivations for the

premises. When there are multiple premises, we have to find multiple sub-derivations and

the proof ‘branches’ as we have seen in Figure 7.3 on page 148. The process continues until all

the branches are finalised by the successful application of an axiom. Whereas a human expert

makes insightful decisions when forming the sub-derivations, software implementations often

rely on some kind of brute force approach and use backtracking to undo incorrect decisions.

This process is automated for IML programs by considering each component of an in-

ference rule as an ‘action’ that either finds variable instantiations or indicates that the rule

is not applicable in the current context (the action fails). When a rule fails, an alternative

rule is considered until one succeeds or all alternatives have been tried. To find variable

instantiations efficiently, IML uses pattern matching, a well known procedure in functional

programming and term rewriting [Peyton Jones, 1987, Visser, 2001]. We consider these as-

pects in more detail whilst developing the concrete and abstract syntax of IML programs in

126

Set name Description
X Set of all variables
E Set of all entity identifiers
R Set of all relation symbols
C Set of all term constructor names
O Set of all operation names
N Set of all priority levels

Table 7.1: The basic syntactic sets of IML programs.

the style of §6.2.1.

The basic syntactic sets are listed in Table 7.1. The elements of the basic syntactic sets

are to be determined by an implementation of IML, but are required to be pairwise disjoint.

7.2.1 Terms, Variables, Patterns and Expressions

IML uses a term-based representation of program fragments in which terms are constructed

by applying term constructors (C) to zero or more terms. Terms may contain variables

when they appear in inference rules and queries. Variables are placeholders for terms and

it is the task of the interpreter to find their instantiations in order to form productions

and derivations. Terms that contain variables are open terms, terms that do not contain

variables are closed terms. The set of closed terms provided by an IML implementation

determines the set ΛΦ of program fragments in an MRBS specification Φ. Together, both

kinds of terms are called symbolic terms and are captured by the derived syntactic set ST ,

defined by the grammar rules below1:

ST : symbolic terms ::= X {X1}
| C (ST 0,k) {stapp(C1,ST 1, . . . ,ST k)}

We use ‘term’ for symbolic term when it is not specified whether the term is open or closed.

The set CT ⊂ ST is the set of all closed terms.

The terms are are untyped; there are no constraints on the applicability of the construc-

tors (constructors do not even have an arity). Although undesirable in principle, IML is

intended as an intermediate-level meta-language and should therefore be liberal in order

to support the specifications of various high-level meta-languages. Type-checking program

1The notation Xl,k in a grammar rule indicates that a sequence of l or more comma-separated elements
of X is expected and that these elements are available to the action of the rule as X1, . . . , Xk. If Xl k is
written instead of Xl,k, this indicates that whitespace-separated elements of X are expected.

127

fragments is considered to be an aspect of the static semantics of the high-level meta-

language translating into IML.

Patterns have the same structure as symbolic terms but they are used differently. For

this reasons we define patterns separately as the elements of the set P :

P : patterns ::= X {X1}
| C (P 0,k) {papp(C1,P1, . . . ,Pk)}

IML expressions are formed by terms or the application of an operation (O) to zero

or more expressions. The primary purpose of expressions is to enable writing parts of

side-conditions like Z1 6 Z2 and α1 ++ [L1]. These parts can be written as, for example,

lesser or equal(Z1, Z2) and list append(α1, list singleton(L1)), where Z1, Z2 and L1 are

placeholders for terms and lesser or equal , list append and list singleton are the names

of operations. An implementation of IML determines the available operations and their

semantics. A user of IML determines which operations to use and thus where the line is

drawn between ‘assumed semantics’ and ‘specified semantics’. The set of all expressions is

defined by the grammar rule below:

OE : operator expressions ::= ST {ST1}
| O (OE 0,k) {oeapp(O1,OE 1, . . . ,OEk)}

Expressions and patterns occur in IML inference rules wherever we expect to find pro-

gram fragments, but never in the same positions. Operationally, expressions are used to

construct closed terms by instantiating variables and executing operations, whereas pat-

terns are used to deconstruct closed terms by binding variables to sub-terms. This section

shows where expressions appear and where patterns appear. Section 7.3 formalises the

aforementioned operational processes.

7.2.2 Sequences and Sequence Variables

IML program fragments are sequences of terms, rather than single terms. In the concrete

syntax, a sequence of expressions (patterns) is a comma-separated list of expressions (pat-

terns), where the empty sequence is denoted by #. The sets OES and PS of all expression

sequences and pattern sequences are defined by the following grammar rules:

128

OES : expression sequence ::= # {exprs()}
| OE 1,k {exprs(OE 1, . . . ,OEk)}

PS : pattern sequence ::= # {pats()}
| P1,k {pats(P1, . . . ,Pk)}

Variables in IML are placeholders for sequences of (closed) terms. Variables are given a

range in variable declarations, providing a lower (and optional) upper bound on the length

of the term sequence it binds. The set of all variable declarations is defined by the following

grammar rule:

VDecl : variable declaration ::= seq-variable (X , N) {seq var(X1,N1)}
| seq-variable (X , N , N) {seq var(X1,N1,N2)}

7.2.3 Transitions

To define transitions we first define entity references and configurations. An entity reference

is formed by an entity identifier and a sequence of expressions or an entity identifier and a

sequence of patterns. The sets ERef and PRef are the sets of all expression references and

pattern references:

ERef : expression references ::= E = OES {eref (E1,OES 1)}
PRef : pattern references ::= E = PS {pref (E1,PS 1)}

An expression reference E = OES determines that a given entity record is to be updated

so that it maps the entity identifier E to the sequence of terms produced by evaluating the

expressions OES . A pattern reference E = PS determines that a given entity record is

checked to confirm that it maps the entity identifier E to a sequence of terms that matches

the pattern sequence PS .

Just like entity references, configurations are based either on expressions (EConf) or

patterns (PConf). An expression configuration consists of a sequence of expressions and a

sequence of expression references. A pattern configuration consists of a sequence of patterns

and a sequence of pattern references.

EConf : expression configurations
::= OES {econf (OES 1)}
| OES , ERef 1,k {econf (OES 1,ERef 1, . . . ,ERef k)}

PConf : pattern configurations
::= PS {pconf (PS 1)}
| PS , PRef 1,k {pconf (PS 1,PRef 1, . . . ,PRef k)}

129

Note that, unlike in the previous section, configurations are not surrounded by braces.

A conclusion is a pattern configuration (source), a relation symbol, and an expression

configuration (target). Conversely, a premise is an expression configuration (source), a

relation symbol, and a pattern configuration (target). The sets CN and PR of all conclusions

and premises respectively are defined by the grammar rules below:

CN : conclusions ::= PConf R EConf {concl(PConf 1, R1,EConf 1)}
PR : premises ::= EConf R PConf {trans(EConf 1, R1,PConf 1)}

This shows that IML transitions are directional. A premise is established by calling

the underlying interpreter with the closed terms and entities produced by evaluating the

expression configuration (source) as input. The closed terms and entities that the interpreter

gives as output, if a transition is possible, are matched against the pattern configuration

(target). A conclusion is treated the other way around. The source is a pattern configuration

that should be matched by given closed terms and entities (interpreter input), whereas the

target is an expression configuration that produces closed terms and entities (interpreter

output) when evaluated.

7.2.4 Rules

Conditions IML rules have four different kinds of conditions: premises, termination con-

ditions, nontermination conditions, and matching conditions. Premises have been discussed

earlier. The three others are side-conditions that do not involve transitions. A termination

condition is a pair of either an entity identifier and a sequence of expressions or a rela-

tion symbol and a sequence of expressions. A termination condition checks whether all the

expressions in the sequence evaluate to terms which are considered terminal in the specifi-

cation being defined (in §7.2.6 it is explained how the declarations of an IML specification

determine sets of program terminals). A nontermination condition checks the opposite. A

matching condition is a sequence of expressions and a sequence of patterns separated by

B. The terms resulting from evaluating the expressions should match the pattern sequence

for the condition to succeed. The set of all conditions is defined as CS by the following

grammar rule (for convenience we define the set ER = E ∪R): :

130

CS : conditions ::= PR {prem(PR1)}
| OES B PS {pm(OES 1,PS 1)}
| is-terminal (ER , OES) {term(ER1,OES 1)}
| is-non-terminal (ER , OES) {nterm(ER1,OES 1)}

Rules An IML rule is a conclusion, a sequence of conditions, and a priority (element from

N). The set Rule of all IML rules is defined by the following grammar rule:

Rule : rules ::=
CS 0 k

CN
(N) {rule(N1,CS 1, . . . ,CSk,CN 1)}

The conditions of IML rules are ordered, whereas the premises of MRBS productions are

unordered. The relative order in which premises are executed matters because of implicit

entity propagation. For example, if two premises add different value to a list of output,

then the resulting output is dependent on the ordering of the premises. We assume that

conditions are ordered early in the pipeline: in the original specification by the language

specifier, by the translation from the high-level meta-language into IML, or by an IML

preprocessor. An important property of the ordering is that each variable in a rule occurs

first in a pattern before it occurs anywhere else, thus guaranteeing that all variables are

instantiated when required. When checking this property, the source of a rule’s conclusion

is to be considered before any of the conditions, and the target of the conclusion is to be

considered after any of the conditions. Alternatively, all valid orderings can be executed in

a nondeterministic fashion, but we do not consider that option in this thesis.

An implementation may decide that the priority is optional in the concrete syntax by

deciding on a default priority N1 ∈ N .

7.2.5 Remarks on Determinism

In general it is difficult to determine whether a specification is deterministic, without running

a complete interpreter on all possible input configurations. One problem is determining

whether two or more rules are simultaneously applicable. Fortunately, it is often relatively

easy for a human to check whether this is the case.

Nondeterministic specifications may be desirable, e.g. to define a transitive and reflexive

transition relation (see §6.2.2), or to define a reflexive2 big-step relation. This observation

shows there is tension between two of the design targets for IML, which are to enable efficient

131

interpretation (on the one hand) for a wide range of specifications (on the other hand). We

assume determinism and only fully execute the first rule that is found to be applicable.

IML has a priority mechanism to enable users to guide the rule selection mechanism. We

recommend a conservative use of priority levels in order to keep specifications easier to

understand and verify. In particular, we think that mutually exclusive rules (rules that are

never simultaneously applicable) should be given the same priority level when possible3.

This keeps specifications simple, and enables implementations to order mutually exclusive

rules based on alternative criteria. Priorities have other usages as well. For example, they

can be used as an alternative to ‘negative premises’ [Groote, 1993] (an example is given in

§8.1.2).

Another potential source of nondeterminism is that rules may have multiple possible

variable instantiations. However, following from our design decisions, all IML conditions,

including premises, are deterministic and result in at most one instantiation for each variable.

7.2.6 Specifications and Programs

Declarations and specifications An IML specification defines a rule-based specification

Φ (Definition 7.1.5) with productions ΨΦ and a signature consisting of program fragments

ΛΦ, relation symbols RΦ ⊆ R, entity identifiers EΦ ⊆ E , and sets of program terminals

{ΛTΦ,k}k∈(RΦ∪EΦ). The set of program fragments ΛΦ is the set of all closed term sequences,

i.e. ΛΦ = CT ∗. The sets RΦ, EΦ, and {ΛTΦ,k}k∈(E∪R) are determined by relation declara-

tions, entity declarations and termination declarations:

Decl : declarations ::= Rule {rule decl(Rule1)}
| VDecl {var decl(VDecl1)}
| relation (R) {rel decl(R1)}
| entity (E , OES) {ent decl(E1,OES 1)}
| terminal (ER , C) {term decl(ER1, C1)}

Relation declarations simply nominate elements from R for RΦ. Entity declarations nom-

inate elements from E for EΦ, but are also associated with expression sequences. The

expression sequence associated with entity e is evaluated to a program fragment which acts

as the default for e whenever a query that does not refer to e is executed. A termination

2In the face of a reflexivity rule, this would cause nontermination in a way similar to how a recursive
descent parser fails to terminate when acting on a left-recursive production.

3An approach in which priority is decided based on file-position is therefore not desired.

132

declaration is a pair of an element4 from ER = E ∪ R and a constructor (element from

C). A termination declaration term decl(k, f) determines that a term constructed by f

is terminal when it occurs in entity k or in the source of a transition over relation k. A

non-empty sequence of terms is terminal with respect to k if all terms within it are. The

empty sequence is not considered terminal. Let Dk be the set of terms which are terminal

with respect to k, i.e. stapp(f, t0, . . . , tn) ∈ Dk if and only if k and f occur in a termi-

nation declaration term decl(k, f). The set of program terminals for k is then defined as

ΛTΦ,k = {t1, . . . , tm | t1, . . . , tm ∈ ΛΦ,∀16i6m(ti ∈ Dk),m > 1}.

As mentioned in §7.2.2, variable declarations restrict the length of the sequences the

variable may bind. In practice it may be more convenient to associate variable declarations

with rules so that the same variable may have different ranges in different rules. Our

definitions do not prohibit implementations to do so; in such an implementation it is possible

to rename the variables specific to a rule such that they differ from all other variables.

Queries and programs An IML specification is a sequence of order-independent decla-

rations. An IML program is an IML specification and a sequence of queries. A query is

syntactically identical to a premise:

Spec : specifications ::= Decl0 k {spec(Decl1, . . . ,Declk)}
QRs : queries ::= PR0 k {queries(PR1, . . . ,PRk)}

Ω : programs ::= Spec QRs {program(Spec1,QRs1)}

In the grammar rule above we separate the declarations and the queries syntactically, which

is done only for convenience. An implementation may choose to mix declarations and queries

freely. As we shall see in §7.3.6, only the relative order of the queries matters semantically.

7.3 The Semantics of IML Programs

This section defines the operational semantic of IML programs by formalising a reference

interpreter for IML given as the function sem program at the very end of this section.

The operational semantics of IML programs involves computing an interpreter for the IML

specification embedded in each program and executing the program’s queries by calling this

4In an implementation, a static check could ensure that the first component of a termination declaration
is in fact an element from EΦ ∪RΦ.

133

interpreter. We present the semantics iteratively, first giving the operational semantics of

pattern matching, operator expressions, conditions, rules, and finally queries. §7.3.2 explains

how (closed) terms are matched against patterns. §7.3.3 shows how expressions evaluate to

closed terms. §7.3.4 gives the semantics of conditions, forming the building blocks for the

semantics of rules. §7.3.5 explains how an interpreter is obtained by backtracking between

the rules of an IML specification. First we show how the declarations compute a signature.

7.3.1 Declarations

Section 7.2.6 explained how the declarations of an IML specification determine the signature

of an MRBS specification Φ. In this subsection we show how the elements of the signature

are computed from the declarations of an IML specification. The next subsections formalise

how derivations are found based on the inference rules of an IML specification, leaving the

productions ΨΦ that are used in this process implicit.

The set of program terminals is the set of closed term sequences, i.e. ΛΦ = CT ∗.

Relation declarations nominate elements from R for RΦ. The function gather rel com-

putes the set RΦ, i.e. RΦ is defined as gather rel(φ).

gather rel(spec(Decl1, . . . ,Declk)) = gather rel(Decl1, . . . ,Declk)

gather rel ′(Decl1, . . . ,Declk) =
∅ if k = 0

{R1} ∪ gather rel ′(Decl2, . . . ,Declk) if Decl1 = rel decl(R1)

gather rel ′(Decl2, . . . ,Declk) otherwise

The set EΦ is determined by the entity declarations. The function gather ent computes

an entity record from the entity declarations of a specification.

134

gather ent(spec(Decl1, . . . ,Declk)) = gather ent ′(δ0)(Decl1, . . . ,Declk)

where δ0(E′) = ⊥
gather ent ′(δ0)(Decl1, . . . ,Declk) =

δ0 if k = 0

gather ent ′(mkRec(δ0, E1,OE 1))(Decl2, . . . ,Declk) if Decl1 = ent decl(E1,OE 1)

and ∅ 6= eval exprs(OE 1)

⊥ if Decl1 = ent decl(E1,OE 1)

and ∅ = eval exprs(OE 1)

gather ent ′(δ0)(Decl2, . . . ,Declk) otherwise

where mkRec(δ0, E1,OE 1)(E′) =

{
eval exprs(OE 1) if E′ = E1

δ0(E′) otherwise

(The function eval exprs, evaluating expressions to closed terms, is defined in §7.3.3. ∅ indi-

cates evaluation failure.) For an IML specification φ, the set EΦ is defined as

dom(gather ent(φ)). The entity record gather ent(φ) is thus complete by definition.

The sets ΛTΦ,k, for each k ∈ (EΦ ∪ RΦ), are determined by a predicate trm computed

from φ. The function gather trm helps compute the predicate:

gather trm(spec(Decl1, . . . ,Declk)) = gather trm ′(trm0)(Decl1, . . . ,Declk)

where trm0(k)(t) = false

gather trm(trm0)(Decl1, . . . ,Declk) =
trm0 if k = 0

gather trm ′(mkTrm(ER1, C1))(Decl2, . . . ,Declk) if Decl1 = term decl(ER1, C1)

gather trm ′(trm0)(Decl2, . . . ,Declk) otherwise

where mkTrm(ER1,C1)(k)(T1) =

{
true if k = ER1 and T1 = stapp(C1, . . .)

trm0(k)(T1) otherwise

A term sequence t1, . . . , tn is in ΛTk if and only if n > 1 and trm(k, ti) holds, for all 1 6 i 6 n.

Rather than showing how IML inference rules generate productions, we show how they

generate derivations, leaving productions implicit. To find derivations, rules are considered

in (descending) order of priority. We assume a total order 6N over the priorities (elements of

N) which, just like N , is determined by implementation. The relative ordering of rules with

equal priority is arbitrary, but may greatly influence the efficiency (as shown in §13.2.1).

An IML specification is deterministic when for all priorities it holds that all rules with that

priority are mutually exclusive. Function gather rules(r) finds all the rules of a specification

135

that define relation r. Function order rules sorts the rules based on 6N . (We leave the

sorting algorithm unspecified.)

gather rules(r)(spec(Decl1, . . . ,Declk)) = order rules(gather rules ′(r)(Decl1, . . . ,Declk))

gather rules ′(r)(Decl1, . . . ,Declk) =
ε if k = 0

Rule1, gather rules ′(r)(Decl2, . . . ,Declk) if Decl1 = rule decl(Rule1)

and Rule1 = rule(. . . , concl(p, r, e))

gather rules ′(r)(Decl2, . . . ,Declk) otherwise

order rules(R0, . . . , Rk) = sortDescBy(6N)(R0, . . . , Rk)

where sortDescBy = . . .

(Here ε denotes the empty sequence of rules.)

A variable declaration assigns a range to a variable, indicating the minimum and maxi-

mum number of closed terms the variable can bind. The minimum and maximum are any

number greater or equal to zero. There may not be a maximum however, indicated with∞.

A mapping from variables to ranges is computed from a collection of variable declarations

by gather range:

gather range(spec(Decl1, . . . ,Declk)) = gather range ′(rng0)(Decl1, . . . ,Declk)

where rng0(x) = 〈1, 1〉
gather range ′(rng)(Decl1, . . . ,Declk) =

rng if k = 0

gather rules ′(mkRange(rng)(VD1))(Decl2, . . . ,Declk) if Decl1 = var decl(VD1)

gather rules ′(rng)(Decl1, . . . ,Declk) otherwise

where mkRange(rng)(VD1)(x) =

〈l,∞〉 if seq var(x, l) = VD1

〈l, r〉 if seq var(x, l, r) = VD1

rng(x) otherwise

7.3.2 Pattern Matching and Substitution

Pattern matching destructs a given (closed) term with two purposes: determine whether it

has a certain structure, and giving names to its constituents in the form of bindings. The

former may be used to define lenient forms of equality (or similarity) and type-checking.

The latter may be used to construct new terms out of the constituents and to analyse

the constituents further. As a whole, pattern matching enables case analysis in inductive

136

definitions and proofs. Basic pattern matching is a simple yet powerful mechanism that

underpins most if not all functional and declarative programming.

Pattern matching The outcome of pattern matching is an element of Θ ∪ {∅}, where

Θ = X ⇀ CT ∗ is the set of all partial mappings from variables to closed term sequences

and ∅ indicates failure. An element θ ∈ Θ is referred to as a set of bindings, containing

the binding x1 7→ λ1 if θ(x1) = λ1. The outcomes of two matches are composed by the ⊗

operator, defined as follows:

θ1 ⊗ θ2 =

∅ if ∅ = θ1

∅ if ∅ = θ2

θ1 · θ2 otherwise

Operator · is right-biased composition over sets of bindings. That is, when two patterns con-

tain the same variable, the bindings produced by the right-most pattern (θ2) are preferred.

It can be checked statically whether two or more patterns contain the same variable.

Since IML constructors are variadic, we define pattern matching over sequences of closed

terms and patterns. The sequences do not have to be of the same length as sequence-

variables can bind sequences of length unequal to one. A pattern sequence with multiple

sequence-variables is ambiguous in the sense that a term sequences may match a pattern

sequence in multiple ways, resulting in different sets of bindings. To avoid ambiguity, we

assume that pattern sequences have at most one sequence-variable. The functions matches

defines pattern matching over sequences. The first argument of matches is a mapping from

variables to ranges.

matches(rng , T1, . . . , Tn, pats(P1, . . . , Pm)) =

θ0 if m = 0, n = 0

∅ if m = 0, n > 0

matches(rng , T ′1, . . . , T
′
n′ , pats(P ′1, . . . , P

′
m′))⊗

matches(rng , T2, . . . , Tn, pats(P2, . . . , Pm)) if P1 = papp(C2, P
′
1, . . . , P

′
m′)

and T1 = stapp(C1, T
′
1, . . . , T

′
n′)

and C1 = C2

match var(rng , T1, . . . , Tn, pats(P1, . . . , Pm)) if P1 ∈ X
∅ otherwise

where θ0(X1) = ⊥

137

The functions matches recurses over the pattern sequences, deciding for each pattern which

prefix of the term sequence matches (if any). If no patterns remain, pattern matching

succeeds, but only if no terms remain. If the first pattern in the sequence (P1) is a variable,

function match var is called to determine how many terms the variable should bind. This

decision needs to respect the range of the variable (for which rng is used) and it needs to

ensure that the rest of the term sequence can still match the rest of the pattern sequence.

match var(rng , T1, . . . , Tn, pats(X1, P1, . . . , Pm)) = choose(l,min(n, r))

where 〈l, r〉 = rng(X1)

and min(n, r) =

n if r =∞
n if n 6 r

r otherwise

and choose(l, u) =
∅ if u < l

[X1 7→ T1, . . . , Tu]⊗ θ1 if θ1 = matches(rng , Tu+1, . . . , Tn, pats(P1, . . . , Pm))

and θ1 6= ∅
choose(l, u− 1) otherwise

A configuration is a pair 〈λ0, δ0〉 with λ0 ∈ CT ∗ and δ0 ∈ E ⇀ CT ∗. The config-

uration is complete if δ0 is defined on EΦ ⊂ E . We shall see that, by construction, all

configurations propagated by interpreters generated for IML specifications are complete.

The function match conf formalises what it means for a complete configuration to match a

pattern configuration (an element in PConf).

match conf (rng , 〈λ0, δ0〉, pconf (PS 0, pref (E1,PS 1), . . . , pref (En,PSn))) =

matches(rng , λ0,PS 0)⊗matches(rng , δ0(E1),PS 1)⊗ . . .⊗matches(rng , δ0(En),PSn)

Substitution Substitution is a process by which variables in a symbolic term are replaced

by the closed terms they bind in a set of bindings. Substitution constructs terms, after

pattern matching has taken terms apart and named their constituents. It is possible to

check statically that all variables have bindings whenever they require substitution5.

Substitution is formalised by the function subs. The function is partial, as an attempt

to substitute an unbound variable is considered to be erroneous. The bases cases are n = 0

5Rule conditions may require reordering to ensure this. Finding such an order is not possible when
conditions have cyclic dependencies.

138

and S0 ∈ X. (The following definitions require that the application of a constructor to one

or more undefined operands is undefined and that sequences concatenate.)

subs(θ1)(S0) =

⊥ if S0 ∈ X and ⊥ = θ1(S0)

θ1(S0) if S0 ∈ X
stapp(C1, subss(θ1, S1 . . . , Sn)) if S0 = stapp(C1, S1, . . . , Sn)

subss(θ1)(S1, . . . , Sn) = subs(θ1)(S1), . . . , subs(θ1)(Sn)

Substitution can also be applied to expressions, yielding a closed expression (an expression

consisting only of closed terms and closed expressions).

subs oe(θ1)(OE 0) =

subs(θ1)(OE 0) if OE 0 ∈ ST

oeapp(O1, subss oe(θ1)(OE 1, . . . ,OEn))

if OE 0 = oeapp(O1,OE 1, . . . ,OEn)

subss oe(θ1)(OE 1, . . . ,OEn) = subs oe(θ1)(OE 1), . . . , subs oe(θ1)(OEn)

To produce a configuration from an expression configuration, it is necessary to perform

substitution on the expression configuration, to complete it using the defaults for unrefer-

enced entities, and to evaluate the expressions within it. The first step is formalised by the

function subs conf defined below.

subs conf (θ)(econf (OES 0, eref (E1,OES 1), . . . , eref (En,OESn))) =

econf (exprs(subss oe(θ)(oes(OES 0))), eref (E1, exprs(subss oe(θ)(oes(OES 1)))), . . .

, eref (En, exprs(subss oe(θ)(oes(OESn)))))

oes(exprs(OE 1, . . . ,OEk)) = OE 1, . . . ,OEk

7.3.3 Evaluating Expressions

To evaluate expressions, it is necessary to execute operations. For executing operations,

we assume that an implementation of IML defines not only the set of available operations

O, but also for each O1 ∈ O a function operatorO1
. When applied to a sequence of closed

terms, operatorO1
returns a sequence of closed term or indicates that it is not defined on

the given terms. Evaluation fails (∅) if an operation is applied to terms over which it is not

defined or if one if its subexpressions fails to evaluate.

139

eval expr(OE 0) =
OE 0 if OE 0 ∈ CT

λ1 if OE 0 = oeapp(O1,OE 1, . . . ,OEn)

and λ1 = operatorO1
(eval exprs(OE 1, . . . ,OEn)) and λ1 6= ⊥

∅ otherwise

eval exprs(OE 1, . . . ,OEn) = eval expr(OE 1), . . . , eval expr(OEn)

An expression configuration evaluates to a complete configuration by evaluating all

(closed) expressions within it, as formalised by the function eval conf . Any entities not

referred to by the expression configuration are taken from a given entity record δ0, which is

assumed to be complete.

eval conf (δ0)(econf (OES 0, eref (E1,OES 1), . . . , eref (En,OESn))) ={
∅ if ∃e∈dom(δ0)(δ1(e) = ∅)

〈λ0, δ1〉 otherwise

where λ0 = eval exprs(oes(OES 0))

and δ1(E′) =

eval exprs(oes(OES 1)) if E′ = E1

.

eval exprs(oes(OESn)) if E′ = En

δ0(E′) if E′ ∈ dom(δ0) \ {E1, . . . , En}

7.3.4 Conditions

All conditions have the potential to fail, indicating that the rule in which they occur is not

applicable in the current context. The context is a complete entity record δ and a set of

bindings θ. When executed successfully, a matching condition may extend the current set

of bindings. Premises can both extend the current set of bindings as well as update the

entity record. We define the set State as the set of all triples with bindings, entity records,

and derivation sequences, i.e. State = ∆ × Θ × T ∗, where ∆ is EΦ → CT ∗ the set of all

(complete) entity records, and T is the set of all (complete) derivations. The last component

of State collects the (sub-)derivations found for the premises of a rule, in order to produce

a derivation upon the successful execution of the rule. The semantics of a condition is given

as a function that fails or returns a modified state given a state, i.e. the semantics of a

condition is an element in State → ({∅} ∪ State).

140

Matching conditions A matching condition pm(OES 0,PS 0), concretely written as

OES 0 B PS 0, requires evaluating the closed expressions subss(θ)(oes(OES 0)), where θ

is the set of bindings in the current state, and matching the resulting term sequence to the

pattern sequence PS 0.

sem pmφ(OES 0,PS 0)(δ0, θ0, τ
∗
0) ={

〈δ0, θ0 ⊗ θ1, τ
∗
0 〉 if θ1 = matches(gather range(φ), λ1,PS 1) and θ1 6= ∅

∅ otherwise

where λ1 = eval exprs(subs oe(θ0)(oes(OE 0)))

(Variable τ∗0 (and later τ∗1) is a placeholder for a sequence of derivations.)

Termination conditions Termination and nontermination conditions, concretely written

as is-terminal(ER1,OES 1) and is-non-terminal(ER1,OES 1) respectively, are given an

expression sequence OES 1 and an element ER1 ∈ EΦ∪RΦ. The expression sequence is eval-

uated to a closed term sequence λ1 which is then checked for termination depending on ER1

using the predicate gather trm(φ)(ER1). The semantics of conditions term(ER1,OES 1)

and nterm(ER1,OES 1) are given by the following functions:

sem termφ(ER1,OES 1)(δ0, θ0, τ
∗
0) ={

〈δ0, θ0, τ
∗
0 〉 if is terminalφ(ER1)(eval exprs(subss oe(θ0)(oes(OES 1)))) = true

∅ otherwise

sem ntermφ(ER1,OES 1)(δ0, θ0, τ
∗
0) ={

〈δ0, θ0, τ
∗
0 〉 if is terminalφ(ER1)(eval exprs(subss oe(θ0)(oes(OES 1)))) = false

∅ otherwise

is terminalφ(ER1)(T1, . . . , Tn) =

false if n = 0

true if ∀16i6ngather trm(φ)(ER1)(Ti) = true

false otherwise

Both conditions fail if the expression sequence is not evaluated successfully.

Premises To give the semantics of premises we rely on the function interpreterφ that,

given a complete configuration γ1 and a relation symbol r, returns a derivation τ with

root 〈γ1, r, γ2〉, for some complete configuration γ2, or ∅ if there is no such derivation. In

the former case, the third component of the State is extended with τ . The definition of

141

interpreterφ is given in §7.3.5.

sem premφ(e, r, p)(δ0, θ0, τ0, . . . , τk) =

〈δ2, θ0 ⊗ θ1, τ0, . . . , τk, τ〉 if 〈λ1, δ1〉 = eval conf (δ0)(subs conf (θ0)(e))

and τ = interpreterφ(〈λ1, δ1〉, r) and τ 6= ∅
and 〈λ2, δ2〉 = tgt(root(τ))

and θ1 = match conf (〈λ2, δ2〉, p) and θ1 6= ∅
∅ otherwise

A premise fails if evaluating the expression configuration fails, if the call to the interpreter

fails or if matching the resulting configuration against the pattern configuration fails.

The helper function sem cond selects the right semantic function for a given condition:

sem condφ(CS 0) =

sem premφ(e, r, p) if CS 0 = trans(e, r, p)

sem termφ(ER0,OES 0) if CS 0 = term(ER0,OES 0)

sem ntermφ(ER0,OES 0) if CS 0 = nterm(ER0,OES 0)

sem pmφ(OES 0,PS 0) if CS 0 = pm(OES 0,PS 0)

A condition is a function from an input state to an output state whereas an interpreter is

effectively a function from an input configuration γ1 to an output configuration γ2 (both

may fail) proving that there is a transition from γ1 to γ2 according to some relation r, also

given as input, by means of a derivation with root 〈γ1, r, γ2〉. A premise is a special condition

in the sense that it requires the construction of a derivation by calling an interpreter with an

input configuration constructed by evaluating the expression configuration of the premise.

7.3.5 Rules and Interpreters

The possibly many conditions of an IML rule are considered in the order that they are

given. The order matters, as some conditions modify the given state (e.g. the state’s entity

record) whilst the behaviour of conditions is also state-dependent. The conditions of a rule

are therefore considered as a sequence in which state is propagated, as specified by sem seq

below. A sequence of conditions fails as soon as one condition fails.

sem seq(c0, . . . , ck)(δ0, θ0, τ
∗
0) =

〈δ0, θ0, τ
∗
0 〉 if k = 0

∅ if ∅ = c0(δ0, θ0, τ
∗
0)

sem seq(c1, . . . , ck)(δ1, θ1, τ
∗
1) if 〈δ1, θ1, τ

∗
1 〉 = c0(δ0, θ0, τ

∗
0)

142

Function sem lhs expresses the interpretation of pattern configurations as if they are

conditions (for convenience). The function matches a given closed configuration 〈λ0, δ0〉 to

the pattern configuration of the rule’s conclusion (p below).

sem lhs(λ0)(p)(δ0, θ0, τ
∗
0) =

{
∅ if ∅ = match conf (〈λ0, δ0〉, p)
〈δ0, θ0 ⊗ θ1, τ

∗
0 〉 if θ1 = match conf (〈λ0, δ0〉, p)

Given a closed configuration γ0 = 〈λ0, δ0〉, a rule executes each of its conditions and,

if successful, evaluates the target of its conclusion (an expression configuration) to yield a

closed configuration γ1. The result of a executing a rule is either failure or a derivation with

root 〈γ0, r, γ1〉, whose children are the derivations found for each of the premises (in the

order the premises were executed). The relation symbol r is that of the rule’s conclusion.

sem ruleφ(rule(N1,CS 0, . . . ,CSk, concl(p, r, e)))(λ0, δ0) =
∅ if ∅ = b(δ0, θ0, ε)

〈〈〈λ0, δ0〉, r, γ1〉, τ0, . . . , τm〉 if 〈δ1, θ1, τ0, . . . , τm〉 = b(δ0, θ0, ε)

and γ1 = eval conf (δ1)(subs conf (θ1)(e))

where b = sem seq(sem lhs(λ0)(p), sem condφ(CS 0), . . . , sem condφ(CSk))

and θ0(X1) = ⊥

(Here ε denotes the empty sequence of derivations.)

Backtracking selects between rules until the first applicable rule is found, as specified by

sem branches:

sem branchesφ(R0, . . . ,Rk)(λ0, δ0) =
∅ if k = 0

sem branchesφ(R1, . . . , Rk)(λ0, δ0) if ∅ = sem ruleφ(R0)(λ0, δ0)

sem ruleφ(R0)(λ0, θ0) otherwise

The interpreter for a specification φ is defined in terms of sem branchesφ, gather rules

and is terminalφ (there is no derivation if the input configuration 〈λ0, δ0〉 is terminal):

interpreterφ(〈λ0, δ0〉, r) =
∅ if is terminalφ(r)(λ0)

∅ if ∃j∈dom(δ0)(is terminalφ(j)(δ0(j)))

sem branches(R0, . . . , Rk)(λ0, δ0) otherwise

where R0, . . . , Rk = gather rules(r)(φ)

143

7.3.6 Queries and Programs

A query is a premise that is executed outside a rule, to form a derivation for the transition

described by the query. A query is executed from a default state, which contains the entity

record obtained from the entity declarations by gather ent . The result of a query is failure

or a derivation. The former suggests6 that the transition described by the query does not

hold. The latter shows that it does hold, and gives a derivation that proves it. A set of

bindings θ is propagated between queries, and the expression configuration on the left-hand

side of a query need not be closed. This makes it possible to incrementally build queries by

referring to the outcomes of previous queries.

sem queryφ(trans(e, r, p))(θ) =

{
∅ if ∅ = sem premφ(e, r, p)(δ0, θ, ε)

〈τ1, θ1〉 if 〈δ1, θ1, τ1〉 = sem premφ(e, r, p)(δ0, θ0, ε)

where δ0 = gather ent(φ)

A sequence of queries accumulates any discovered bindings, similar to a sequence of condi-

tions. Unlike a sequence of conditions, entity records are not propagated between queries

and if a query fails, any remaining queries are still executed.

sem queriesφ(Q0, . . . ,Qk)(θ0) =
θ0 if k = 0

sem queriesφ(Q1, . . . , Qk)(θ1) if 〈θ1, τ1〉 = sem queryφ(Q0)(θ0)

sem queriesφ(Q1, . . . , Qk)(θ0) if ∅ = sem queryφ(Q0)(θ0)

An implementation could output the derivation τ produced by each successful query and

indicate that a query has failed otherwise.

Finally, the semantics of an IML program is expressed by the function sem program.

sem program(program(φ, queries(Q0, . . . , Qk))) = sem queriesφ(Q0, . . . , Qk)(θ0)

where θ0(X1) = ⊥

7.3.7 Remarks on Completeness

Executing a premise results in at most one new state, following the assumption that spec-

ifications are deterministic. If an IML specification is nondeterministic, then premises and

6As discussed in §7.3.7, there are reasons why a derivation may not have been discovered.

144

queries may fail even though a derivation for the premise or query exists in the underlying

MRBS specification (false negatives). If a premise is executed as part of a rule r, and the

premise can be established in two ways, resulting in states s1 and s2, then it may be the case

that any subsequent conditions of r fail in state s1 but succeed in state s2. By considering

only one of s1 and s2, a false negative is encountered if s1 happens to be chosen.

False negatives may also arise from the order in which premises are executed. If a rule

has two premises p1 and p2, the premises may be such that executing p1 yields entity values

under which p2 cannot be established, whereas p2 does not have this effect on p1. A sequence

of conditions is only considered in one order, and if p1 happens to be considered before p2,

the result is a false negative. This is not an issue in specifications in which rules have at

most one premise, which is typical for small-step specifications.

7.4 An Implementation of IML

The previous sections have presented IML in a general fashion, ignoring certain practical

considerations. For example, we have not determined priority levels nor their relative or-

dering. In this section we discuss some design decisions made during the development of

the IML interpreter (package iml-tools). At the core is a more or less direct Haskell im-

plementation of the operational semantics described in Section 7.3. The implementation

piggy-backs on the Haskell Funcon Framework by using its value operations.

7.4.1 Values and Operations

In the previous sections we have ignored that term representations are not suitable for rep-

resenting certain types of values. For example, it is impractical to represent integers with

constructors or constructor applications. Moreover, it is impossible to represent the un-

orderedness and uniqueness properties of set elements structurally. For this reason, CBS has

a collection of ‘built-in’ values, types, and operations on values [Van Binsbergen et al., 2016],

some of which have axiomatic definitions or are specified informally. The built-ins of CBS

have been implemented in the Haskell package funcons-values and are exported by the

module Funcons.Operations. Some built-in values are native to Haskell, such as floating-

point numbers and ASCII characters. Other types of values are provided by libraries, such

145

as vectors and multisets7. Most of the value operations are directly implemented by a func-

tion provided by an existing Haskell library. In other cases, the operation has been easy to

define in terms of existing operations or functions.

We built an interpreter for IML on top of the funcons-values package so that the IML

interpreter has the same built-in values and operations as CBS. In what follows, ‘values’

refers to elements of the Values datatype of funcons-values, ‘types’ to elements of Types,

and ‘term’ to elements of the Term datatype of the IML interpreter. Types are values, and

values are terms8.

The IML interpreter has a keyword for each built-in type, e.g. integers and sets.

These keywords are used to indicate that values of that type are terminal with respect to a

particular transition relation −→. For example:

terminal(−→, integers)

terminal(−→, sets)

Types are values of type types. All values are values of type values. It is thus possible

to indicate that all values are terminal with respect to −→ with a single declaration:

terminal(−→,values)

Types, values, and terms can be formed by applying a constructor to zero or more

terms. ‘Value constructors’ and ‘type constructors’ are for implementing user-defined types.

It can be helpful to give term constructors and value constructors the same name. In an

implementation, however, the two need to be distinguishable. For this reason, our IML

implementation has three forms of application: f(x1, . . . , xn) denotes a term formed by

applying term constructor f , fv〈x1, . . . , xn〉 denotes a value formed by applying value con-

structor fv, and ft[x1, . . . , xn] denotes a type formed by applying type constructor ft. To

distinguish occurrences of nullary constructors we simply write f(), f〈〉, or f [] for any term,

value, or type constructor.

7The vector and multiset packages on Hackage.
8An injection function applies a ‘wrapper’ constructor, a projection function removes it if present.

146

7.4.2 Priority Levels

Priorities between rules can be implemented in many ways. Here we make a suggestion

based on a number of observations. Firstly, the priority levels should form a total order.

Secondly, it should be easy to keep track of a specification’s priority levels and their relative

ordering. Thirdly, it should be possible to introduce a level in between two existing levels,

without having to change any rules.

Consider choosing the set N for priority levels N (Table 7.1), and the situation in which

a rule r1 has priority 1 and a rule r2 has priority 2. If a new rule r′1 is preferred over r1, but

r2 over r′1, then it is necessary to ‘bump’ the priority level of r2 to a number larger than 2,

in order to give r′1 priority 2. This problem is overcome with floating-point numbers, as r′1

can then be given priority 1.5 (assuming r1 had 1.0 and r2 had 2.0).

To make it easier to keep track of priority levels, we introduce priority level declarations

that associate mnemonic names with priority levels. For example:

priority(DEFAULT , 5.0)

priority(FALLBACK , 1.0)

priority(OVERRIDE , 6.0)

147

{
p
lu

s(3,4),o
u
t

=
[]}
−→

E
{7
,o
u
t

=
[]}

{7
,o
u
t

=
[]}

99K
E
{7
,o
u
t

=
[]}

{p
lu

s(3
,4

),o
u
t

=
[]}

99K
E
{7
,o
u
t

=
[]}

{p
rin

t(p
lu

s(3
,4

)),o
u
t

=
[]}
−→

C
{d

o
n

e
,o
u
t

=
[7

]}
{d

o
n

e
,o
u
t

=
[7]}

99K
C
{d

o
n

e
,o
u
t

=
[7]}

{
p
rin

t(p
lu

s(3
,4

)),o
u
t

=
[]}

99K
C
{d

o
n

e
,o
u
t

=
[7

]}

F
ig

u
re

7.3:
D

eriva
tion

o
f{p

rin
t(p

lu
s(3,4)),o

u
t

=
[]}

99K
C
{
d
o
n

e
,o
u
t

=
[7

]}
.

T
h

e
d

eriva
tio

n
o
m

its
th

e
en

tities
s
t
o

an
d
s
i
g
.

148

Chapter 8

CBS to IML Translation

Acknowledgements The CBS language and the funcons definitions given in Sections 8.1,

8.2, 8.3, 8.4, and 8.5 are authored by Peter Mosses and Neil Sculthorpe.

The plancomps project has developed a component-based approach to formal seman-

tics. One of the outcomes of the project is a formal specification language called Component-

Based Semantics (CBS). At the heart of CBS is a library of highly reusable fundamental

constructs (funcons, for short), which is provided alongside CBS and can be used across

specifications. The funcons are defined in CBS themselves and are not altered after their

release, thereby fixing language specifications that depend on them. CBS specifications refer

to funcons unambiguously, without the need for namespaces or version control.

A CBS specification consists of three parts: abstract syntax definitions, funcon defini-

tions, and translation functions. Translation functions give a denotational semantics to the

specified language, translating abstract syntax trees to funcon terms. The funcons them-

selves have an operational semantics, defined via inference rules. A CBS specification is

intended to be executable so that languages can be tested whilst being developed. Parsers

can be generated from the syntax definitions, if adequate disambiguation strategies have

been identified. The syntax trees produced by the parsers are translated to funcon terms

by applying the translation functions. Finally, funcon terms are executed by running an

interpreter generated from the funcon definitions. In this thesis we focus on the funcon

definitions of CBS and describe two methods for executing funcon terms, in this and the

149

next chapter.

The beta release of CBS is accompanied by example specifications of deterministic pro-

gramming languages. Funcons capturing the fundamental constructs of concurrent lan-

guages are not part of the beta release and are currently being developed. An example of

how MSOS can be used to specify concurrency constructs is given by [Mosses, 1999].

By giving examples, this chapter introduces funcons and shows how funcon definitions

are translated to IML. The translation has been implemented in a compiler for CBS (pack-

age funcons-intgen) and has been used to generate composable IML specifications for a

majority of the funcons in beta-release. The translation has been tested by executing tests

as IML queries. This chapter expects that an intuitive understanding of the behaviour of

the used funcons can be deduced from their names or their online documentation available

at http://cbsbeta.ltvanbinsbergen.nl.

8.1 Preliminaries

Funcon definitions consist of a signature and a (possibly empty) collection of CBS inference

rules. CBS inference rules have their foundations in I-MSOS (§6.3.3) and involve three

relations that capture computational steps (−→), context-insensitive rewriting (;), and

dynamic typing (:). Relations −→ and ; describe how funcon terms evaluate, following

the theory on value-computation transition systems (VCTS) [Churchill and Mosses, 2013].

The operational details of ; are discussed in §8.1.1. The dynamic typing relation is used

for case analysis in rules.

A CBS rule is referred to as a computation rule if it has a −→-transition as its conclusion,

or is referred to as a rewrite rule otherwise, in which case it has a ;-transition as its

conclusion. Thus, the −→-relation is defined by computation rules, and the ;-relation

by rewrite rules. Some computation rules are implicitly determined by the signatures of

funcons (see §8.1.4). Some rewrite rules are implicit as well, as discussed in Section 8.3.

The typing relation is implicitly defined by type synonyms and datatype definitions. All

rules become explicit in the generated IML. Section 8.2 shows the IML rules generated

from type definitions. Sections 8.3 and 8.4 show how IML rules are generated from rewrite

rules and computation rules respectively. This section gives the necessary IML declarations

150

http://cbsbeta.ltvanbinsbergen.nl

seq-variable(Xs, 0)

seq-variable(Xs ′, 0)

seq-variable(Xs ′′, 0)

seq-variable(Xp, 1)

seq-variable(Xp′, 1)

seq-variable(Vs, 0)

seq-variable(Ts, 0)

priority(LOWER, 3.0)

priority(MEDIUM, 5.0)

priority(HIGHER, 7.0)

terminal(−→,values)

terminal(;,values)

Figure 8.1: IML declarations active throughout this chapter.

independent of any CBS input.

Figure 8.1 lists sequence variables declaration, terminal-declarations, and priority levels.

The terminal-declarations show that all built-in values are terminal with respect to the

−→ and ; relations.

To distinguish IML constructors and funcons, we type-set funcons in this way. This

chapter relies on some of the specifics of our IML implementation discussed in Section 7.4.

8.1.1 Rewrites

The relations −→ and ; are the transition relation and rewriting relation of a value-

computation transition system (VCTS) [Churchill and Mosses, 2013]. The rewrite relation

of a VCTS is reflexive and transitive, and rewriting can happen before and after every −→-

transition (called ‘saturation’ in [Churchill and Mosses, 2013]). Moreover, the relation is a

precongruence with respect to the constructors of the VCTS. Rules for reflexivity, transitiv-

ity, saturation and precongruence are implicitly present in CBS specifications. These rules

are highly non-deterministic and we do not define IML variants of these rules. Instead we

‘inline’ applications of these rules where necessary. For example, rather than giving a rule

for saturation, we perform as many rewrites as possible to any term which appears on the

left-hand side of a premise. Instead of adding reflexivity and transitivity rules for ;, we

define a relation ;∗ such that t0 ;∗ tn if there is a finite sequence t0 . . . tn with ti ; ti+1,

for all 0 6 i < n (recall that # denotes the empty sequence):

151

X ;∗ X
(LOWER)

(8.1)

X ; Xs Xs ;∗ Xs ′

X ;∗ Xs ′
(MEDIUM)

(8.2)

;∗
(MEDIUM)

(8.3)

X ;∗ Xs Xp ;∗ Xs ′

X,Xp ;∗ Xs,Xs ′
(MEDIUM)

(8.4)

Note that the definition of ;∗ is very similar to how the iterative closure (see §6.2.2) of ;

would be defined, with the difference that there is no termination requirement (terms do not

need to rewrite to values). It follows from the priority levels of Rules (8.1) and (8.2) that ;∗

rewrites as much as possible (t0 . . . tn is the longest finite sequence with the aforementioned

property). Rewrites can be performed over a sequence of terms (Rules (8.3) and (8.4)) as

well as over single terms. As shown in the later sections of this chapter, to account for

saturation, whenever there is a premise X −→ Y in a CBS rule, the corresponding IML rule

has the premises JXK ;∗ X ′ and X ′ −→ JY K, where JXK and JY K are the translations of X

and Y , and X ′ is some fresh variable.

8.1.2 Dynamic Typing

Relation −→ is treated like a function f , in the sense that the transition X −→ Y holds if

the output of f is Y given input X. The : relation is treated differently. In the case of

V : T , we consider both V and T as input. In the IML specification we define a relation

⇒ty , whose left-hand side is a sequence of values, the first of which a type. The right-hand

side is a Boolean (either true〈〉 or false〈〉). A transition T,V ⇒ty true〈〉 indicates that V

is of type T .

The following rule is a fall-back rule; it has the lowest priority and is only executed if no

other rules are applicable:

T,Xs ⇒ty false〈〉
(LOWER)

(8.5)

Because of this rule, there is a ⇒ty -transition for any non-empty sequence.

The built-in operation type-member exists to type-check built-in values against built-in

types. It is given two arguments, an arbitrary value V and a type T , and returns whether V

152

is of type T . The following rule determines T, V ⇒ty true〈〉 if V is a member of T according

to type-member:

type-member(V, T) B true〈〉

T, V ⇒ty true〈〉
(MEDIUM)

(8.6)

Types may be the result of rewriting terms. For example, the term values rewrites to

the result of applying the operation values to zero arguments.

values ; values
(MEDIUM)

(8.7)

The operation values returns the internal representation of the built-in type values (all

values are of types values).

User-defined types also require rewrites, as explained in Section 8.2. We therefore intro-

duce the relation
;
=⇒ty , for rewriting before type-checking:

Xp ;∗ Xp′ is-terminal(;,Xp′) Xp′ ⇒ty B

Xp
;
=⇒ty B

(MEDIUM)

(8.8)

Type operators CBS supports a number of type operators such as | for type-union, &

for type-intersection, and ∼ for type-complement (type-negation). To represent these oper-

ators as terms, we introduce the type constructors tyunion, tyinter , and tyneg respectively,

together with the following typing rules:

T1, X ⇒ty true〈〉

tyunion[T1, T2], X ⇒ty true〈〉
(MEDIUM)

(8.9)

T2, X ⇒ty true〈〉

tyunion[T1, T2], X ⇒ty true〈〉
(MEDIUM)

(8.10)

T1, X ⇒ty true〈〉 T2, X ⇒ty true〈〉

tyinter [T1, T2], X ⇒ty true〈〉
(MEDIUM)

(8.11)

T,X ⇒ty false〈〉

tyneg [T], X ⇒ty true〈〉
(MEDIUM)

(8.12)

Other type operators construct types for type-checking value sequences, e.g. integers∗

is the type of integer sequences, booleans? is the type of optional Booleans (empty or

153

singleton Boolean sequences), and values+ is the type of non-empty value sequences. To

represent these operators, we introduce the type constructors tystar , tyopt , and typlus with

the following rules:

tystar [T]⇒ty true〈〉
(MEDIUM)

(8.13)

T,X ⇒ty true〈〉 tystar [T],Xs ⇒ty true〈〉

tystar [T], X,Xs ⇒ty true〈〉
(MEDIUM)

(8.14)

T,X ⇒ty true〈〉

typlus[T], X ⇒ty true〈〉
(MEDIUM)

(8.15)

T,X ⇒ty true〈〉 typlus[T],Xs ⇒ty true〈〉

typlus[T], X,Xs ⇒ty true〈〉
(MEDIUM)

(8.16)

tyopt [T]⇒ty true〈〉
(MEDIUM)

(8.17)

T,X ⇒ty true〈〉

tyopt [T], X ⇒ty true〈〉
(MEDIUM)

(8.18)

In CBS, a sequence of types is written within parenthesis. For example the type of

sequences containing an integer and a Boolean is written as (integers,booleans). We intro-

duce the constructor tyseq for wrapping type sequences, together with the following rules:

tyseq []⇒ty true〈〉
(MEDIUM)

(8.19)

T,X ⇒ty true〈〉 tyseq [Ts],Xs ⇒ty true〈〉

tyseq [T,Ts], X,Xs ⇒ty true〈〉
(MEDIUM)

(8.20)

The ∧ operator is used to construct type sequences of a particular type repeated n times.

For example, integers∧3 = (integers, integers, integers). We introduce the constructor

typower , whose second argument is a natural number — not a type — and the following

154

rules:

T,X ⇒ty true〈〉 integer-subtract(N, 1) B N ′ typower [T,N ′],Xs ⇒ty true〈〉

typower [T,N], X,Xs ⇒ty true〈〉
(MEDIUM)

(8.21)

typower [T, 0]⇒ty true〈〉
(MEDIUM)

(8.22)

The operands of type operators may require evaluation. We therefore introduce a term

constructor for each type constructor corresponding to a type operator. The term construc-

tors have rules to evaluate their arguments, which are similar to those of strict funcons (see

§8.1.4), and the term constructors have rules that apply the type constructor once their

arguments have been evaluated. As an example, we give typower :

Xs ;∗ X ′, Y ′ types, X ′
;
=⇒ty true〈〉 naturals, Y ′

;
=⇒ty true〈〉

typower(Xs) ; typower [X ′, Y ′]
(MEDIUM)

(8.23)

Xs ;∗ Xs ′ Xs ′ −→ Xs ′′

typower(Xs) −→ typower(Xs ′′)
(MEDIUM)

(8.24)

The rules for the small-step evaluation of term sequences are given in §8.1.3.

Remarks on ambiguous type sequences Nested applications of the type operators

can result in ‘ambiguous types’. For example, there are two ways to conclude that true is

a member of the type (booleans?,booleans?). In Rule (8.20) it is checked whether X is of

type T and whether Xs is of type tyseq〈Ts〉. If T is formed by an application of tyopt then

T can be ignored if X,Xs is of type tyseq〈Ts〉. If T is formed by an application of tystar

then any prefix of X,Xs may be of type T and the remaining suffix of type tyseq〈Ts〉.

This source of ambiguity is similar to that of a pattern sequence with several sequence

variables. As given above, the rules for tyseq , tystar , typlus, and typower assume that the

arguments of type operators are types of singleton sequences. As discussed in Section 8.5,

this prohibits us from translating certain funcon definitions. A complete implementation of

155

the type operators of CBS is discussed in Section 9.3.

8.1.3 Computations

We define the relation 99K, the iterative closure of −→, which captures finite computations.

A finite computation of n steps consists of n+2 configurations λ0, λ1 . . . λn, λ
′
n, where λ′n is a

value. At the k-th step of the computation, configuration λk−1, found by the previous steps,

is rewritten to λ′k−1 (i.e. λk−1 ;∗ λ′k−1) and λ′k−1 transitions to λk (i.e. λ′k−1 −→ λk), the

input of the next step (if any). The last step of the computation produces the configuration

λn for which holds that λn ;∗ λ′n. This description is formalised by the following rules1:

Xp ;∗ Vs

tystar(values),Vs
;
=⇒ty true〈〉

Xp 99K Vs
(LOWER)

(8.25)

X ;∗ Xs

Xs −→ Xs ′ Xs ′ 99K Vs

X 99K Vs
(MEDIUM)

(8.26)

X ;∗ Xs Xs −→ Xs ′

X,Xp −→ Xs ′,Xp
(MEDIUM)

(8.27)

X ;∗ Vs

tystar(values),Vs
;
=⇒ty true〈〉

Xp ;∗ Xs Xs −→ Xs ′

X,Xp −→ Vs,Xs ′
(MEDIUM)

(8.28)

Each application of Rule (8.26) in a proof of λ0 99K λ′n corresponds to a step in the

computation from λ0 to λ′n. Rules (8.27) and (8.28) enable a single computational step

within a sequence of terms2.

8.1.4 Funcon Signatures

Funcon definitions consist of a signature and a collection of rules. Via parameter declara-

tions, the signature of a funcon definition determines the types of the arguments that can be

received by the funcon. This information can be used for statically checking funcon transla-

tions. For the operational behaviour of funcon terms, only the strictness of the parameters

is relevant, determining whether arguments should be evaluated.

1We can have X 99K # and Xp ;∗ #. Because the empty sequence is not terminal, Rules (8.25)

and (8.28) contain tystar(values),Vs
;
=⇒ty true〈〉 rather than is-terminal(−→,Vs).

2The terms are evaluated in a left-to-right fashion.

156

As examples, consider the signatures of scope and interleave-map:

Funcon scope(E : environments,X :⇒T) :⇒T (8.29)

Funcon interleave-map(X : T⇒T ′,V ∗ : (T)∗) :⇒(T)∗ (8.30)

The parameter declarations in a signature are formed by a sequence of variable names3,

each followed by a colon and a sort. The last variable in the sequence may be a sequence

variable, recognised by a super-script ∗, +, or ?. The parameter list of a signature is thus

divided in two parts: the initial part consisting of zero or more basic variables and a final part

consisting of an optional sequence variable. A funcon with n initial parameters4 must receive

n or more arguments. The first n arguments are matched against the initial parameters,

any remaining arguments are matched against the optional final parameter.

A sort is either a type, is of the form⇒T2, or is of the form T1⇒T2, with T1 and T2 types.

A parameter is strict if its sort is a type, i.e. if it does not have a top-level5 occurrence of

⇒ (we ignore the meaning of the sort operator ⇒ here). In the examples above, the first

parameter of scope and the final parameter of interleave-map are strict.

The strictness of parameters determines whether congruence rules, that perform compu-

tational steps on arguments, are implicitly present in a CBS specification. In the generated

IML specification, congruence rules are explicit. If there are m strict parameters, m con-

gruence rules are generated. If f is the term constructor introduced for a particular funcon

whose signature has n initial parameters and a final parameter, then the congruence rule

generated for the k-th argument, with k 6 n, is of the form:

Xk ;∗ X ′k X ′k −→ X ′′k

f(X1, . . . , Xk, Xk+1, . . . , Xn,Xs) −→ f(X1, . . . , X
′′
k , Xk+1, . . . , Xn,Xs)

(MEDIUM)

If the signature of f does not have a final parameter, then Xs does not appear in the source

and target of the conclusion. If the signature of f does have a final parameter, and if it is

3We ignore wildcards in this description, which can replaced by fresh variables.
4We use ‘parameters’ as a shorthand for ‘variables declared in a signature’, arguments are terms given

as part of an application, and a basic variable is a placeholder for exactly one term.
5Sorts can be used to construct types as well, e.g. sorts appear as the argument of abstractions.

157

strict, then a congruence rule of the following form is generated:

Xs ;∗ Xs ′ Xs ′ −→ Xs ′′

f(X1, . . . , Xn,Xs) −→ f(X1, . . . , Xn,Xs ′′)
(MEDIUM)

As describe above, more than one congruence rule may be applicable at a time. If desired,

it is possible to specify a left-to-right evaluation order for the arguments by including a

side-condition values, Xj
;
=⇒ty true〈〉, for all 1 6 j < k, with Xj a strict parameter.

The congruence rules for scope and interleave-map are as follows:

X1 ;∗ X ′1 X ′1 −→ X ′′1

scope(X1, X2) −→ scope(X ′′1 , X2)
(MEDIUM)

(8.31)

Xs ;∗ Xs ′ Xs ′ −→ Xs ′′

interleave-map(X1,Xs) −→interleave-map(X1,Xs ′′)
(MEDIUM)

(8.32)

8.1.5 Built-in Operations and Built-in Types

Some CBS definitions are tagged with the keyword Built-in, indicating that these definitions

can be ignored by the compiler and are implemented manually. The most common built-in

definitions are for types and operations on values of these types. As mentioned in Section 7.4,

CBS’ built-in types and operations are implemented in funcons-values, a Haskell package

underlying the IML interpreter. In this subsection we discuss the rules required to access

these built-in types and operations.

For each operation in funcons-values there is a term constructor whose semantics are

to evaluate its arguments and apply the operation. For example, consider the following CBS

definition and IML rules for the value operation integer-add (note that the CBS definition

has no rules):

Built-in Type integers (8.33)

Built-in Funcon integer-add(: integers∗) :⇒integers (8.34)

158

Xs ;∗ Xs ′ tystar(values),Xs ′ ⇒ty true〈〉

integer-add(Xs) ; integer-add(Xs ′)
(10)

(8.35)

Xs ;∗ Xs ′ Xs ′ −→ Xs ′′

integer-add(Xs) −→ integer-add(Xs ′′)
(10)

(8.36)

All value operations are strict in all their arguments and have a congruence rule like (8.36).

If Xs is a sequence of length greater than one, establishing the premise of Rule (8.36)

involves applying either one of the Rules (8.27) or (8.28). All strict funcons have a similar

congruence rule (for example variant, given later).

Funcon integer-add is variadic; it receives an integer sequence as an argument. The

sequence may be the result of rewriting a single term into a sequence, or rewriting several

terms into a concatenation of sequences. For example, the following terms all compute 7:

integer-add(1, 2, 3)

integer-add(tuple-elements(tuple(1, 2, 3)))

integer-add(tuple-elements(tuple(1, 2)), tuple-elements(tuple(1)))

The arguments of an operation with a fixed number of arguments, such as the binary

integer-subtract, may also result from rewriting. For example, integer-subtract(tuple-

elements(tuple(2,1))) evaluates to 1. The IML rules generated for integer-subtract are like

those for integer-add:

Xs ;∗ Xs ′ tystar(values),Xs ′ ⇒ty true〈〉

integer-subtract(Xs) ; integer-subtract(Xs ′)
(10)

(8.37)

Xs ;∗ Xs ′ Xs ′ −→ Xs ′′

integer-subtract(Xs) −→ integer-subtract(Xs ′′)
(10)

(8.38)

The operation integer-subtract is only defined on two (integer) arguments. Therefore

Rule (8.37) is not applicable if Xs ′ is not a sequence of length 2.

In general, if all the parameters of a funcon are strict, then its arguments need to be

159

rewritten before pattern matching occurs in any of the user-defined rules. Sections 8.3

and 8.4 discuss the translation of user-defined CBS rules into IML rules. The next section

shows how the⇒ty -relation is extended by generating IML rules from CBS type definitions.

8.2 Types

CBS type definitions come in two forms: type synonyms and algebraic datatypes.

8.2.1 Type Synonyms

A type synonym introduces a shorthand for a type. Consider, for example, the following

definition of the type environments:

Type environments ; maps(identifiers, values?) (8.39)

The type definition above is syntactic sugar for the following funcon definition:

Funcon environments :⇒types (8.40)

Rule environments ; maps(identifiers, values?) (8.41)

Because type synonym definitions are syntactic sugar, the CBS compiler does not gener-

ate IML code for type synonyms directly. A type defined as a synonym may also have

parameters, which are translated in a straightforward manner.

8.2.2 Algebraic Data Types

A datatype definition introduces a new type of which each value is the result of applying

one of its constructors. For example, the type booleans is defined as follows:

Datatype booleans ::= true | false (8.42)

For booleans, the following IML rules are generated:

160

booleans() ; booleans[]
(MEDIUM)

(8.43)

true() ; true〈〉
(MEDIUM)

(8.44)

false() ; false〈〉
(MEDIUM)

(8.45)

booleans[], true〈〉 ⇒ty true〈〉
(MEDIUM)

(8.46)

booleans[], false〈〉 ⇒ty true〈〉
(MEDIUM)

(8.47)

Rules (8.43), (8.44), and (8.45) rewrite applications of the (nullary) term constructors

booleans, true, and false to applications of their corresponding type or value constructors.

Datatype definitions can directly include another type as a sub-type. For example,

strings are included in the type identifiers. An identifier may also be a simpler identifier

tagged with an arbitrary value (e.g. with the identifier of a namespace):

Datatype identifiers ::= { : strings} | identifier-tagged(: identifiers, : values) (8.48)

The CBS compiler generates the following IML rules for type-checking identifiers:

strings, X
;
=⇒ty true〈〉

identifiers[], X ⇒ty true〈〉
(MEDIUM)

(8.49)

identifiers, X1
;
=⇒ty true〈〉 values, X2

;
=⇒ty true〈〉

identifiers[], identifier-tagged〈X1, X2〉 ⇒ty true〈〉
(MEDIUM)

(8.50)

An algebraic datatype may have type parameters, and its constructors may have argu-

ments restricted to certain types, possibly depending on the type parameters. For example,

the definition of variants specifies that the second argument of its constructor variant is a

value of a given type T :

Datatype variants(T) ::= variant(: identifiers, : T) (8.51)

161

The rule for type-checking variants involves premises for type-checking arguments:

identifiers, X1
;
=⇒ty true〈〉 T,X2

;
=⇒ty true〈〉

variants[T], variant〈X1, X2〉 ⇒ty true〈〉
(MEDIUM)

(8.52)

Funcons variants and variant are both strict; the term constructors variants and variant

have a congruence rule to evaluate their argument(s). Once the arguments are evaluated,

the corresponding type and value constructor is applied:

Xs ;∗ Xs ′ Xs ′ −→ Xs ′′

variants(Xs) −→ variants(Xs ′′)
(MEDIUM)

(8.53)

Xs ;∗ Vs

tystar(values),Vs
;
=⇒ty true〈〉

variants(Xs) −→ variants[Vs]
(MEDIUM)

(8.54)

Xs ;∗ Xs ′ Xs ′ −→ Xs ′′

variant(Xs) −→ variant(Xs ′′)
(MEDIUM)

(8.55)

Xs ;∗ Vs

tystar(values),Vs
;
=⇒ty true〈〉

variant(Xs) −→ variant〈Vs〉
(MEDIUM)

(8.56)

8.2.3 Value-dependent Types – Example

The parameters of types are not restricted to types. For example, the type bit-vectors

receives a natural number as argument, determining the size of the vector:

Type bits ; booleans (8.57)

Type bytes ; bit-vectors(8) (8.58)

Datatype bit-vectors(N : natural-numbers) ::= bit-vector(: bits∧N) (8.59)

The following rule is generated for type-checking bit-vectors:

typower(bits, N),Xs
;
=⇒ty true〈〉

bit-vectors[N],bit-vector〈Xs〉 ⇒ty true〈〉
(MEDIUM)

(8.60)

162

8.2.4 Composite Built-in Types

Built-in funcons maps and sets receive types as arguments. Since the arguments may

be user-defined types, Rule (8.6) is not adequate for type-checking sets and maps. For

this reason, we introduce type constructors maps and sets with specialised rules for type-

checking. The following rule is for type-checking sets, applying set-elements and tystar :

set-elements(S) B Vs tystar [T],Vs ⇒ty true〈〉

sets[T], S ⇒ty true〈〉
(MEDIUM)

(8.61)

The following rule is for type-checking maps and relies on map-elements returning a se-

quence of associations as tuples:

map-elements(M) B Vs tystar [tuples[K,V]],Vs ⇒ty true〈〉

maps[K,V],M ⇒ty true〈〉
(MEDIUM)

(8.62)

8.3 Rewrite Rules

The conclusion of a rewrite rule translates directly into IML: CBS terms are translated

to IML terms, CBS patterns to IML patterns, CBS variables to IML variables, etc. This

section focusses on the translation of the conditions that can appear in rewrite rules.

8.3.1 Type-checking

A condition X : T rewrites X to a value X ′, T to a type T ′, and checks whether X ′ is of

type T ′. Thus X : T translates to the premise JT K, JXK ;
=⇒ty true〈〉, where JXK and JT K are

the translations of X and T . Consider the definition of is-in-type:

Funcon is-in-type(V : values,T : types) (8.63)

Rule
V : T

is-in-type(V : values,T : values) ; true
(8.64)

Rule
V : ∼T

is-in-type(V : values,T : values) ; false
(8.65)

163

Besides congruence rules, the following IML rules are generated from the above definition:

Xs ;∗ V, T types, T
;
=⇒ty true〈〉 values, V

;
=⇒ty true〈〉 T, V

;
=⇒ty true〈〉

is-in-type(Xs) ; true〈〉
(MEDIUM)

(8.66)

Xs ;∗ V, T types, T
;
=⇒ty true〈〉 values, V

;
=⇒ty true〈〉

tyneg(T), V
;
=⇒ty true〈〉

is-in-type(Xs) ; false〈〉
(MEDIUM)

(8.67)

The argument sequence Xs is rewritten to a sequence of length two of which the first com-

ponent must be a value and the second component a type. The premise types, T
;
=⇒ty true〈〉

is a side-effect of translating the CBS pattern T : types of which the annotation : types de-

termines that T must be a value of type types. Similarly, the premise values, V
;
=⇒ty true〈〉

is a side-effect of translating the pattern V : values.

8.3.2 Equality

A condition X1 == X2 rewrites both operands to values and checks whether they are

structurally equal. The operation is-equal, built-in to IML, checks whether two IML

terms are structurally equal. A condition X1 == X2 is translated into is-equal(X ′1, X
′
2) B

true〈〉 with X ′1 the result of rewriting JX1 K and X ′2 of rewriting JX2 K. Extra conditions

are generated to ensure that X ′1 and X ′2 are values. As an example, we give is-equal. The

binary funcon is-equal checks whether its arguments are ground-values, i.e. values that do

not contain abstractions:

Funcon is-equal(V : values,W : values) (8.68)

Rule
V == W

is-equal(V : ground-values,W : ground-values) ; true
(8.69)

Rule
V =/= W

is-equal(V : ground-values,W : ground-values) ; false
(8.70)

Rule is-equal(V : ∼ground-values,W : ground-values) ; false (8.71)

Rule is-equal(V : ground-values,W : ∼ground-values) ; false (8.72)

164

The following IML rules are generated from the rewrite rules above:

Xs ;∗ V,W ground-values, V
;
=⇒ty true〈〉

ground-values,W
;
=⇒ty true〈〉 is-equal(V,W) B true〈〉

is-equal(Xs) ; true〈〉
(MEDIUM)

(8.73)

Xs ;∗ V,W ground-values, V
;
=⇒ty true〈〉

ground-values,W
;
=⇒ty true〈〉 is-equal(V,W) B false〈〉

is-equal(Xs) ; false〈〉
(MEDIUM)

(8.74)

Xs ;∗ V,W

tyneg(ground-values), V
;
=⇒ty true〈〉 ground-values,W

;
=⇒ty true〈〉

is-equal(Xs) ; false〈〉
(MEDIUM)

(8.75)

Xs ;∗ V,W

ground-values, V
;
=⇒ty true〈〉 tyneg(ground-values),W

;
=⇒ty true〈〉

is-equal(Xs) ; false〈〉
(MEDIUM)

(8.76)

The condition X1 =/= X2 is translated into an application of is-equal with result pattern

false〈〉. Note that in this example there is no need to generate conditions values, V
;
=⇒ty

true〈〉 and values,W
;
=⇒ty true〈〉, as suggested earlier, because of the conditions generated

for the pattern annotations.

8.3.3 Rewrite Conditions

Rewrite rules have ;-premises, which perform as many rewrites as possible to a term, but

not necessarily to a value. A ;-premise in CBS thus translates into a ;∗-premise in IML.

Consider the following definition of if-true-else, and the IML rules generated for it:

Funcon if-true-else(: booleans, :⇒T , :⇒T) :⇒T (8.77)

Rule
B ; true

if-true-else(B ,X ,) ; X
(8.78)

Rule
B ; false

if-true-else(B , ,Y) ; Y
(8.79)

165

B ;∗ true〈〉

if-true-else(B,X, Y) ; X
(MEDIUM)

(8.80)

B ;∗ false〈〉

if-true-else(B,X, Y) ; Y
(MEDIUM)

(8.81)

As a pattern on the right-hand side of B ; true, true is translated to an IML pattern

in which true occurs as a value constructor rather than a term constructor (and similarly

for false). In general, when translating CBS patterns to IML patterns, occurrences of

constructors are translated into their IML value constructor equivalent. However, before

testing whether a term matches a pattern, the term needs to be fully rewritten. To achieve

this, CBS patterns with occurrences of value constructors translate into variables, with

conditions on those variables generated as a side-effect (similar to type annotations in §8.3.1).

Consider the following alternative rules defining if-true-else:

Rule if-true-else(true,X ,) ; X (8.82)

Rule if-true-else(false, ,Y) ; Y (8.83)

Translating patterns in the way described above, the same IML rules are generated for both

alternative sets of rules for if-true-else.

8.4 Entities

Computation rules differ from rewrite rules in that their conclusion is a −→-transition, that

−→-transitions can occur as premises, and that −→-transitions may refer to entities.

CBS inference rules are instances of I-MSOS rules (see §6.3.3) and involve several classes

of entities. Each class has a category associated with it, together with a concrete notation in

rules — the ‘reference style’ — for identifying morphisms of the category. Several entities can

belong to the same class and entities are declared in CBS specifications to indicate to which

class they belong. Each entity class can be explained by giving the details of the underlying

category and by explaining the connection between the reference style and morphisms of the

category. Instead, we introduce classes informally and explain their operational semantics

via the translation to IML. This section describes how −→-transitions are translated to IML,

focussing specifically on the entity references of CBS’ entity classes. We discuss mutable,

166

contextual, output, and control entities.

From this perspective, IML has only one entity class, which corresponds to the read-write

entities of MSOS [Mosses, 2004], called mutable entities in CBS. The process of translating

references to contextual, output, and control entities thus explains how the entities of these

classes can be seen as mutable entities. The Haskell Funcon Framework of Chapter 9

supports interactive input and ‘bidirectional’ control entities, which this chapter ignores.

8.4.1 Mutable Entities

A mutable entity is declared as follows, taking the entity store as an example:

Entity 〈 , store(: stores)〉 −→ 〈 , store(: stores)〉 (8.84)

Type stores ; maps(locations, values?) (8.85)

The declaration reveals the reference style of mutable entities: whenever a transition refers

to mutable entities, the source and target of the transition are a program fragment (in the

declaration) followed by the names of referred entities with their values inside parenthesis

(and both source and target are surrounded by 〈 and 〉).

Translating the entity references of mutable entities simply involves translating CBS

terms to IML terms and CBS patterns to IML patterns. For each mutable entity, the left-

hand side of a conclusion contains a pattern and a the right-hand side a term. In a premise

this is reversed. However, all the funcons in the beta-release of CBS that interact with

mutable entities are defined by rules without premises.

The following example shows the translation for the rules of assign:

Funcon assign(: variables, : values) :⇒null-type (8.86)

Rule
and(is-in-set(L, σ), is-in-type(V ,T)) ; true map-override({L 7→ V }, σ) ; σ′

〈assign(variable(L,T),V : values) , store(σ)〉 −→ 〈null , store(σ′)〉

(8.87)

Rule
and(is-in-set(L, σ), is-in-type(V ,T)) ; false

〈assign(variable(L,T),V : values) , store(σ)〉 −→ 〈fail , store(σ)〉
(8.88)

167

X ;∗ variable〈L, T 〉 and(is-in-set(L, dom(Sig)),is-in-type(V, T)) ;∗ true〈〉

map-override(map(tuple(L, V)),Sig) ;∗ Y values, V
;
=⇒ty true〈〉

assign(X,V), store = Sig −→ null , store = Y
(MEDIUM)

(8.89)

values, V
;
=⇒ty true〈〉 X ;∗ variable〈L, T 〉

and(is-in-set(L, dom(Sig)),is-in-type(V, T)) ;∗ false〈〉

assign(X,V), store = Sig −→ fail , store = Sig
(MEDIUM)

(8.90)

8.4.2 Contextual Entities

A contextual entity, or read-only entity in MSOS, is declared as follows:

Entity environment(: environments) ` −→ (8.91)

The value held by a contextual entity does not change as part of a transition. A reference to

a contextual entity therefore consists of only one value and appears before a turnstile. In the

translation to IML, we translate the reference for inclusion in both the left-hand side and

right-hand side of the IML transition, ensuring the entity does not change by the transition.

There is no need to generate an entity reference for the right-hand side of premises. As an

example, consider the definition of scope and its translation:

Funcon scope(: environments, :⇒T) :⇒T (8.92)

Rule
map-override(ρ1 , ρ0) ; ρ2 environment(ρ2) ` X −→ X ′

environment(ρ0) ` scope(ρ1 : environments,X) −→ scope(ρ1 ,X ′)
(8.93)

Rule scope(: environments,V : T) ; V (8.94)

168

environments,Rho1
;
=⇒ty true〈〉 map-override(Rho1,Rho2) ;∗ Y

X ;∗ Z Z, environment = Y −→ X ′

scope(Rho1, X), environment =Rho0 −→ scope(Rho1, X
′), environment =Rho0

(MEDIUM)

(8.95)

environments, X
;
=⇒ty true〈〉 values, V

;
=⇒ty true〈〉

scope(X,V) ; V
(MEDIUM)

(8.96)

In the IML rule generated for (8.94), the wildcard is replaced by a fresh variable in order to

check the type annotation as a condition. The unknown type T translates to values.

8.4.3 Output Entities

Currently, the only output entity is standard-out, which models program output as a sequence

of values. It is declared as follows:

Entity
standard-out!(:values∗)−−−−−−−−−−−−−−→ (8.97)

Output entities hold sequences of values. A reference to an output entity consists of a single

value sequence which appears on the arrow behind an exclamation mark. (Although not

shown here, a question mark is used for input entities, the dual of output entities.) Funcon

print is defined as follows:

Funcon print(: values∗) :⇒null-type (8.98)

Rule print(V ∗ : values∗)
standard-out!(V ∗)−−−−−−−−−−−→ null (8.99)

In the generated IML, the sequence JV *K is appended to the output already held by the

output entity. The following IML rule is generated from the CBS rule given above:

tystar(values),Vs
;
=⇒ty true〈〉

print(Vs), standard-out = Y −→ null , standard-out = Y,Vs
(MEDIUM)

(8.100)

169

There are currently no examples of funcons with one or more rules that contain a premise

referring to an output entity.

8.4.4 Control Entities

Control entities hold a single value or no value at all. They are used to model control flow

operators in a general sense. For example, exception handling, return statements, pattern

match failure, and delimited continuations [Sculthorpe et al., 2016] can all be specified with

control entities. The presence of a value in a control entity signals abrupt termination in the

evaluation of some sub-term of a larger term. The value is referred to as a signal. The larger

term may respond to the signal and continue evaluating another subterm, for example an

exception-handler. The abrupted control entity is defined as follows:

Entity
abrupted(:values?)−−−−−−−−−−−→ (8.101)

The reference style is similar to output entities, but without the exclamation mark. If a

reference to a control entity mentions no value, this indicates the continued absence of a

signal. If it does, this indicates the appearance of a signal. As examples of ‘emitting’ and

‘receiving’ signals, we use abrupt and handle-abrupt, interacting with abrupted:

Funcon abrupt(: values) :⇒empty-type (8.102)

Rule abrupt(V : values)
abrupted(V)−−−−−−−→ stuck (8.103)

Funcon handle-abrupt(: S⇒T , : X⇒T) : S⇒T (8.104)

Rule
X

abrupted(V)−−−−−−−→

handle-abrupt(X ,H)
abrupted()−−−−−−→ give(V ,H)

(8.105)

Rule
X

abrupted()−−−−−−→ X ′

handle-abrupt(X ,H)
abrupted()−−−−−−→ handle-abrupt(X ′,H)

(8.106)

Rule handle-abrupt(V : T ,) ; V (8.107)

170

The following IML rules are generated for the CBS rules given above:

V ;∗ V ′ values, V ′
;
=⇒ty true〈〉

abrupt(V), abrupted = # −→ stuck , abrupted = V ′
(MEDIUM)

(8.108)

X ;∗ X1 X1, abrupted = # −→ X2, abrupted = V

handle-abrupt(X,H), abrupted = # −→ give(V,H), abrupted = #
(MEDIUM)

(8.109)

X ;∗ X1 X1, abrupted = # −→ X2, abrupted = #

handle-abrupt(X,H), abrupted = # −→handle-abrupt(X2, H), abrupted = #
(MEDIUM)

(8.110)

V ;∗ V ′ values, V ′
;
=⇒ty true〈〉

handle-abrupt(V,H) ; V ′
(MEDIUM)

(8.111)

It follows from the way transitions with control entity references are generated that there

are no transitions in which a signal disappears (e.g. the source has abrupted = V and the

target has abrupted = #) or remains (e.g. source and target have abrupted = V). A

configuration in which a value for a control entity is held is thus stuck. To accept such a

configuration as the final configuration in a computation, we declare that all values cause

termination in control entities. For example, in the case of abrupted, we add the declaration:

terminal(abrupted,values) (8.112)

The following rule is necessary to ensure that 99K still captures all finite computations in

the transition system for −→:

Xs, abrupted = V 99K Xs, abrupted = V
(MEDIUM)

(8.113)

8.5 Overcoming Translation Restrictions

Left-to-right Evaluation The funcons left-to-right and right-to-left cannot be trans-

lated to IML because they involve a rule in which two sequence variables appear together in

171

a pattern sequence, causing ambiguity (see §7.3.2). However, computational steps over term

sequences transition IML terms in a left-to-right fashion (see §8.1.3). It is therefore easy

to give built-in IML rules for left-to-right. Funcon left-to-right is defined by the following

CBS rules:

Rule
Y −→ Y ′

left-to-right(V * : (T *), Y,Z *) −→ left-to-right(V *, Y ′,Z *)
(8.114)

Rule left-to-right(V * : (T *)) ; V * (8.115)

The following IML rules capture the behaviour of left-to-right:

Xs ;∗ Xs ′ Xs ′ −→ Xs ′′

left-to-right(Xs) −→ left-to-right(Xs ′′)
(MEDIUM)

(8.116)

Vs ;∗ Vs ′ tystar(values),Vs ′
;
=⇒ty true〈〉

left-to-right(Vs) ; Vs ′
(MEDIUM)

(8.117)

By enabling left-to-right as a built-in, we can translate left-to-right-map, left-to-right-

repeat, and left-to-right-filter, which are defined in terms of left-to-right.

Type-checking Environments In §8.2.4 we gave rules for the built-in composite types

maps and sets. The rule for maps involves the type tuples[K,V], where K and V are type

arguments determining the types of the keys and values of the map. The typing rule for

tuples involves the type operator tyseq :

tyseq(Ts),Vs
;
=⇒ty true〈〉

tuples[Ts], tuple〈Vs〉 ⇒ty true〈〉
(MEDIUM)

(8.118)

In §8.1.2 we discussed that dynamic type-checking is correct if type constructors such

as tyseq are only applied to types of singleton sequences. However, maps may be applied

to a type of optional values, i.e. types containing the empty sequence. For example, in

the definition of environments (Rule (8.41)), maps is applied to identifiers and values?.

Type-checking environments thus involves the type tyseq(identifiers, tyopt(values)). The

172

rules for tyseq , however, are such that only sequences of length n can be of a type of the

form tyseq(t1, . . . , tn). Thus, incorrectly tyseq(identifiers, tyopt(values)), "x"
;
=⇒ty false〈〉.

To remedy this specific situation, we add the following IML rule:

T ⇒ty true〈〉

tyseq [T]⇒ty true〈〉
(MEDIUM)

(8.119)

This rule specifies that if the empty sequence is of type T , then it is of type tyseq [T].

8.6 Homogeneous Generative Meta-Programming

A language with constructs for Homogeneous Generative Meta-Programming (HGMP) en-

ables writing code that generates code. As data, the generated code can be propagated and

manipulated freely, before being inserted and evaluated in the overarching program. For ex-

ample, Template Haskell [Sheard and Peyton Jones, 2002] supports HGMP at compiletime,

MetaML [Taha and Sheard, 2000] at runtime, while Converge [Tratt, 2005] supports both.

An overview of the features of several HGMP languages is found in [Berger et al., 2017].

In [Van Binsbergen, 2018], we defined funcons for HGMP based on earlier formalisations of

HGMP by [Berger and Tratt, 2010, Berger et al., 2017]. In this section we implement the

funcons introduced in [Van Binsbergen, 2018] by giving CBS and IML rules that fit within

the framework of this chapter.

In [Berger et al., 2017], Berger, Tratt and Urban present a calculus for reasoning about

several aspects of HGMP. Their calculus is the result of applying a semi-mechanical ‘HGMPi-

fication recipe’ to a standard untyped λ-calculus. The funcons of [Van Binsbergen, 2018]

are directly derived from the HGMP recipe. The recipe extends languages with abstract

syntax trees (ASTs) to serve as meta-representations of program fragments, and runtime

and compiletime HGMP constructs.

8.6.1 Abstract Syntax Trees

There are two types of AST nodes. Firstly, an AST node can be labelled with a value v and

a type τ , in which case the node has no children. Secondly, an AST node can be labelled

173

with a funcon f and have zero or more children. Funcons — i.e. funcon constructors —

are not funcon terms, only applications of funcons are. In [Van Binsbergen, 2018], tags are

introduced to represent funcons. Here we implement tags as strings:

Type tags ; strings (8.120)

ASTs are formalised by the following CBS datatype definition:

Datatype asts ::= ast-value(: types, : values) | ast-term(: tags, : asts∗) (8.121)

ASTs may be partially evaluated in the sense that where we expect an AST-node, we

may find a computation instead, yielding an AST-node when evaluated. For example, the

funcon term give(true, ast-value(booleans, given)) requires evaluation to yield the AST

ast-value(booleans, true).

The funcons for HGMP involve three additional relations: the⇒-relation models a com-

pilation phase, the ⇑-relation models the conversion from terms into their

meta-representation, and the ⇓-relation models the conversion from ASTs to the terms they

represent. The IML definitions of these relations that follow, apply operations built-in to the

IML interpreter for constructing and deconstructing terms. The operation term-construct

is given a string s and a sequence of arguments x1, . . . , xn to build the term f(x1, . . . , xn),

where f is the constructor represented by the string s. Conversely, term-constructor is

given a term and returns a string representing f if the given term is of the form f(x1, . . . , xn)

(and fails otherwise, e.g. when applied to values). The operation term-arguments is given a

term and returns the term sequence x1, . . . , xn if the given term is of the form f(x1, . . . , xn)

(and fails otherwise). In the context of this chapter, these operations make it easy to define

rules that are applicable to more than just one funcon.

The following rules for ⇓ convert ASTs to the terms they represent:

Vs ′ ⇓ Vs term-construct(C,Vs) B X

ast-term〈C,Vs ′〉 ⇓ X
(MEDIUM)

(8.122)

term-construct(C) B X

ast-term〈C〉 ⇓ X
(MEDIUM)

(8.123)

174

give(code(bound("x")), scope(bind("x", 7), eval(given)))

→ give(ast-term("bound", ast-value(identifiers, "x")), scope(bind("x", 7), eval(given)))

→ give(ast-term("bound", ast-value(identifiers, "x")), scope(bind("x", 7), eval(

ast-term("bound", ast-value(identifiers, "x")))))

→ give(ast-term("bound", ast-value(identifiers, "x")), scope(bind("x", 7),bound("x")))

→ 7

Figure 8.2: An example of run-time evaluation of a funcon term with meta-programming.

T, V ⇒ty true〈〉

ast-value〈T, V 〉 ⇓ V
(MEDIUM)

(8.124)

X ⇓ X ′ Xp ⇓ Xp′

X,Xp ⇓ X ′,Xp′
(MEDIUM)

(8.125)

The following rules for ⇑ convert terms into their meta-representation:

term-constructor(X) B C term-arguments(X) B Xp Xp ⇑ Xp′

X ⇑ ast-term(C,Xp′)
(MEDIUM)

(8.126)

term-constructor(X) B C term-arguments(X) B #

X ⇑ ast-term(C)
(MEDIUM)

(8.127)

values B T

V ⇑ ast-value(T, V)
(MEDIUM)

(8.128)

X ⇑ X ′ Xp ⇑ Xp′

X,Xp ⇑ X ′,Xp′
(MEDIUM)

(8.129)

8.6.2 Runtime HGMP

The funcon code takes a term x and rewrites to the AST representation of x:

X ⇑ A

code(X) ; A
(MEDIUM)

(8.130)

The funcon eval is given an AST a and rewrites to the term represented by a.

175

asts, A⇒ty true〈〉 A ⇓ X

eval(A) ; X
(MEDIUM)

(8.131)

X −→ X ′

eval(X) −→ eval(X ′)
(MEDIUM)

(8.132)

As an example of runtime HGMP, consider the evaluation6 in Figure 8.2.

8.6.3 Compiletime HGMP

The funcons in beta-release do not have compiletime semantics. Future work is required

to determine how the definition of ⇒ in [Van Binsbergen, 2018] may be integrated in a

compiletime semantics for funcons. The ⇒-relation captures a compilation phase during

which several static computations can be performed, such as constant propagation and

explicating implicit coercions. In the context of HGMP, this compilation phase ‘searches’

for quotations and anti-quotations, known as upML and downML in [Berger et al., 2017],

to compute ASTs and code and insert them into the runtime version of the program. Since

funcons do not (yet) have compiletime semantics, we define the ⇒-relation to perform this

search, without modifying the funcon term, as follows:

term-constructor(X) B C term-arguments(X) B Xp Xp ⇒ Xp′

X ⇒ term-construct(C,Xp′)
(MEDIUM)

(8.133)

term-arguments(X) B #

X ⇒ X
(MEDIUM)

(8.134)

is-terminal(−→, V)

V ⇒ V
(MEDIUM)

(8.135)

X ⇒ X ′ Xp ⇒ Xp′

X,Xp ⇒ X ′,Xp′
(MEDIUM)

(8.136)

By introducing the⇒-relation we can distinguish between two stages of evaluation. Compile-

time evaluation is modelled by a single transition in the ⇒-relation and runtime evaluation

by a sequence of transitions in the −→-relation. If the rules above were the only rules to

define⇒, then compilation has no effect (⇒ is an identity function). Below we shall see that

rules with a higher priority are given to define the compiletime semantics of quotations and

6Rewrite steps have been omitted.

176

anti-quotations. Rule (8.133) expresses that if X is not a value7, its subterms are compiled

and possibly replaced. Rule (8.135) determines that values are not changed by compilation,

even when they have computations as subterms, e.g. abstraction〈fail〉 ⇒ abstraction〈fail〉.

Funcons meta-up and meta-down correspond respectively to the upML and downML

from [Berger et al., 2017], and are the compiletime version of code and eval:

T ⇑ A

meta-up(T)⇒ A
(HIGHER)

(8.137)

X0 ⇑ X1 X1 ⇑ X2

meta-up(X0) ⇑ X2

(HIGHER)

(8.138)

X0 ⇒ X1 X1 99K A A ⇓ X2

meta-down(X0)⇒ X2

(HIGHER)

(8.139)

X ⇒ X ′

meta-down(X) ⇑ X ′
(HIGHER)

(8.140)

The rules have a higher priority to overrule the ‘default behaviour’ of ⇒ and ⇑ expressed in

Rules (8.133) and (8.126). The funcon meta-down triggers runtime evaluation at compile-

time. At compiletime, meta-down(x0) is replaced by x2 if x compiles and evaluates to an

AST a with a ⇓ x2.

Rule (8.140) shows that an occurrence of meta-down within an occurrence of meta-

up is ‘cancelled out’, resulting in a partially evaluated AST. For example, consider the

computation meta-up(give(3,meta-down(bound("x")))), which compiles to the term t =

ast-term("give", ast-value(naturals, 3),bound("x")). If t occurs in a context in which

"x" is bound to an AST, then t evaluates to an AST. In this example, the computation

eval(scope(bind("x", code(given)), t)) evaluates to 3.

In this example, "x" is bound at runtime. To bind identifiers at compiletime, we in-

troduce meta-let, corresponding to letdownML [Berger et al., 2017]. It makes (non-local)

bindings available, at compiletime, to occurrences of meta-down, which is necessary to write

7The CBS to IML translation is such that there are no values of the form f(x1, . . . , xn).

177

non-trivial HGMP programs:

X1 ⇒ X ′1 X ′1 99K I X2 ⇒ X ′2 X ′2 99K V map(tuple(I, V)) ;∗ Rho2

map-override(Rho1,Rho2) B Rho3 X3, environment = Rho3 ⇒ X ′3

meta-let(X1, X2, X3), environment = Rho1 ⇒ X ′3

(HIGHER)

(8.141)

The first argument is compiled and evaluated to an identifier i. The second argument is

compiled and evaluated to a value v. The binding i 7→ v is active in the compilation of the

third argument x3 to x′3, which replaces metalet(x1, x2, x3) during compilation.

The funcons meta-down, meta-up, and meta-let have no runtime semantics as their

occurrences are removed at compiletime.

8.7 Static Refocussing

In this section we use the CBS to IML translation to reason about the correctness of applying

refocussing to funcon definitions. Refocussing was introduced as an alternative evaluation

strategy in the context of reduction semantics by [Danvy and Nielsen, 2004]. Danvy and

Nielsen proved the strategy to be sound and indeed more efficient than ‘straightforward’

interpretation. We use the term dynamic refocussing to refer to this kind of refocussing,

implemented as an optimisation, or alternative evaluation strategy, in an interpreter.

In [Danvy and Nielsen, 2004], the format in which transition (reduction) steps are spec-

ified is significantly more restricted than the format of CBS rules. Most importantly, com-

pared to CBS, there is no notion equivalent to that of auxiliary semantic entity. In his thesis,

Bach Poulsen introduces a particular form of MSOS rules, and proves that refocussing is

valid when applied to specifications consisting only of rules in this form [Bach Poulsen, 2016].

Moreover, Bach Poulsen describes a mechanical transformation on small-step inference rules

that encodes refocussing directly into the rules [Bach Poulsen and Mosses, 2014a]. This

means that it is not necessary to implement refocussing as part of an interpreter. We refer

to this transformation as static refocussing. In this section we implement static refocussing

as part of the CBS to IML translation.

All of the funcons in beta-release are defined with rules referring to at most one semantic

178

entity, and all funcons, except atomic, are defined with rules that have at most one −→-

premise. Translating the rules with a single premise, we get IML rules of the form:

. . . Xi ;
∗ Yi Yi, e = E2 −→ X ′i, e = E′2 . . .

f (X1, . . . , Xi, . . . , Xn), e = E1 −→ f (X1, . . . , X
′
i, . . . , Xn), e1 = E′1

(MEDIUM)

(8.142)

(In the inference rules above, the ellipsis above the bars stand for arbitrary conditions other

than −→-transitions.) In what follows, we refer to rules of the form (8.142) as congruence

rules. Adopting the terminology of [Danvy and Nielsen, 2004], if a congruence rule is a

applicable to a configuration with program term t, then the rule decomposes t by pattern

matching it against the source of the rule’s conclusion. The target of the rule composes a

term t′ which differs only from t in that one immediate subterm g is replaced as the result of

executing the rule’s premise. If the premise is established via the application of an axiom,

we refer to g as a redex. Otherwise, g is decomposed so that one of its immediate subterms

is a redex or further decomposed, etc. This inductive process of finding a redex within a

term t is decomposition. The process of replacing the redex and composing a term otherwise

identical to t is recomposition.

The idea behind refocusing is that, if a term t1 transitions to t2 via decomposition and

recomposition with redex g1, replaced by g2, then subsequent decomposition of t2 would

select g2 as the next redex to be replaced, unless g2 is terminal. Instead of replacing g1 with

g2, we can therefore replace g1 with gn instead, if there is a computation of length at least

one from g1 to gn. By doing so, a potentially large amount of redundant decomposition

and recomposition steps can be avoided. There are at least two properties that a specifi-

cation must have to be sure that t2 will be decomposed by the same congruence rules that

decomposed t1. Firstly, the specification must be deterministic, guaranteeing that the same

congruence rules will be applied if they are still applicable. Secondly, the congruence rules

must still be applicable, which may not be the case when the values of semantic entities

changed. Our experiments with static (Section 8.8) and dynamic (§13.2.2) refocussing have

not revealed funcons for which these properties do not hold.

179

Premise translation Static refocussing is implemented by changing the way in which

−→-premises are translated to IML. If, without static refocussing, a premise of the form

X0, E1 = X1, . . . , En = Xn −→ Y0, E
′
1 = Y1, . . . , E

′
m = Ym is generated for a particular

CBS rule, then with static refocussing, the following premises are generated instead (with

X ′0 a fresh variable and all variables X ′0, Xi and Yi sequence variables):

X0, E1 = X1, . . . , En = Xn −→ X ′0

X ′0 99K Y0, E
′
1 = Y1, . . . , E

′
m = Ym

Operationally, our implementation of static refocussing is such that, in order to establish

a premise, one or more transitions are performed until the result is a value sequence, instead

of exactly one transition after which the result does not have to be a value sequence. The

premise is established if the resulting value sequence matches the pattern of the premise.

Any changes to the values held by entities are propagated between transitions.

For example, the following rule is generated with static refocussing for scope (as a

replacement for Rule (8.95)):

environments,Rho1
;
=⇒ty true〈〉 map-override(Rho1,Rho2) ;∗ Y

X ;∗ Z Z, environment = Y −→ X ′0 X ′0 99K X ′

scope(Rho1, X), environment =Rho0 −→ scope(Rho1, X
′), environment =Rho0

(MEDIUM)

(8.143)

Remarks on correctness Consider the IML specifications generated without and with-

out static refocussing from a particular collection of funcon definitions. Proving the sound-

ness of static refocussing involves proving that γ1 99K γ2 holds in one of these specifications

if and only if it holds in the other. In other words, with or without refocussing, programs

compute the same result and have the same side-effects according to both specifications.

That static refocussing is an optimisation can be shown by proving that the derivation of

γ1 99K γ2 in the refocussed specification is smaller (in the number of nodes) than the deriva-

tion of γ1 99K γ2 in the standard specification. (Because we assume that funcon definitions

are deterministic there is only one derivation of γ1 99K γ2 in either specification.)

180

8.8 Evaluation

By translating funcon definitions to IML, we have given an execution model to CBS rules

and obtained a method for executing funcon terms. This translation has been implemented

in the CBS compiler (package funcons-intgen). IML specifications have been generated

from most CBS files defining the funcons in beta-release. The generated specifications are

combined with IML files containing foundational declarations and rules such as those given

in Sections 8.1 and 8.6, files that implement built-in funcons and operations, and files that

contain queries. In total, there are over 460 queries confirming the behaviour of funcons.

Of the 460+ queries, 109 larger queries have been generated from tests developed by Peter

Mosses (written as configuration files, see Section 9.4). These queries are executed by giving

the IML interpreter (package iml-tools) all the required IML files. The IML specifications,

with and without static refocussing, are provided as supplementary material.

The queries execute successfully, with the expected output, both with and without static

refocussing. With static refocussing, parsing the IML files took 23 seconds. Subsequently

executing all queries, and printing derivations to output files, took another 4 minutes and 53

seconds. Without refocusing, parsing took 22 seconds, and executing queries and printing

derivations took 172 minutes and 31 seconds. This experiment ran on a laptop with quad-

core 2.4GHz processors and 8GiB of RAM, under Ubuntu 14.04.

181

Chapter 9

The Haskell Funcon Framework

References and Acknowledgements The material in this chapter has been presented

at the 27th Nordic Workshop on Programming Theory (NWPT 2015) and at the 15th In-

ternational Conference on Modularity (MODULARITY 2016) [Van Binsbergen et al., 2016]

and is derived from draft versions of [Van Binsbergen et al., 2019]. The Haskell code of this

chapter is joint work with Neil Sculthorpe.

Chapter 8 introduced funcons and CBS funcon definitions. By translating funcon defini-

tions to IML, we gave an execution model to CBS rules and obtained a method for executing

funcon terms.

This chapter discusses a second method for executing funcon terms: the Haskell Funcon

Framework (package funcons-tools), a specialised set of tools for defining and executing

funcons in Haskell. The framework has been used to verify the CBS specifications of ex-

ample languages by executing programs designed to test specific aspects of the language.

Section 13.2 provides experimental data to support the claim that the framework is suitable

for this purpose.

In the framework, a so-called micro-interpreter is defined for each funcon. The micro-

interpreters of arbitrary collections of funcons are freely combined. A funcon term inter-

preter for a language specified within CBS is obtained by combining the micro-interpreters

of the funcons used in the language’s specification. The CBS compiler can generate micro-

interpreters from CBS funcon definitions.

182

This chapter discusses some of the technical aspects of micro-interpreters, focussing on

their modularity. This chapter also explains how ambiguous patterns and type sequences

are handled, configuration files for defining implementation-specific funcons and unit-tests,

as well as the dynamic refocussing optimisation.

9.1 Funcon Modules

The Haskell Funcon Framework (package funcons-tools) contains the following modules:

• Funcons.EDSL exports helper functions that are used in the implementation of funcons.

For example, to modify or access semantic entities, or to test side-conditions.

• Funcons.Tools exports helper functions for composing funcon modules. A funcon

module is a Haskell module exporting three collections containing information about

funcon, data type, and semantic-entity definitions, respectively. Each funcon module

exports an interpreter, which is aware only of the components defined in the module.

• Funcons.Core, a funcon module containing the implementation of the funcons in the

reusable library. This includes all the funcons mentioned in this thesis, except the

funcons for HGMP, which are implemented by Funcons.MetaProgramming (see §9.5).

Funcon modules have two noteworthy properties. Firstly, they are independent and

do not need to import other funcon modules; they only need to import Funcons.EDSL,

Funcons.Operations (see §7.4), and Funcons.Tools. Secondly, funcon modules can be

freely composed: a module implementing funcons A and a module implementing funcons B

are composed without restrictions to form a module implementing funcons A and B. CBS

files are thus compiled individually, and the resulting modules can be composed as needed.

Moreover, once a module has been compiled, it can be linked as needed, without requiring

recompilation. This makes it possible to deliver the implementation of the reusable funcon

library as an isolated package. Enforcing these properties has been a leading principle

in the development of the Haskell funcon framework. For the purpose of illustration we

have compiled a contrived CBS file containing the definitions of environments, scope, and

returning. Figure 9.1 shows a fragment of the funcon module generated from this file. It

omits the functions that implement the behaviour of the funcons, e.g. stepEnvironments.

183

import Funcons.EDSL
import Funcons.Operations hiding (Values, libFromList)
import Funcons.Tools

main = mkMainWithLibraryEntitiesTypes funcons entities types

entities = []

types = typeEnvFromList
[("returning",DataTypeMembers "returning" []

[DataTypeConstructor "returned"

[TName "defined-values"] (Just [])])]

funcons = libFromList
[("environments",NullaryFuncon stepEnvironments)
, ("scope",NonStrictFuncon stepScope)
, ("returning",NullaryFuncon stepReturning)
, ("returned",StrictFuncon stepReturned)]

Figure 9.1: Excerpt of a funcon module for a contrived collection of CBS definitions.

We represent funcon terms using strings for the names of funcons in a data type, with

generic constructors for funcon application, constants (funcons with no arguments), and

literals (built-in values and types). A funcon module contains a funcon library mapping

funcon names to their implementation (funcons in Figure 9.1). Similarly, we use maps

to implement entity records, associating the names of entities with the values they hold.

Evaluating funcon terms can cause runtime errors because it involves searching in maps and

there are no static guarantees that the required entries are available. By using strings in

these ways we have gained the desired modularity, but lost static guarantees provided by a

Haskell compiler.

An alternative would have been the Data types à la carte technique by [Swierstra, 2008],

combining funcons defined in separate modules into a single data type with a constructor

for each funcon. Individual Haskell constructors for each funcon would provide stronger

correct-by-construction guarantees about the well-formedness of funcon terms. Several au-

thors [Day and Hutton, 2012, Wu et al., 2014] have used this technique for the specific pur-

pose of defining modular programming-language constructs in a Haskell setting.

Types are either built-in to CBS (e.g. integers and values), provided as reusable compo-

nents (e.g. environments and identifiers), or defined as part of a language specification. A

funcon module generated from a CBS file provides a funcon implementation for each type

184

and data-type constructor defined in the file (see funcons in Figure 9.1). In addition, a fun-

con module provides a type environment which relates the data types to their constructors

(types in Figure 9.1) and stores information about parameters. Funcon term interpreters

use the type environment for dynamic type checking.

9.2 CBS Rules

In Section 8.4 we described how most classes of semantic entities are implicitly propagated

in CBS rules. We achieve implicit propagation the Haskell Funcon Framework by work-

ing in a monad, and defining its return and bind operations such that they implement the

desired implicit propagation. A contextual entity corresponds to a reader monad, a mu-

table entity corresponds to a state monad, and an output entity corresponds to a writer

monad [Jones, 1995]. Input entities correspond to a restricted form of state monad (input

is always consumed in order, and each input can only be consumed once), and control-flow

entities correspond to a combination of a reader and a writer monad (except that only one

signal may be emitted in each control-flow entity at once; they do not form a monoid).

We define a data type MSOS that combines the five semantic-entity classes, omitting

the monad instance:

data MSOS a = MSOS (∀m . Interactive m ⇒
MReader m → MState m →

m (Either Exception a,MState m,MWriter))
data MReader = MReader Contextual ControlFlow (InputDefault m)
data MState m = MState Mutable (Input m)
data MWriter = MWriter ControlFlow Output
data Exception = ...

The type Contextual is the type of mappings from contextual entity names to values (ele-

ments of Values, import from Funcons.Operations), closely resembling an entity record.

The type Mutable is the type of mappings from mutable entity names to values and Output

from output entity names to lists of values. As such, we have avoided the need to use monad

transformers [Liang et al., 1995] to add additional entities: our MSOS monad is fixed. Us-

ing Haskell’s native support for monads, we can generate human-readable funcon code that

only refers to the entities explicitly mentioned in the funcon definition. As a consequence,

the code of a funcon is as modular and compositional as its CBS definition. Moreover, the

185

code is only recompiled if the CBS file in which the funcon is defined is regenerated. The

code for a funcon is formed by a sequence of statements in the MSOS monad for every rule

of the funcon. The statements can access or modify semantic-entity values, perform pattern

matching and substitution, and test side conditions and premises. The statements gener-

ated for a rule may raise several kinds of internal exceptions, each representing a particular

reason why the rule implemented by those statements is not applicable. For example, a

funcon can be applied to incorrect arguments (e.g. if the first argument of if-true-else was

not a Boolean), pattern matching may have failed, or a premise may not hold. To handle

failure, the MSOS monad contains the Exception component and backtracking is used to

try an alternative rule. If no rules are applicable to a particular term, i.e. all alternatives

raise an exception, then the term is stuck.

The MSOS monad stores extra information, including the funcon library, runtime op-

tions, and collected meta-data; but we elide those details here. The code for a funcon forms

a micro-interpreter that can be executed independently, given a funcon library with entries

for all funcons explicitly mentioned in the definition of the funcon. As an alternative to

input/output simulation, the MSOS monad also provides facilities for connecting input and

output entities to real console input/output, allowing a user to run a funcon program inter-

actively. Interactive input is enabled by the Interactive monad m appearing in the definition

of MSOS .

9.2.1 Context-free Rewriting

The rewrite relation ; is context insensitive; rewrites do not modify semantic entities. To

separate rewriting from computation steps we use a separate monad (not shown), which

does not provide access to the semantic entities. This guarantees, by construction, that

rewrites do not access semantic entities.

The properties of the rewrite relation are such that, operationally, it can be applied at

any time during execution anywhere in a term. Thus, funcon term interpreters are free

to perform rewriting whenever is most convenient or efficient. Experience has shown that

the choice of strategy to determine when rewrites are performed has a tremendous influ-

ence on the efficiency of funcon interpreters. A greedy rewriting strategy performs rewrites

immediately on every occurrence of a term, possibly resulting in redundant rewrites (e.g.

186

rewriting all arguments if-true-else). We choose to rewrite a term just before perform-

ing a computational step, and directly afterwards on the term resulting from the step, if

the step was successful. This strategy exhibits inefficiencies in combination with our back-

tracking approach. A rule may turn out to be inapplicable after some rewrites have been

performed. The rewrites are forgotten when backtracking selects the next rule to try. We

expect this problem is easy to avoid in a host language providing mutable references or

objects. Our Haskell implementation would benefit from graph reduction for sharing the

effects of rewrites [Peyton Jones, 1987].

9.2.2 Dynamic Refocussing

Directly implementing a small-step operational semantics as the transitive closure of the

computation-step relation is straightforward but inefficient. At each computation step, the

interpreter traverses the funcon term from the root to a subterm (sometimes called the

redex), ‘executes’ the subterm by replacing it, and reconstructs a (mostly identical) term

(as discussed in more detail in Section 8.7). Simultaneously, the values held by semantic

entities are maintained and possibly modified. This corresponds to constructing a derivation

tree in accordance to the I-MSOS rules (including the implicit congruence rules) of a CBS

language definition. The cost of each step is potentially linear in the size of the funcon term.

The refocussing optimisation, introduced by [Danvy and Nielsen, 2004], and discussed in

Section 8.7, overcomes this inefficiency.

Section 8.7 shows how refocussing can be implemented statically as part of the translation

from CBS rules to IML. We implemented refocussing in the funcon term interpreters of the

Haskell Funcon Framework as follows. When a redex r has been discovered, repeatedly

apply transition r as long as no signal is emitted. The resulting term r′ replaces r, which is

a value unless a signal has been emitted. When a signal was emitted, the redex should not

be further transitioned, as the signal needs to be handled further up the term. Typically,

the handler for a control-flow signal will then change the subterm that is next to be executed

(e.g. Rule (8.105) for handle-abrupt). The static refocussing implementation of Section 8.7

does not give a special treatment to signals, as signals cause termination in Chapter 8. In

§13.2.2 we demonstrate the significant effects of dynamic refocussing on running times.

187

9.3 Ambiguous Patterns and Types

In Chapter 8, two assumptions were made about funcon definitions in CBS: a single pattern

sequence does not contain multiple sequence variables and a type operator is only applied to

types with only single values as members (not sequences of values). Patterns and types that

violate these assumptions are ambiguous, i.e. a term sequence can match such a pattern

sequence in more than one way, and a value sequence can be shown to be a member of

such a type in more than one way. The first assumption does not hold for all funcons

currently in beta-release, most importantly left-to-right, as discussed in Section 8.5. In

Section 8.5 we also saw an example of an ambiguous type, in relation to environments,

for which straightforward disambiguation did not suffice. In this section, we summarise

the pattern matching algorithm of the Haskell Funcon Framework to show how funcon

term interpreters deal with such patterns. We also demonstrate that the pattern matching

algorithm can used for type checking with ambiguous types. The code given in this section

is simultaneously a simplification and a generalisation of the actual implementation, used

for illustrative purposes.

9.3.1 Pattern Matching with Sequence Variables

CBS patterns are regular patterns — as we find them in many functional programming

languages — with two optional forms of annotation. Variables can be annotated with a

type, e.g. X : booleans, specifying that X can only be bound to a value of type booleans.

Variables can also have a sequence annotation in the form of a superscript, e.g. X *, X +, or

X ?, specifying that X can be bound to ‘zero or more’, ‘one or more’, and ‘zero or one’ terms

respectively. Both forms of annotations can be combined, e.g. X + : values∗. The patterns

of the XML-centric functional language CDuce allow similar annotations on variables (and

patterns generally) [Benzaken et al., 2003].

Simple patterns The pattern matching algorithm of this section uses Wadler’s list-of-

successes method [Wadler, 1985] to capture the possibly many results of matching against an

ambiguous pattern. The core concept is a Matcher , a function given a term sequence (type

[Term]) and a set of current bindings (Bindings) returning a list of successful matches. Each

188

match is a pair ([Term],Bindings) containing an extended set of bindings and the terms

‘consumed’ by the matcher, a prefix of the input sequence.

type Matcher = [Term]→ Bindings → [([Term],Bindings)]

The type Matcher is similar to the type Parser of parser combinator expressions in Sec-

tion 5.2, and indeed, Wadler used parsing and pattern matching as examples of his list-of-

successes method [Wadler, 1985]. Wadler also suggested that his pattern matching algo-

rithm may be generalised and used for different purposes. Our extension with type checking

and type annotations is an example. We proceed by giving ‘elementary matchers’ and

‘matcher combinators’, reminiscent of Rhiger’s Functional Pearl [Rhiger, 2009]. Compared

to [Rhiger, 2009], our patterns are untyped, making it possible to attempt to match a term

and a pattern of different structures, although these attempts will certainly fail. With typed

patterns, it is possible to disallow such matching attempts statically. On the other hand,

Rhiger does not discuss patterns that match sequences of terms. Future work is required to

determine how sequence-matching patterns can be typed.

The first matcher we define is a matcher for a pattern consisting of just a variable (Var):

match var :: Var → Matcher
match var x [] env = [] -- no match, nothing to be consumed
match var x (t : ts) env = [([t], bind x [t] env)] -- single match, of length 1

bind :: Var → [Term]→ Bindings → Bindings -- adds a binding to a set of bindings

A sequence variable can consume all prefixes of a term sequence:

match seq var :: Var → Matcher
match seq var x ts env = map toRes (inits ts) -- inits from Data.List gives all prefixes

where toRes prefix = (prefix , bind x prefix env)

Types and annotations A type is a function from a term sequence to a Boolean so that

a term sequence ts is a member of the type ty when ty ts ≡ True.

type Type = [Term]→ Bool

Type annotations are implemented by a higher-order function that constructs a matcher

given a matcher and a type. The function runs the given matcher and filters its results to

accept only those results for which it holds that the consumed term sequence is a member

of the given type.

189

match ann :: Matcher → Type → Matcher
match ann p ty ts env = filter (ty ◦ fst) (p ts env)

When applied to a sequence variable, sequence operators can be seen as a types. For

example, as a type, the ? operator contains all term sequences of length zero or one:

starOp, plusOp, qmOp :: Type
starOp ts = True
plusOp ts = length ts > 1
qmOp ts = length ts 6 1

The pattern X + is then implemented as follows, using strings as variables:

example1 = match ann (match seq var "X") plusOp

Disambiguation A matcher is ambiguous if there are term sequences which it matches

in more than one way, i.e. term sequences for which it returns a list containing more than

one result. Reducing the ambiguity of a matcher is filtering the result lists it produces,

so annotations can be seen as ambiguity reduction operators. Disambiguating a matcher

means reducing its ambiguity such that it returns exactly one result (or no result if the

original matcher gives no result). We let the order of a result list determine a preference

between results, in descending order, so that the least preferred result is at the end of the

list. Disambiguation is then simply selecting the first result of a result list, if there is any.

The functions match longest and match shortest sort the result list of a given matcher, so

that the results that consume longer respectively shorter term sequences are preferred.

match sort :: (Int → Int → Ordering)→ Matcher → Matcher
match sort sorter p ts env = sortBy (sorter ‘on‘ (length ◦ fst)) (p ts env)

match longest ,match shortest :: Matcher → Matcher
match shortest = match sort compare -- sortBy compare gives ascending lists
match longest = match sort (flip compare) -- sortBy (flip compare) gives descending lists

Function matches attempts to match a term sequence against a pattern sequence:

matches :: [Term]→ [Matcher]→ Bindings → Maybe Bindings
matches ts ps env = case foldr match seq match final ps ts env of

[] → Nothing
((, env):)→ Just env -- disambiguation

where
match seq :: Matcher → Matcher → Matcher
match seq p q ts env = try (p ts env)

where try [] = []

190

try ((ts ′, env ′) : rest) = case q (drop (length ts ′) ts) env ′ of
[] → try rest -- backtracking
res → [(ts ′ ++ ts ′′, env ′′) | (ts ′′, env ′′)← res] -- disambiguation

match final :: Matcher
match final [] env = [([], env)]
match final = []

The combinator match seq combines matchers, performing left-biased disambiguation, i.e.

match seq p q considers the preferences of p before the preferences of q . A term sequence is

only matched if the pattern sequence consumes all terms. This follows from the definition

of the match final matcher, which only succeeds if it is given the empty sequence.

When match longest and match shortest are applied to sequence variables (applications

of match seq var) we obtain matchers that behave similarly to the greedy and ungreedy

sequence capture variables of CDuce [Benzaken et al., 2003] respectively.

Patterns depending on bindings None of the matchers we have given so far actually

inspects the given set of bindings. However, by propagating the bindings this way, it is

possible to implement patterns that perform substitution. For example, the following alter-

native definition of match var can be useful when implementing patterns in which a variable

can occur multiple times.

match var ′ :: Var → Matcher
match var ′ x [] env = []
match var ′ x (t : ts) env = case bound x env of -- is there a binding for x?

Nothing → [([t], bind x [t] env)] -- no, behave as match var
Just [t ′] | t ≡ t ′ → [([t], env)] -- yes, then succeed if equal to [t]

→ [] -- and fail otherwise

9.3.2 Type Checking with Ambiguous Types

In the discussion so far, we skipped over the implementations of built-in and user-defined

CBS types and have determined that type checking is simply applying a type (as a function)

to a term sequence to detect membership. In the examples that follow we use the following

simple types:

ty values, ty booleans, ty integers :: Type
ty values = ...
ty booleans = ...
ty integers = ...

191

Type operators (see §8.1.2) such as type union |, and type repetition with ∧ and +, are

implemented as higher-order functions over types. For example, type-complement (type-

negation) is implemented as follows:

ty neg ty ts = not (ty ts)

As another example, applied to a type t, the operator ? returns a type which contains

the empty sequence and all members of type t.

ty opt :: Type → Type
ty opt ty = ty union null ty

ty union :: Type → Type → Type
ty union ty1 ty2 ts = ty1 ts ∨ ty2 ts

ty inter :: Type → Type → Type
ty inter ty1 ty2 ts = ty1 ts ∧ ty2 ts

A type sequence may consist of types that contain the empty sequence or sequences of

length greater than one. The IML Rules (8.19) and (8.20) given in §8.1.2 are problematic

because they assume each type in a type sequence has only single terms as members. The

following implementation of type sequences corresponds closely to these problematic rules:

ty seq ′ :: [Type]→ Type
ty seq ′ tys ts = and $ zipWith provide tys ts

where provide ty t = ty [t]

This definition checks each term and type in the given sequences pairwise. As a result, if

the singleton term sequence true is checked with type sequence (integers?,booleans), then

true is checked to be of type integers?, which fails, and the type booleans is ignored.

Alternatively, we take advantage of the pattern matching machinery to implement type

sequences (noBindings is the empty set of bindings):

ty seq :: [Type]→ Type
ty seq tys ts = isJust (matches ts ps noBindings)

where ps = zipWith toPat [1 . .] tys
where toPat i ty = match ann (match seq var ("X" ++ show i)) ty

ty power :: Type → Int → Type
ty power ty n = ty seq (replicate n ty)

The main insight is: given a term sequence t1, . . . , tm, and a type sequence τ1, . . . , τn, we

can use sequence variables the find all possible length n partitionings t∗1, . . . , t
∗
n of t1, . . . , tm

for which hold that t∗i is a member of τi, for all 1 6 i 6 n. If at least one such a partitioning

exists, then the given term sequence is a member of the give type sequence.

192

Also challenging are the type operators * and +. Previously we considered Ty?, for any

type Ty , as equivalent to # | Ty , where # is the type of the empty sequence. Similarly,

we can view Ty* as equivalent to # | Ty | (Ty ,Ty) | (Ty ,Ty ,Ty) | . . . of which a direct

implementation would result in nontermination, as there are infinitely many alternatives to

try. Since there are infinitely many alternatives, compared to type sequences, we have to

find n together with a length n partitioning of the given term sequence. As shown by the

code below, we do so by recursively consuming prefixes of the given term sequence using

pattern matching, guaranteeing that each consumed prefix is a member of Ty . This is done

until all terms have been consumed. If n recursive calls consume all input terms, then a

length n partitioning exists.

ty star :: Type → Type
ty star ty [] = True
ty star ty ts = select $ matcher ts noBindings

where matcher = match longest (match ann (match seq var "X") ty)
select [] = False
select (([],):) = False
select ((ts ′,) : rest)
| ty star ty (drop (length ts ′) ts) = True
| otherwise = select rest -- backtracking

Backtracking ensures that all possible partitionings are tried. Nontermination is a risk if

the type given to ty star contains the empty sequence. To avoid nontermination, we use

match longest in the definition, ensuring that no input is consumed only after all prefixes

have been tried. We know that type checking fails in this case, because the ordering tells us

that the given type only matches the empty prefix of the current input, no further attempts

will consume any input, and the current input is not empty.

The implementation of + is in terms of ty star :

ty plus :: Type → Type
ty plus ty ts = select $ matcher ts noBindings

where matcher = match longest (match ann (match seq var "X") ty)
select [] = False
select ((ts ′,) : rest)
| ty star ty (drop (length ts ′) ts) = True
| otherwise = select rest

There are two differences in the definition of ty plus compared to ty star . Firstly, a par-

titioning of the input must be found that is of at least length one, corresponding to the

interpretation of Ty+ as Ty | (Ty ,Ty) | (Ty ,Ty ,Ty) | . . . (which may still consume no

193

terms, as shown by the type ty plus (ty opt ty booleans) that contains the empty sequence).

Secondly, there is no risk of nontermination as ty star is not recursive (select is recursive,

but there is only a finite amount of prefixes to consider.)

We now have all the necessary implementations to translate arbitrary CBS patterns.

Only sequence variables can match more than one term and require disambiguation. The

chosen strategy is to match sequence variables with annotation greedily and those without

annotations lazily. The patterns X + : booleans∗ and Y ? are thus translated to:

example2 = match longest $
match ann (match ann (match seq var "X") plusOp) (ty star (ty booleans))

example3 = match shortest $ match ann (match seq var "Y") qmOp

9.4 Configuration Files

Funcon term interpreters are easily configured by command line flags or configuration files.

For example, a user can restrict the number of computational steps performed. This is useful

to determine which steps lead up to unwanted behaviour (arising from an invalid program

or an incorrect specification). The interpreters can print debugging information such as

the values of semantic entities, and meta-data such as the number of computational steps

performed and the number of rewrites performed. The documentation of Funcons.Tools

contains an exhaustive enumeration of all configuration options.

Configuration files offer a limited method for defining funcons. A particular use case is

to define implementation-specific funcons representing a particular implementation choice.

Language manuals often leave room for language implementations regarding certain as-

pects of the language. For example, the number of bits used in the binary representation

of different forms of integers. The following excerpt shows the definition of a number of

implementation-specific funcons in a configuration file:

funcons {

implemented-floats-format = binary64;

implemented-integers-width = 31;

implemented-characters = unicode-characters;

}

Configuration files also offer a simple but effective method for defining unit tests. A

configuration file for a unit test contains an initial term to be evaluated and the expected

194

outcome of evaluating the term. The expected outcome consists of a result term, as well as

the values of some semantic entities. The following excerpt shows an example of a unit test:

general{

funcon-term: give(read,sequential(print(given),print(given)));

}

inputs{

standard-in: 2,3; // provides 2 and 3 as input

}

tests{

result-term: null; // expects null as the result value

standard-out: 2,2; // expects 2 is printed twice

standard-in: 3; // expects 3 as remaining input

}

The differences between expected and actual outcome are reported to the standard out-

put. A successful unit test is silent. Entities not mentioned in a unit test are treated

differently depending on the class of the entity. For example, any value for store is consid-

ered acceptable outcome, if the tests does not mention store. However, a raised abrupted

signal is considered a violation if the test did not mention abrupted.

9.5 Homogeneous Generative Meta-Programming

Module Funcons.MetaProgramming implements the funcons for HGMP according to their

definitions in [Van Binsbergen, 2018] and similar to their implementations in Section 8.6.

The module contains manual implementations of the ⇑ and ⇓ relations and exports man-

ual implementations of eval, code, meta-up, meta-down, meta-let, and the compiletime

relation ⇒.

With the BNF combinators of the gll package, Funcons.MetaProgramming has been

used to implement the HGMP-extended λv language of [Van Binsbergen, 2018]. As a code

example of this implementation, we give the funcon translation of the most interesting

operator of λv, !x, which enables sharing of runtime AST evaluation:

sem splice id x = give [eval [current value [bound [x]]]
, sequential [assign [bound [x], ast value [values , given]]

, given]]

The identifier x is expected to be bound to a variable which is assigned an AST (as specified

by the usage of bound and current value). The AST is transformed to code and evaluated

195

to a value v (with eval). The expression !x evaluates to v and assigns v, as a side-effect, to

the variable to which x is bound. The value v (denoted by given) is first assigned (assign)

and then produced as a result (last argument of sequential). The result is that the value

v is shared with subsequent occurrences of !x. The origin of funcon term constructors such

as give and eval is discussed in Section 10.2.

196

Part III

Evaluation

197

Chapter 10

Tools

Parts 1 and 2 of this thesis describe techniques for defining and executing reusable compo-

nents. These techniques are implemented in practical tools that are available as part of the

supplementary material of this thesis. The gll package implements BNF combinators on

top of an implementation of FUN-GLL. The funcons-tools package delivers the Haskell

Funcon Framework with tools for constructing and executing funcon terms. In this part

of the thesis, we evaluate the tools provided by these packages, examining their usability

and runtime efficiency. In Chapters 11 and 12 we use these tools to formally describe two

programming languages in the form of case studies. We reflect on the case studies in Sec-

tion 13.3 and present empirical data on the runtime efficiency of the tools in Sections 13.1

and 13.2. In this chapter we introduce some of the relevant functions of these tools, required

for the case studies.

10.1 Functions for Describing Syntax

In this section we show some of the functions exported by the GLL.Combinators.Interface

module of the gll package. For a comprehensive enumeration we refer to the documentation

provided with the package. The GLL.Combinators.BinaryInterface module exports the

same functions as GLL.Combinators.Interface. The difference between the two modules

is that the functions of GLL.Combinators.Interface have flexible types based on type-

198

classes, whereas the functions of GLL.Combinators.BinaryInterface coerce all combinator

expressions to symbol expressions, thus performing grammar binarisation, as discussed in

§5.3.4.

A syntax description consists of one or more top-level definitions of symbol expressions,

which may be mutually recursive. Each of these symbol expressions describes the syntax of

a language, for which the grammar can be obtained by applying the grammarOf function:

grammarOf :: (Show t ,Parseable t , IsSymbExpr s)⇒ s t a → Grammar t
parse :: (Show t ,Parseable t , IsSymbExpr s)⇒ s t a → [t]→ [a]

Applying parse to a symbol expression returns a parser for the language described by the

symbol expression. Variations of parse exists that accept configuration options as arguments.

In §3.2.3, we discussed the need to insert a unique nonterminal name when defining a

recursive, parameterised combinator so that the name is somehow based on its parameters.

The function mkNt is introduced for this purpose:

mkNt :: (Show t ,Ord t , IsSymbExpr s)⇒ s t a → String → String

The function returns a unique nonterminal name by combining the given string (second

argument) and the nonterminal name of the start symbol of the grammar generated from

the given symbol expression (first argument), assuming that the given string has not been

used for this purpose before. The definition of multiple exemplifies how mkNt is used:

multiple :: (Show t ,Ord t , IsSymbExpr s)⇒ s t a → SymbExpr t [a]
multiple p = let fresh = mkNt p "*"

in fresh 〈::=〉 (:) 〈$$〉 p 〈∗∗〉 multiple p 〈||〉 satisfy []

To explain syntax descriptions intuitively we say that a symbol expression s ‘recognises’

sentences of the form x as a short-hand for “the language described by s contains sentences

of the form x”. Similarly, we refer to the sentences of the language described by a symbol

expression s as “s elements”. Thus, multiple p recognises sequences of p elements, where p

is an arbitrary symbol expression. The intention is that the nonterminal names generated

by mkNt for multiple x and multiple y are different if x and y are different (but ideally are

equal if x and y refer to the same symbol expression).

199

10.1.1 Tokens

GLL.Combinators.Interface exports certain functions that create symbol expressions,

given a token of type Token (defined as in Section 5.1), that recognise sentences match-

ing this token. For example:

int lit :: SubsumesToken t ⇒ SymbExpr t Int
float lit :: SubsumesToken t ⇒ SymbExpr t Double
id lit :: SubsumesToken t ⇒ SymbExpr t String -- identifiers
alt id lit :: SubsumesToken t ⇒ SymbExpr t String -- alternative identifiers
string lit :: SubsumesToken t ⇒ SymbExpr t String
keyword :: SubsumesToken t ⇒ String → SymbExpr t String -- reserved keywords
keychar :: SubsumesToken t ⇒ Char → SymbExpr t Char -- reserved characters
token :: SubsumesToken t ⇒ String → SymbExpr t String -- user-defined tokens

10.1.2 Basic Syntax

GLL.Combinators.Interface exports several reusable combinators, of which we have seen

multiple as an example. A number of variatons of multiple exist. For example, multiple1 p

recognises sequences of p elements of length at least one. As another example, some p and

many p describe the same language as multiple p, but disambiguate differently. Namely,

some p prefers a smaller number of p elements, whereas many p prefers a larger number.

For every variation of multiple there is a function with a similar name extended with SepBy

(multipleSepBy , multipleSepBy1 , manySepBy , etc.) which receives a separator to occur

between elements as an additional argument.

A more advanced variation of multiple does not simply return a list of semantic values,

with one value for each repetition, but combines the semantic values, in a way similar to

Haskell’s foldr .

foldr multiple :: (IsSymbExpr s,Parseable t)⇒ s t (a → a)→ a → BNF t a

The semantic value (a function) of the symbol expression argument determines how the

semantic value of the rest of the sequence is extended. The second argument is a default

value, taken as the semantic value of the end of the sequence.

As demonstrated by the case studies of Chapter 11 and 12, this combinator is particularly

useful to describe the syntax and semantics of top-level definitions and commands. As a

simpler example, consider the following combinator expression:

200

multiple ints :: SymbExpr Token Int
multiple ints = "ints" 〈:=〉 foldr multiple odd or even 0

where odd or even :: SymbExpr Token (Int → Int)
odd or even = "odd-or-even" 〈:=〉 add 〈$$〉 int lit
add i total | even i = i + total

| otherwise = total

The language described by multiple ints is that of sequences of numbers. When a sentence

is interpreted, the result is the sum of all the even numbers appearing in the sentence.

The symbol expression optional p recognises the sentences with a single p element and

the empty sentence. The empty sentence is interpreted as Nothing , whereas a sentence

consisting of a single p element is interpreted as Just v , where v is the semantic value of

the element of p.

optional :: (Show t ,Ord t , IsSymbExpr s)⇒ s t a → SymbExpr t (Maybe a)
optionalWithDef :: (Show t ,Ord t , IsSymbExpr s)⇒ s t a → a → SymbExpr t a

The combinator optionalWithDef receives an additional argument, taken as the interpreta-

tion of the empty sentence instead of Nothing .

The combinator within of §3.1.4 is implemented alongside several specialisations:

within :: (Show t ,Ord t , IsSymbExpr s)⇒
SymbExpr t a → s t b → SymbExpr t c → SymbExpr t b

parens :: (Show t ,Ord t ,SubsumesToken t , IsSymbExpr s)⇒ s t b → SymbExpr t b
braces :: (Show t ,Ord t ,SubsumesToken t , IsSymbExpr s)⇒ s t b → SymbExpr t b
brackets :: (Show t ,Ord t ,SubsumesToken t , IsSymbExpr s)⇒ s t b → SymbExpr t b
angles :: (Show t ,Ord t ,SubsumesToken t , IsSymbExpr s)⇒ s t b → SymbExpr t b

10.1.3 Expression Grammars

A common example in programming language literature is that of an expression grammar,

because expressions are ubiquitous and their formal description poses several challenges.

For example, grammars that capture the abstract syntax of expressions directly are highly

nondeterministic and ambiguous. With the BNF combinators, the syntax of expressions

can be described in this direct way. For example, consider the following description of the

syntax (and semantics) of basic arithmetic expressions:

pExpr :: SymbExpr Token Int
pExpr = "Expr" 〈::= ((−) 〈$$〉 pExpr 〈∗∗ keyword "-" 〈∗∗〉〉〉 pExpr

〈||〉 (+) 〈$$〉 pExpr 〈∗∗ keyword "+" 〈〈〈∗∗〉 pExpr)

201

〈||〉 (div 〈$$〉 pExpr 〈∗∗ keyword "/" 〈∗∗〉〉〉 pExpr
〈||〉 (∗) 〈$$〉 pExpr 〈∗∗ keyword "*" 〈〈〈∗∗〉 pExpr)
〈||〉 (int lit 〈||〉 parens pExpr)

The usage of 〈∗∗〉〉〉 in the alternatives for subtraction and division specifies that these

operators are left-associative, whereas addition and multiplication are specified to be right-

associative through the use of 〈〈〈∗∗〉. Both these operators are variants of 〈∗∗〉 performing

disambiguation by preferring the longest or shortest match respectively. The alternatives

are given precedence in top-to-bottom order, following the usage of 〈::=, a variant of 〈::=〉,

so that multiplication and division have a higher priority than addition and subtraction.

Alternatives are grouped to specify that, for example, addition and subtraction have equal

priority.

To simplify specifying the associativity and priorities of operators, we introduce operator

tables, in which these aspects of operators are specified more directly.

type OpTable e = Map Double [(String ,Fixity e)]
data Fixity e = Prefix (String → e → e) -- prefix operator with semantics

| Infix (e → String → e → e) Assoc -- infix operator with semantics
data Assoc = LAssoc -- left-associative

| RAssoc -- right-associative
| NA -- associativity not specified

fromOpTable :: (SubsumesToken t ,Parseable t , IsSymbExpr s)⇒
String → OpTable e → s t e → SymbExpr t e

An operator table maps priority levels of type Double to table entries, which determine the

keyword that identifies an operator, whether the operator is a prefix or an infix operator,

and, if it is an infix operator, whether it is left- or right-associative (if any). The function

fromOpTable generates a symbol expression capturing the desired expression grammar, given

a nonterminal name, an operator table, and a symbol expression. The symbol expression

argument is used for the operators’ operands. For example, the expression grammar defined

earlier can also be defined as follows:

operator syntax = opTableFromList
[(1, [("+", Infix sem add RAssoc), ("-", Infix sem sub LAssoc)])
, (2, [("*", Infix sem mult RAssoc), ("/", Infix sem div LAssoc)])]
where sem add x y = x + y

sem sub x y = x − y
sem mult x y = x ∗ y
sem div x y = x ‘div ‘ y

pExpr ′ :: SymbExpr Token Int

202

pExpr ′ = "Expr’" 〈::= fromOpTable "operators" operator syntax pExpr ′

〈||〉 (int lit 〈||〉 parens pExpr ′)

10.2 Functions for Building Funcon Terms

In this section we consider some of the functions exported by the funcons-tools package.

For a comprehensive enumeration we refer to the documentation provided with the package.

10.2.1 Constructing Funcon Terms

In the Haskell Funcon Framework, funcon terms are of type Funcons, of which values are

constructed by applying so-called ‘smart constructors’. Smart constructors are regular func-

tions yielding datatype values. They are typically used to make datatypes abstract, hid-

ing details of the chosen representation. The modules Funcons.EDSL, Funcons.Core, and

Funcons.MetaProgramming export smart constructors for building funcon terms without

revealing the details of the Funcons datatype. There is a smart constructor for each funcon

in the library of funcons provided with CBS, generated by the CBS compiler. These smart

constructors produce a funcon term given a list of funcon terms. As discussed in §8.1.5,

strict, non-variadic funcons may be applicable to a different numbers of arguments then

their arity suggests, as these arguments may rewrite to a sequence of the right length. We

choose to treat all funcons equally in this regard, and give them all the general but uninfor-

mative type [Funcons]→ Funcons. As examples, consider the following smart constructors,

generated for the funcons sequential and if-true-else:

sequential :: [Funcons]→ Funcons
if true else :: [Funcons]→ Funcons

The names of the smart constructors are identical to the funcons, except that hyphens are

replaced by underscores, and they they have a trailing underscore to avoid overlap with

other functions.

Built-in types, values and value operations are implemented in the funcons-values

package. Smart constructors for built-in value operations have been developed manually and

are exported by Funcons.Core in the same way as generated smart constructors. Similarly,

each built-in type has a smart constructor, for example:

203

values :: Funcons -- builds terms of type types
lists :: [Funcons]→ Funcons -- builds terms of type types

Nullary built-in smart constructors, such as values above, do not receive arguments

The funcons-values package uses Haskell values to represent the different types of

values of CBS. There are smart constructors to build funcon terms from Haskell values, for

example:

int :: Int → Funcons -- of type integers
bool :: Boolean → Funcons -- of type booleans
string :: String → Funcons -- of type strings
env fromlist :: [(String ,Funcons)]→ Funcons -- of type maps(strings, values)

The function env fromlist builds environments given association lists in which strings (con-

verted to strings/identifiers) are associated with funcon terms (which will be evaluated).

This function is useful to construct an initial environment under which programs are exe-

cuted, or to implement standard libraries, as shown by the Mini case study.

10.2.2 Executing Funcon Terms

The Funcons.Tools module exports functions for executing funcon terms, building funcon

term interpreters, and composing funcon modules (see Section 9.1). The function run ::

[String] → Maybe Funcons → IO () is given a list of command line arguments and an

optional1 funcon term for execution. The output is largely dependent on the command line

arguments. The documentation of funcons-tools explains which command line options

are available. Function runWithExtensions is a variation of run which receives additional

funcon module components as arguments: funcon implementations, entity declarations, and

type declarations. This is useful to extend the default funcon term interpreter, which only

has implementations of the funcons provided with CBS, with language specific funcons,

entities, and types.

The package funcons-tools builds an executable runfct , which accepts a configuration

file (perhaps containing unit tests, see Section 9.4) or a file containing a funcon term as one

of its command line arguments. As examples, consider the command line interactions on

the next page.

1Optional, because a funcon term may also be provided as one of the command line arguments.

204

tmp/ ./runfct --funcon-term "initialise-giving give(3,sequential(print(integer-add

(1,given)),throw(given)))"

Result:

no-given(give(3,stuck))

Control Entity: abrupted

thrown(3)

Output Entity: standard-out

4

tmp/ cat example.fct

initialise-giving

give(3,sequential(print(integer-add(1,given)),throw(given)))

tmp/ ./runfct example.fct

Result:

no-given(give(3,stuck))

Control Entity: abrupted

thrown(3)

Output Entity: standard-out

4

tmp/ cat example_test.config

general {

funcon-term: initialise-giving

give(3,sequential(print(integer-add(1,given)),throw(given)));

}

tests {

result-term: null-value;

standard-out: [4];

}

tmp/ ./runfct example_test.config

expected result-term: null-value

actual result-term: no-given(give(3,stuck))

unexpected abrupted: thrown(3)

205

Chapter 11

Case Study - Mini

Mini is a basic procedural programming language with arrays, exceptions, recursive proce-

dures, and a check for uninitialised variables. The following program computes the first n

Fibonacci numbers with dynamic programming and highlights most of the features of Mini:

1 procedure main (var n) {
2 var memo;
3 memo = empty array (n+1);
4 memo [0] = 0 ;
5 memo [1] = 1 ;
6 memo [2] = 1 ;
7 procedure f i b (var x)
8 begin
9 i f (x <= 0) then return 0 ;

10 i f (not (null memo[x]))
11 then return memo[x] ;
12 else
13 begin # compute the v a l u e and memoise i t
14 memo[x] = f i b (x−1) + f i b (x−2);
15 return memo[x] ;
16 end
17 end
18 var i ;
19 for i = 1 ; i <= n ; i = i + 1 ;
20 begin
21 print (f i b (i)) ;
22 end
23 }
24 main (8) ;

206

Mini has several program constructs, categorised into expressions, commands, and decla-

rations. In the next sections we explain each construct informally and define the syntax and

semantics of each construct formally with the tools discussed in Chapter 10. We begin by

listing all constructs, giving the symbol expressions that capture the syntax of expressions,

commands, and declarations.

syn expr = "expressions" 〈:= syn ops -- prefix and infix operators
〈||〉 syn parens -- grouped expressions
〈||〉 syn literals -- literal values
〈||〉 syn ident -- identifiers
〈||〉 syn proc -- procedure invocation
〈||〉 syn null -- testing variable initialisation
〈||〉 syn array -- array construction
〈||〉 syn array idx -- array indexing

syn command = "commands" 〈:=〉 syn cmdexpr -- expressions as commands
〈||〉 syn print -- printing output
〈||〉 syn assign -- variable assignment
〈||〉 syn block locals -- code blocks
〈||〉 syn ite -- if-then-else
〈||〉 syn while -- while-loops
〈||〉 syn for -- for-loops
〈||〉 syn throw -- throwing exceptions
〈||〉 syn trycatch -- catching exceptions
〈||〉 syn return -- returning values

syn decl = "declarations" 〈:=〉 syn vardecl -- variable declarations
〈||〉 syn procdecl -- procedure declarations

11.1 Basic Expressions

Mini expressions evaluate to integers, booleans and strings. Integers are written as a non-

empty sequence of digits. The sequence of characters -123 is interpreted as the application

of the prefix operator − to the integer 123. Boolean values are written as either true or

false. Strings are any sequence of characters in between double quotes. For a double quote

to appear in a string, it has to be escaped using ‘\’.

syn literals = "literals"

〈:=〉 int 〈$$〉 int lit -- non-empty sequence of digits
〈||〉 bool True 〈$$ keyword "true"

〈||〉 bool False 〈$$ keyword "false"

〈||〉 string 〈$$〉 string lit -- characters within quotes

207

operator semantics =
[("built-in +", infix op [integer add [given1 , given2]])
, ("built-in -", infix op [integer subtract [given1 , given2]])
, ("built-in minus", prefix op [integer subtract [int 0, given]])
, ("built-in *", infix op [integer multiply [given1 , given2]])
, ("built-in /", infix op [

if true else [is equal [int 0, given2]
, throw [string "division-by-zero"]
, integer divide [given1 , given2]]]

)
, ("built-in not", prefix op [not [given]])
, ("built-in !", prefix op [not [given]])
, ("built-in ==", infix op [is equal [given1 , given2]])
, ("built-in !=", infix op [not [is equal [given1 , given2]]])
, ("built-in <", infix op [is less [given1 , given2]])
, ("built-in <=", infix op [is less or equal [given1 , given2]])
, ("built-in >", infix op [is greater [given1 , given2]])
, ("built-in >=", infix op [is greater or equal [given1 , given2]])
, ("built-in ^", infix op [string append [given1 , given2]])
]

infix op body = curry [prefix op body]
prefix op body = function [abstraction body]

given1 = first [tuple elements [given]]
given2 = second [tuple elements [given]]

Figure 11.1: Mini’s built-in procedures and their implementations as functions.

Operators Infix operators have two operands evaluated in left to right order. Prefix

operators have a single operand.

sem infix e1 op e2 = apply [apply [bound built in op, e1], e2]
sem prefix op e1 = apply [bound built in op, e1]

bound built in op = bound [string append [string "built-in ", string op]]

Operators are built-in procedures: at runtime a binding is active that binds a unique

identifier (e.g. "built-in +" for +) to the body of a procedure. The procedure receives the

values obtained by evaluating the operands and returns a result value. The precise bindings

that are active for each operator are given in Figure 11.1.

An infix operator is written between two expressions and may be left-associative, right-

associative or both. A prefix operator is written before an expression.

Operators have a relative precedence, determining which operator applications are evalu-

208

ated first. The fixity, precedence, and associativity of each operator are listed in the operator

table given Figure 11.2 (operator tables are discussed in 10.1.3).

operator syntax =
[(0, [("not",Prefix sem prefix)])
, (1, [("==", Infix sem infix LAssoc), ("!=", Infix sem infix LAssoc)])
, (2, [("<", Infix sem infix LAssoc), ("<=", Infix sem infix LAssoc)

, (">", Infix sem infix LAssoc), (">=", Infix sem infix LAssoc)])
, (3, [("+", Infix sem infix LAssoc), ("-", Infix sem infix LAssoc)

, ("^", Infix sem infix LAssoc)])
, (5, [("*", Infix sem infix LAssoc), ("/", Infix sem infix LAssoc)])
, (9, [("!", Prefix sem prefix) , ("-", Prefix sem minus)])
]

syn ops = fromOpTable "operators" (opTableFromList operator syntax) syn expr lit
sem minus e1 = sem prefix "minus" e1

Figure 11.2: The precedence, fixity and associativity of Mini’s operators.

Parentheses are used to group expressions.

syn parens = parens syn expr

11.2 Variables

Identifiers bind variables or procedures. Variables have values assigned to them. The

same value can be assigned to multiple variables and multiple identifiers can bind the same

variable. Bindings are temporary: they become active at a declaration site, and expire at

the end of a block of code. Assignments do not expire (but a garbage collector may flush

variables which are no longer bound). Bindings can be overwritten by binding the same

identifier to a different variable or procedure. Assignments can be overwritten by assigning

a different value to the same variable. The details of these concepts are discussed in this

section. An identifier is a non-empty sequence of alphabetical characters and underscores.

Variable declarations Variable declarations are executed to activate a binding from an

identifier to a variable. A variable declaration is written by the keyword var followed by an

identifier and a semicolon.

209

syn vardecl = "var-decl" 〈:=〉
sem vardecl 〈$$ keyword "var" 〈∗∗〉 syn id 〈∗∗ keychar ’;’

syn id = string 〈$$〉 id lit -- alphabetical characters and underscores

Executing a variable declaration involves creating a new, uninitialised variable as a side-

effect. The main result of executing a declaration is the activation of a binding: the identifier

is bound to the newly created variable.

sem vardecl i = bind [i , allocate variable [values]]

Expressions A Mini expression that evaluates to a variable is referred to as an l-value

expression. There are two forms of l-value expressions. The first comprises a single identifier:

syn ident = sem var 〈$$〉 syn id
sem var id = bound [id]

The second type of l-value expressions is introduced in Section 11.6.

If an l-value expression e occurs in a context where a value is expected, the variable to

which e evaluates is dereferenced.

syn expr lit = ensure lit 〈$$〉 syn expr
ensure lit e1 = else [current value [e1]

, sem throw "uninitialised-reference-component"]

A Mini expression that evaluates to a (non-variable) value is referred to as an r-value ex-

pression. For example, the expression x+y is an r-value expression, and the subexpressions

x and y are r-value expressions as well.

Mini programs in which an identifier occurs in a place where it is not bound are not

valid. If an expression is evaluated in which an identifier is bound to an uninitialised

variable, then the "uninitialised-reference-component" exception (see Section 11.5) is

raised. Programs in which r-value expressions occur in a context where an l-value expression

is expected are not valid.

A programmer can check whether a variable is initialised by writing null e, where e

is an l-value expression. This Boolean expression evaluates to true if e evaluates to an

uninitialised variable and false otherwise.

syn null = sem null 〈$$ keyword "null" 〈∗∗〉 syn expr
sem null e1 = else [sequential [effect [assigned [e1]], bool False], bool True]

For example, the following program prints true twice:

210

1 var x ;
2 print (null x) ; # p r i n t s t r u e
3 x = 1 ;
4 print (not (null x)) ; # p r i n t s t r u e

11.3 Basic Commands

Commands are executed for their effects: printing values and mutating the assignment of

simple or composite variables (see Section 11.6).

The print command is written as the keyword print followed by an r-value expression

and a semicolon.

syn print = sem print 〈$$ keyword "print" 〈∗∗〉 syn expr lit 〈∗∗ keychar ’;’

The expression is evaluated and its values is translated into a string. The string is extended

with the newline character and printed to the standard output.

sem print e1 = print [string append [mini show [e1] -- defined in Section 11.8
, string "\n"]]

An assignment is an l-value expression followed by the =-operator and an r-value ex-

pression followed by a semicolon.

sem assign e1 e2 = assign [e1, e2]
syn assign = "assignment" 〈:=〉 sem assign 〈$$〉

syn expr 〈∗∗ keychar ’=’ 〈∗∗〉 syn expr lit 〈∗∗ keychar ’;’

For example, x = 3+y; is a valid assignment, but x<0 = 3+y; is not, because x<0 is not

an l-value expression.

Mini expressions may have side-effects when they involve procedure invocation (see Sec-

tion 11.4). An expression can be evaluated for its effects only, by executing the expression

as a command. An r-value expression followed by a semicolon is a command.

sem cmdexpr e1 = effect [e1]
syn cmdexpr = sem cmdexpr 〈$$〉 syn expr lit 〈∗∗ keychar ’;’

211

Blocks of code A Mini program (see Section 11.7) is a sequence of globals, where a

global is a declaration or a command. A sequence of globals is executed in order, so that

the side-effects of each global can be witnessed by subsequent globals. On top of that, a

declaration makes a new binding available to subsequent globals.

syn globals = "globals" 〈:=〉 foldr multiple syn global null
syn global :: SymbExpr Token (Funcons → Funcons)
syn global = "global" 〈:=〉 activate in 〈$$〉 syn decl

〈||〉 and then 〈$$〉 syn command

activate in env fct = scope [env , fct]
and then cmnd fct = sequential [cmnd , fct]

A code block is also a sequence of declarations and commands, delimited by braces or by

the keywords begin and end.

syn locals = syn globals
syn local = syn global

syn block locals = "block-locals" 〈:=〉 keyword "begin" ∗∗〉 syn locals 〈∗∗ keyword "end"

〈||〉 braces syn locals

A code block may occur in place of a command, as in the following program:

1 var x ;
2 begin
3 x = 1 ;
4 var y ;
5 print x ;
6 end
7 print (not (null x)) ;

The lifetime of a variable ends at the end of the code block in which it is declared. Therefore

y is not in scope after line 6 in the program above. Identifier x is in scope however, and line

7 prints true, because assignments persist.

Code blocks can also appear as components of a control-flow command (Section 11.5).

In this case, a single command (without delimiters) can be written instead of a code block.

syn branch = "component-block" 〈:= syn block locals
〈||〉 (flip ($) null) 〈$$〉 syn local

As an example, consider the following program with an else-branch formed out of a single

command.

212

1 var x ;
2 i f (null x) then begin
3 x = 1 ;
4 print ”x i s s e t ” ;
5 end
6 else
7 print ”x was s e t ” ;

11.4 Procedures

A user-defined procedure is declared once and can subsequently be invoked zero or more

times. A procedure is declared by writing the keyword procedure followed by the proce-

dure’s name — an identifier — a comma-separated (possibly empty) sequence of variable

declarations within parentheses, and the procedure’s body — a code block. The variables

mentioned within a procedure declaration are the procedure’s formal parameters.

syn procdecl = sem procdecl 〈$$
keyword "procedure" 〈∗∗〉 syn id 〈∗∗〉 parens syn formals 〈∗∗〉 syn branch

syn formals :: SymbExpr Token [Funcons]
syn formals = "formals" 〈:=〉 multipleSepBy (keyword "var" ∗∗〉 syn id) (keychar ’,’)

A procedure declaration binds the name of the procedure to its body. When invoked, the

formal parameters (if any) are bound to the arguments given to the procedure. As shown

later, the arguments are fresh, initialised variables.

sem procdecl id params body = bind recursively [id , abs]
where abs | null params = closure [body]

| otherwise = foldr combine body params
combine param code =

function [closure [scope [bind [param, given], code]]]

A procedure may be invoked recursively, i.e. the body of a procedure may contain an

invocation of the procedure itself. A procedure invocation is an expression written as the

procedure’s name followed by the actual parameters, a comma-separated sequence of r-value

expressions within parentheses.

syn proc = sem invoke 〈$$〉 syn id 〈∗∗〉 parens syn actuals
syn actuals :: SymbExpr Token [Funcons]
syn actuals = "actuals" 〈:=〉 multipleSepBy syn expr lit (keychar ’,’)

213

A procedure invocation evaluates to the value returned by the procedure. The evalua-

tion involves finding the procedure body bound to the identifier, and evaluating the actual

parameters (if any). The values that result are assigned to fresh variables, forming the

arguments that are given to the procedure body.

sem invoke id args = handle return [invocation]
where invocation | null args = enact [bound [id]]

| otherwise = foldl app (bound [id]) args
app abs arg = apply [abs, allocate initialised variable [values , arg]]

A return command within a procedure body terminates procedure invocations, potentially

before all declarations and commands in the body have been executed. A return command

is written as the keyword return followed by an r-value expression and a semicolon.

sem return e1 = return [e1]
syn return = sem return 〈$$ keyword "return" 〈∗∗〉 syn expr lit 〈∗∗ keychar ’;’

Programs in which a procedure with n formal parameters is invoked with m 6= n actual

parameters are invalid. A procedure without a return command is fully executed, and

returns no value as a result. A procedure which is not guaranteed to return a value may

only be invoked directly as a command, not as part of another expression. If a procedure

invocation raises an exception, the invocation is terminated and the exception is propagated.

The following example program produces no output:

1 var a ;
2 a = 1 ;
3 procedure noreturn (var a , var b , var c) {
4 i f (null a) then print ”ERROR” ;
5 i f (null b) then print ”ERROR” ;
6 i f (null c) then print ”ERROR” ;
7 }
8 noreturn (1 , 2 , 3) ;
9

10 procedure max (var a , var b , var c) {
11 i f (a >= b) then i f (b >= c) then return a ;
12 i f (b >= c) then return b ;
13 return c ;
14 }
15 i f (max(1 , 2 , 3) < 3) then print ”ERROR” ;

214

11.5 Control Flow

Mini has several control-flow constructs. The basic constructs determine which code to

execute based on Boolean conditions.

Basic Flow The if−then−else-command is the if keyword followed by an r-value ex-

pression — the condition — and two code blocks, preceded by then and else respectively,

of which the latter is optional.

sem ite cond t e = if true else [cond , t , e]
syn ite = sem ite 〈$$ keyword "if" 〈∗∗〉 syn expr lit

〈∗∗ keyword "then" 〈∗∗〉 syn branch
〈∗∗〉〉〉 optionalWithDef (keyword "else" ∗∗〉 syn branch) null

To execute an if−then−else-command, the condition is evaluated and, based on its value,

one of the code blocks is executed. An occurrence of if−then−else without an else-block

is syntactic sugar for if−then−else with an empty else-block.

A while-loop is a command written as the while keyword followed by a condition and

a code block. A while command is executed by evaluating its condition and executing its

body until the condition no longer holds. The condition is checked before every iteration; if

the condition is false, the body is not executed at all.

sem while cond body = while [cond , body]
syn while = sem while 〈$$ keyword "while" 〈∗∗〉 syn expr lit 〈∗∗〉 syn branch

A for-loop is a command written as the for keyword followed by three commands and

a code block. The commands must be an assignment — the initialiser — a Boolean r-

value expression — the condition — and another assignment — the updater. A for-loop

is syntactic sugar for a while-command in the conventional way: executing a for-loop is

executing the initialiser, followed by a while-loop with the condition of the for-loop and a

body which is the for-loop’s body extended with the updater.

syn for = sem for 〈$$ keyword "for" 〈∗∗〉
syn assign 〈∗∗〉 syn expr 〈∗∗ keychar ’;’ 〈∗∗〉 syn assign 〈∗∗〉 syn branch

sem for init cond upd body = and then init (sem while cond (and then body upd))

The following programs are equivalent, printing the first 10 integers.

1 var i ;
2 i = 0 ;

215

3 while i < 10 begin
4 print (i) ;
5 i = i +1;
6 end

1 var i ;
2 for i = 0 ; i < 10 ; i = i + 1 ; print (i) ;

Exceptional Flow Mini has a basic mechanism for throwing and catching exceptions.

An exception is a string, thrown by the throw-command, which is written as the keyword

throw followed by an r-value expression and a semicolon.

sem throw str = throw [string str]
syn throw = sem throw 〈$$ keyword "throw" 〈∗∗〉 string lit 〈∗∗ keychar ’;’

Programs in which the expression of a throw-command does not evaluate to a string are

invalid. Throwing an exception terminates the execution of the surrounding code block,

or of the program, if there is no surrounding code block. An exception is propagated,

eventually terminating the execution of the whole program, unless the exception occurs in

the try-block of a try-catch-command, in which case it may be caught.

The try-catch-command is a series of code blocks, the first of which is the try-block,

the others are handlers. Syntactically, the try-block is preceded by the try keyword, and

the handlers are preceded by the catch keyword, followed by a string literal.

syn trycatch = sem try 〈$$ keyword "try" 〈∗∗〉 syn branch 〈∗∗〉 syn handlers
sem try tryblock handlers = handle thrown [tryblock , handlers]

syn handlers = "handlers" 〈:=〉 foldr multiple syn handler (throw [given])
syn handler :: SymbExpr Token (Funcons → Funcons)
syn handler = "single-handler"

〈:=〉 sem handler 〈$$ keyword "catch" 〈∗∗〉 string lit 〈∗∗〉 syn branch
sem handler exc body handlers =

if true else [is equal [string exc, given], body , handlers]

Executing a try-catch-command begins with executing its try-block. The command has

finished if the try-block is executed without throwing an exception. If an exception x is

thrown, then the handlers are considered, in order, until the first handler that is applicable

to x is found. A handler is applicable to x if the string literal associated with the handler

equals x. When applicable, the handler is executed. If executing a handler throws an

exception, this exception is propagated. If no handler is applicable to x, x is propagated.

216

Not only user-thrown exceptions can be caught. For example, the following program

has handlers for "uninitialised-reference-component" and "division-by-zero" ex-

ceptions:

1 var x ;
2 try begin
3 print x ;
4 print ”ERROR” ;
5 print (0 / 0) ;
6 end
7 catch ” u n i n i t i a l i s e d −r e f e r e n c e−component” begin
8 print ”x not i n i t i a l i s e d ” ;
9 end

10 catch ” d i v i s i o n−by−zero ”
11 print ”ERROR” ;

11.6 Arrays

Besides integers, Booleans, and strings, Mini also has arrays. An array is an example of

a composite variable: a collection of variables with a particular structure. An array has a

fixed length n and there is a variable associated with each index 0 to n − 1. An array is

an ordinary value, and can thus be assigned to a variable, returned by a procedure, etc. To

create arrays, Mini has array-notation: a comma-separated sequence of r-value expressions

surrounded by brackets.

syn array = "array" 〈:=〉
sem array 〈$$〉 brackets (multipleSepBy syn expr lit (keychar ’,’))

sem array elems = vector [left to right (map alloc elems)]
where alloc e = allocate initialised variable [values , e]

The expressions are evaluated in left-to-right order, and each resulting value is assigned to

a fresh variable. For example, the expression [1,2,3,4,5] creates an array consisting of five

variables with indices 0 to 4, initialised with the numbers 1 to 5.

So far we have seen one example of an l-value expression: an expression containing just

an identifier bound to a variable. Array indexing is an example of another l-value expression.

An array indexing expression is written as an identifier and an r-value expression within

brackets. In valid programs, the identifier is bound to a variable with an array assigned to

it, and the expression evaluates to an integer.

217

syn array idx = "array-index" 〈:=〉 sem array idx 〈$$〉 syn id 〈∗∗〉 brackets syn expr lit

Evaluating an l-value expression a[e] involves retrieving the array assigned to the vari-

able to which a is bound, and evaluating e to i. If i is not an index of the array, an

"array-index-out-of-bounds" exception is thrown. If it is, the variable with index i of

the array is the result of evaluating the l-value expression.

sem array idx id e1 = give [e1, if true else [range, vector index given vec
, sem throw "array-index-out-of-bounds"]]

where vec = ensure lit (sem var id)
range = and [is greater or equal [given , int 0]

, is less [given , vector length vec]]

vector length v = length [vector elements [v]]
vector index i v = index [integer add [int 1, i], vector elements [v]]

Because array indexing is an l-value expression, it can occur in places where a value is

expected (see Section 11.2), as well as on the left-hand side of an assignment. For example,

the following program creates an array of length one and updates and accesses the variable

it consists of:

1 var ar r ;
2 a r r = [1] ;
3 a r r [0] = 2 ;
4 print (a r r [0]) ;

Operations on arrays In Section 11.1, several built-in procedures were introduced. The

following additional built-in procedures are available for working with arrays:

array built ins =
[("array_length", prefix op [vector length (assigned [given])])
, ("empty_array", prefix op [vector

[interleave repeat [allocate variable [values], int 1, assigned [given]]]])]

The procedure array length is given an argument assigned to an array and returns the

length of that array. The procedure empty array receives as argument a variable assigned

to n and returns an array of length n, consisting of n uninitialised variables. The following

programs shows how these procedures are used:

1 var y ;
2 y = empty array (2) ;
3 print (null y [0]) ; # p r i n t s t r u e

218

4 print (null y [1]) ; # p r i n t s t r u e
5 y [0] = 1 ;
6 y [1] = 2 ;
7 print y [1] ; # p r i n t s 2
8 print y [0] ; # p r i n t s 1
9 print a r r a y l e n g t h (y) ; # p r i n t s 2

10 y [2] = 3 ; # throws ” array−index−out−of−bounds ” e x c e p t i o n

11.7 Programs

A Mini program is a sequence of declarations and commands executed in order.

syn program = "program" 〈:=〉 sem program 〈$$〉 syn globals

sem program body =
initialise binding [initialise storing [

handle thrown [scope [all built in identifiers, body], handler]]]
where handler = print [string append

[string "Uncaught Exception: "

, given , string "\n"]]

all built in identifiers = env fromlist $ array built ins ++ operator semantics

A program is executed as a code block (see Section 11.3). However, if a program termi-

nates because an exception is thrown, the exception is reported. For example, the message

Uncaught Exception: division-by-zero is the output of the following program:

1 var x ;
2 var y ;
3 y = 3 ;
4 x = 1 ;
5 print (y / ((x ∗ 42) − 7∗6)) ;

11.8 Interpretation

This section discusses how the Haskell code segments from the previous sections form an

interpreter for Mini. The interpreter is available as the mini-reuse package in the supple-

mentary material. The function lexer :: String → [Token] is omitted. The parser is defined

as follows, applying parse from the gll package to syn program:

parser :: [Token]→ [Funcons]
parser = parse syn program

219

Note that running the parser may result in several funcon terms, one for each possible

interpretation of the input string. Although several disambiguation strategies have been

identified, e.g. longest-match to solve the ‘dangling else problem’ (see Section 11.5), there is

no guarantee that there is at most one interpretation for every program. The main function

defined below combines the lexer and parser to obtain zero or more funcon terms, and

applies the function runWithExtensions imported from Funcons.Tools to execute them.

main = do
args ← getArgs
case args of

[] → putStrLn "Please provide me with an input file"

f : opts → go f opts
where

go :: FilePath → [String]→ IO ()
go f opts = do

str ← readFile f
let tokens = lexer str

fcts = parser tokens
ambiguous = length fcts > 1

forM (zip [1 . .] fcts) $ λ(i , fct)→ do
when ambiguous (putStrLn ("=== Interpretation " ++ show i ++ "\n"))
runWithExtensions Mini .funcons Mini .entities Mini .types opts (Just fct)

The first command line argument is expected to be a Mini program. The other command

line arguments are passed on to runWithExtensions from the Haskell Funcon Framework.

The function runWithExtensions runs the funcon term interpreter on a given funcon term,

extending the interpreter with the implementations of additional, language-specific funcons.

The only Mini-specific funcon mini-show is defined below, and its implementation is ex-

ported by the module Funcons.Mini.Mini, imported under the qualified name Mini .

Funcon mini-show(V : values)

Rule mini-show(true) ; "true"

Rule mini-show(false) ; "false"

Rule mini-show(I : integers) ; to-string(I)

Rule mini-show(S : strings) ; S

Rule mini-show(vectors(V *)) ;

string-append("[", intersperse(", ",

interleave-map(mini-show(assigned(given)),V *)), "]")

220

Chapter 12

Case Study - Caml Light

This chapter follows roughly the structure1 of the Caml Light reference manual [Leroy, 1997].

We describe the syntax of Caml Light with the BNF combinators, following the definitions

of the reference manual closely. As for Mini, we associate semantic functions with each

syntactic construct, and the semantic functions yield funcon terms which can be executed

within the Haskell Funcon Framework. Parts of the funcon translation are derived from

the CSF specification2 of Caml Light presented in [Churchill et al., 2015], and from the

superseding CBS specification subsequently developed by Neil Sculthorpe. Version 0.74 of

Caml Light is described, together with some of the extensions suggested in the reference

manual. The package caml-light-reuse is constructed from the sources of this chapter and

is part of the supplementary material. The funcon translation depends on a small number

of Caml Light specific funcons defined in CBS.

12.1 Lexical Conventions

The precise specification of lexical items and the development of lexers are not within the

scope of this thesis, and we omit these here. The function lexer : String → [Token], used by

the interpreter of Section 12.9, is exported by the module Lexer. Compared to [Leroy, 1997],

1For clarity, Sections 12.3 and 12.2 are swapped. The sections on global definitions and module imple-
mentations have merged. The sections on module interfaces and directives have been omitted.

2CSF preceded CBS.

221

we have simplified the lexical conventions regarding identifiers and literals in a number of

ways. Most importantly, we distinguish identifiers based on whether they start with a

lowercase or uppercase alphabetical character3. Identifiers starting with an uppercase letter

are reserved for the constructors of variant values (see Section 12.2). As described by

Leroy, an identifier can appear both as a variable and as a constructor name. The latter

interpretation is to be taken if the identifier is introduced as a constructor earlier in the

program. For example, consider the following program:

1 type winddir = north | ea s t | south | west ; ;
2
3 (fun x −> 0) ; ; (∗ x an i d e n t i f i e r ∗)
4 (fun north −> 0) ; ; (∗ north a cons tant c o n s t r u c t o r ∗)

According to [Leroy, 1997], identifier north on line 4 should be interpreted as a constructor.

However, if line 1 is omitted, it should be interpreted as a variable instead. We determine

that constructor names must begin with uppercase letters. The program above is thus not

valid according to our syntax description. Instead the program is written as:

1 type winddir = North | East | South | West ; ;
2
3 (fun x −> 0) ; ; (∗ x an i d e n t i f i e r ∗)
4 (fun North −> 0) ; ; (∗ north a cons tant c o n s t r u c t o r ∗)

North on line 4 is interpreted as a constructor, also if line 1 is removed, simply because it

starts with an uppercase later (see Section 12.6 on patterns).

Other differences with [Leroy, 1997] are more subtle. For example, numeric literals (float

literals and integer literals) cannot start with a negative (or positive) sign; numeric literals

always denote numbers > 0. For example, −1 is interpreted as the application of the prefix

operator − to the integer literal 1. String literals are also simplified: within a string, a

character sequence of a backslash and three digits is interpreted as just that, rather than

the code of an ascii-character.

3Tokens of the first kind are produced by id lit and of the latter kind by alt id lit .

222

12.2 Values

The base types of Caml Light are integers, floating-point numbers, characters and character

strings. We place no restrictions on the size of integers and use the Haskell values of

types Int , corresponding to the representation of integers by the gll and funcons-values

packages. Similarly, we use values of type Double to represent floats and values of type Char

to represent characters. Strings are lists of characters.

The composite types of Caml Light are tuples, lists, records, arrays, variants, and func-

tions. The components of arrays, variants, records and strings are mutable. There are no

restrictions on the sizes of tuples, strings, records, and arrays. A variant value is a pair of a

constructor name and an optional argument. If a constructor has an arity greater than one,

its argument is a tuple holding multiple values. A constructor with arity zero is a constant.

12.3 Global Names

Global names are identifiers possibly qualified with a module name (also an identifier):

syn global :: SymbExpr Token Funcons
syn global = "global-name" 〈:=〉 string 〈$$ optional (id lit 〈∗∗ keyword "__") 〈∗∗〉 id lit

syn cap global :: SymbExpr Token Funcons
syn cap global =
"cap-global-name" 〈:=〉 string 〈$$ optional (id lit 〈∗∗ keyword "__") 〈∗∗〉 alt id lit

Global names with capitalised identifiers are reserved for constructor names. Qualified

identifiers are only supported in syntax — any qualifiers are ignored semantically. We do

not consider opening and closing modules.

A variable is a global name or is a name reserved for an operator.

syn var :: SymbExpr Token Funcons
syn var = "variable" 〈:=〉 syn global

〈||〉 sem op var 〈$$ keyword "prefix" 〈∗∗〉 syn op
where

syn op :: SymbExpr Token String
syn op = chooses -- chooses s [a1, ..., an] ≡ s 〈:=〉 a1 〈||〉 ... 〈||〉 an

"operator-name" (map keyword operator names)

sem op var op = string ("prefix " ++ op)

For example, the variable prefix + refers to the value to which prefix + is currently

bound. Initially, this is a function value, adding two integers when applied, according to

223

operator names = ["+" , "*" , "/" , "mod", "+." , "*.", "/." , "-" , "-."
, "@" , "^" , "!" , ":=" , "=" , "<>", "==" , "!=", "<"
, "<=", ">" , ">=" , "<." , "<=.", ">.", ">=.", "**", "::"
, "-" , "-.", "not", "or" , "&&" , "&" , "||" , "or"]

Figure 12.1: Operators that can be redefined, originally defined in the core library.

the specification of the core library (see Chapter 13 of [Leroy, 1997]), in which it is defined.

However, this binding may be overridden by the programmer. All the functions of the core

library may be overridden this way. Its operators are listed in Figure 12.1.

A global name can also appear as the field identifier (label) of a record (records and

fields are explained near the end of Section 12.7):

syn label :: SymbExpr Token Funcons
syn label = "label" 〈:=〉 syn global

A capitalised global name appears as a constant constructor or non-constant constructor.

syn cconstr :: SymbExpr Token Funcons
syn cconstr = "cconstr" 〈:=〉 sem cconstr global 〈$$〉 syn cap global

〈||〉 list [] 〈$$ keychar ’[’ 〈∗∗ keychar ’]’

〈||〉 vector [] 〈$$ keyword "[|" 〈∗∗ keyword "|]"

〈||〉 null 〈$$ keychar ’(’ 〈∗∗ keychar ’)’

〈||〉 bool True 〈$$ keyword "true"

〈||〉 bool False 〈$$ keyword "false"

where sem cconstr global g = bound [g]

syn ncconstr :: SymbExpr Token Funcons
syn ncconstr = "ncconstr" 〈:=〉 syn cap global

The constant constructors [], [||], and (), for the empty list, empty array, and empty

tuple respectively, are built-in. The Boolean values t rue and f a l s e are also constants. A

non-constant (value) constructor is the name of a function that yields a variant (a value of

an algebraic datatype).

Type expressions (Section 12.4) can be formed by applying a type constructor to zero

or more type expressions. A type constructor name starts with a lowercase character.

syn tycons :: SymbExpr Token Funcons
syn tycons = "typeconstr" 〈:=〉 syn global

224

12.4 Type Expressions

Type expressions occur as pattern and expression annotations, providing static information

about the annotated pattern or expression. This information is helpful to programmers and

can guide type-inferencing. Type expressions do not influence dynamic semantics and we

only consider their syntax here.

syn tyexpr :: SymbExpr Token ()
syn tyexpr = "typexpr"

〈::= () 〈$$ syn tyexpr 〈∗∗ keyword "->" 〈〈〈∗∗ syn tyexpr
〈||〉 () 〈$$ syn tyexpr 〈∗∗ keyword "*" 〈〈〈∗∗ syn tyexpr
〈||〉 () 〈$$ syn tycons
〈||〉 () 〈$$ syn tyexpr 〈∗∗ syn tycons
〈||〉 () 〈$$ parens (multipleSepBy1 syn tyexpr (keyword ",")) 〈∗∗ syn tycons
〈||〉 () 〈$$ keyword "’" 〈∗∗ id lit
〈||〉 parens syn tyexpr

Compared to the applications of functions and constructors, type constructor applications

are written in reversed order; the arguments precede the type constructor.

12.5 Constants

Constants are the literal values of the base types — integers, floats, characters and strings

— and constant constructors (see Section 12.3):

syn const :: SymbExpr Token Funcons
syn const = "literal" 〈:=〉 int 〈$$〉 int lit -- integer literal to funcon term

〈||〉 sem string 〈$$〉 string lit
〈||〉 float 〈$$〉 float lit -- float literal to funcon term
〈||〉 char 〈$$〉 syn char -- char literal to funcon term
〈||〉 syn cconstr

syn char :: SymbExpr Token Char -- replaces char lit for different literal form
syn char = "char" 〈:=〉 head 〈$$〉 token "CHAR"

sem string cs = list (map mkMut cs) -- a string is a list of variables storing characters
where mkMut c = allocate initialised variable [characters [], char c]

The function syn char is introduced to be used instead of char lit because char lit recognises

character literals written between quotes (in the style of Haskell), whereas Caml Light

character literals are written between backticks (head is used to extract the character from

the token string). The translation of string literals (sem string) shows that strings are

sequences of mutable characters.

225

syn pat :: SymbExpr Token Funcons
syn pat = "pattern"

〈::= syn pat as
〈||〉 syn pat alt
〈||〉 syn pat prod
〈||〉 syn pat cons
〈||〉 syn pat app
〈||〉 syn pat wildcard
〈||〉 syn pat id
〈||〉 parens (syn pat 〈∗∗ optional (keyword ":" 〈∗∗ syn tyexpr))
〈||〉 syn pat const
〈||〉 syn pat rec
〈||〉 syn pat list
〈||〉 syn range

Figure 12.2: The syntax of Caml Light patterns.

12.6 Patterns

Values can be matched against patterns in order to perform case analysis and to bind

identifiers to components of values of composite types. The complete syntax of patterns is

given in Figure 12.2. The different forms of patterns are explained in what follows.

Matching a value against a pattern either fails or succeeds, potentially binding identifiers

to components of the matched value. As we shall see in Section 12.7, a pattern match failure

causes the Match failure exception to be thrown.

Matching against an identifier always succeeds, binding the identifier to the matched

value. This value could be the mutable component of a composite type.

syn pat id = sem pat id 〈$$〉 id lit
sem pat id i = pattern bind [string i]

The wildcard pattern matches any value without activating new bindings.

syn pat wildcard = sem pat wildcard 〈$$ keyword "_"

sem pat wildcard = pattern any

With the as keyword, a pattern can be annotated with an identifier. When a value v is

matched against pattern p as i, v is matched against p. Any bindings activated by matching

v against p are extended with i binding v.

syn pat as = sem pat as 〈$$〉 syn pat 〈∗∗ keyword "as" 〈∗∗〉 id lit
sem pat as p nm = pattern unite [p, pattern bind [string nm]]

226

Matching a value v against a constant c succeeds if v is equal to c and fails otherwise.

syn pat const :: SymbExpr Token Funcons
syn pat const = "constant-pattern" 〈:= sem pat string 〈$$〉 string lit

〈||〉 match constant 〈$$〉 syn const

-- structural assigned is required to match the values held by mutable components
match constant p = pattern [closure [match [structural assigned [given], p]]]
sem pat string s = match constant (string s) -- no need to initialise variables

Multiple patterns can form ‘products’ or ‘sums’ when separated by commas or vertical

bars respectively. When a value v is matched against a product pattern p with components

p1 . . . , pn, v must be an n-tuple with components v1 . . . , vn such that vi matches pi, for all

1 6 i 6 n. If matching any component fails, matching v against p fails. Otherwise, all the

bindings resulting from matching the components unite to form the result of matching v

against p.

syn pat prod = shortest match (sem pat prod 〈$$〉 multipleSepBy2 syn pat (keyword ","))
sem pat prod ps = tuple ps

When a value v is matched against a pattern p of the form p1 | p2, v is first matched against

p1. Only if this fails is v matched against p2. Matching v against p either fails, is equivalent

to matching v to p2, if v does not match p1, or is equivalent to matching v against p1.

syn pat alt = sem pat alt 〈$$〉 syn pat 〈∗∗ keyword "|" 〈∗∗〉〉〉 syn pat
sem pat alt p1 p2 = pattern else [p1, p2]

Caml Light supports two methods for decomposing lists by pattern matching. The first

method is a pattern written with list-notation, e.g. [pat1; . . . ; patn].

syn pat list = sem pat list 〈$$〉 brackets (multipleSepBy1 syn pat (keyword ";"))
sem pat list ps = list ps

The second method is a pattern formed by applying list constructor :: , e.g. pat1 :: pat2.

syn pat cons = sem pat cons 〈$$〉 syn pat 〈∗∗ keyword "::" 〈〈〈∗∗〉 syn pat
sem pat cons p1 p2 =

pattern [closure [if true else [is equal [given , list []], fail ,
collateral [match [head [given], p1],match [tail [given], p2]]]]]

When matching a list v with elements v1, . . . , vn against a pattern p of the form p1 :: p2,

the head of v (element v1) is matched against p1 and the tail of v (the list containing

v2, . . . , vn) against p2. As with tuples, if any component fails to match, matching v against

227

p fails. Otherwise, the bindings produced by matching components unite to form the result

of matching v against p. If n = 0, i.e. v is the empty list, matching v against p fails.

A record pattern is of the form {label1 = pat1, . . . , labeln = patn}.

syn pat rec = sem pat rec 〈$$〉 braces (multipleSepBy1 syn entry (keyword ";"))
where syn entry :: SymbExpr Token (Funcons,Funcons)

syn entry = "pat-entry" 〈:=〉 (,) 〈$$〉 syn label 〈∗∗ keyword "=" 〈∗∗〉 syn pat

sem pat rec kvs = pattern [closure [match loosely [given , record [map unite ents]]]]
where ents = map (λ(l , p)→ map [tuple [l , p]]) kvs

A record v with component values v1, . . . , vn, labelled l1, . . . , ln respectively, matches a

pattern p if p is a record pattern with component patterns p1, . . . , pm, labelled l′1, . . . , l
′
m

respectively, if {l′1, . . . , l′m} ⊆ {l1, . . . , ln}, and if for each 1 6 1 6 m xi matches pi, where xi

is the value labelled with l′i. As with tuples and lists, matching v against p fails if matching

any component fails. If all components match, the resulting bindings unite to form the

result of matching v against p.

A pattern can be formed by applying a non-constant value constructor to a pattern

(which may be a tuple pattern). This enables programmers to match variant values of

user-defined types.

syn pat app = sem pat app 〈$$〉 syn ncconstr 〈∗∗〉 syn pat
sem pat app nm p = variant [nm, p]

A variant value v matches variant pattern p if they are constructed by the same value

constructor, and if their arguments match.

Finally, Caml Light has ‘range patterns’ of the form c1 .. c2, where c1 and c2 are char-

acters constants. For example, the pattern ‘0‘..‘9‘ matches all digits. In general, a range

pattern of the form c1 .. cn is a shorthand for the pattern c1 | . . . | cn containing the al-

ternate patterns c1, . . . , cn such that c1, . . . , cn are all the characters that appear within c1

and cn (inclusive) in the ASCII character set:

syn range = sem pat range 〈$$〉 syn char 〈∗∗ keyword ".." 〈∗∗〉 syn char
sem pat range c1 c2 = foldr combine fail [c1 . . c2]

where combine c fp = sem pat alt (char c) fp

In a function definition (see Section 12.7), several patterns may occur one after the other,

matching the potentially multiple arguments to which the function may be applied:

syn pats :: SymbExpr Token [Funcons]
syn pats = "pattern-list" 〈:=〉 multiple1 syn pat

228

syn expr :: SymbExpr Token Funcons
syn expr = "expr"

〈::= (syn match 〈||〉 syn where 〈||〉 syn let 〈||〉 syn functions 〈||〉 syn try)
〈||〉 syn seq
〈||〉 syn ite
〈||〉 (syn arr mod 〈||〉 syn str mod 〈||〉 syn rec mod 〈||〉 syn assign 〈||〉 syn mutate)
〈||〉 syn tuple
〈||〉 syn operators
〈||〉 (syn cons application 〈||〉 syn application)
〈||〉 (syn arr acc 〈||〉 syn str acc 〈||〉 syn rec acc)
〈||〉 syn deref
〈||〉 (syn var expr 〈||〉 syn list 〈||〉 syn array 〈||〉 syn record 〈||〉

syn const 〈||〉 syn grouped 〈||〉 syn while 〈||〉 syn for)

Figure 12.3: The syntax of Caml Light expressions.

12.7 Expressions

Caml Light expressions have many forms. The syntax of expressions is defined via an

abstract, highly ambiguous context-free grammar in [Leroy, 1997]. Our syntax description,

given in Figure 12.3, corresponds closely to this grammar4.

12.7.1 Simple Expressions

Constant expressions yield their constant as a result.

A variable within an expression evaluates to the value bound to the variable.

syn var expr = sem var 〈$$〉 syn var
sem var s = current value [bound [s]] -- implicit dereferencing of mutables

Parentheses group expressions, as well as the keywords begin and end. A parenthesised

expression may contain a type annotation, which is ignored in the dynamic semantics.

syn grouped = parens (syn expr 〈∗∗ optional (keyword ":" ∗∗〉 syn tyexpr))
〈||〉 within (keyword "begin") syn expr (keyword "end")

12.7.2 Functions

Function values come in two forms, defined via fun and function:

4Our description relies heavily on ambiguity reduction combinators not defined in this thesis. For an
explanation of these combinators, we refer to the online documentation of the gll package.

229

syn functions = sem fun 〈$$ keyword "fun" 〈∗∗〉 syn mmatch
〈||〉 sem function 〈$$ keyword "function" 〈∗∗〉 syn smatch

syn mmatch :: SymbExpr Token [(Int ,Funcons)]
syn mmatch = "multiple-matching" 〈:=〉 longest match (

optional (keyword "|") ∗∗〉 someSepBy1 syn mcase (keyword "|"))
where syn mcase = sem mcase 〈$$〉 syn pats 〈∗∗〉 guard 〈∗∗ keyword "->" 〈∗∗〉 syn expr

syn smatch :: SymbExpr Token [Funcons]
syn smatch = "simple-matching" 〈:=〉 longest match (

optional (keyword "|") ∗∗〉 someSepBy1 syn scase (keyword "|"))
where syn scase = sem scase 〈$$〉 syn pat 〈∗∗〉 guard 〈∗∗ keyword "->" 〈∗∗〉 syn expr

guard :: SymbExpr Token (Maybe Funcons)
guard = "guard" 〈:=〉 optional (keyword "when" ∗∗〉 syn expr)

The only difference is that the simpler, specialised function disambiguates variant patterns

differently. Consider the following program:

1 type t r e e = Leaf of i n t | Bin of t r e e ∗ t r e e ; ;
2
3 l et rec s e l e c t = function Leaf x −> x
4 | Bin (l , r) −> s e l e c t l ; ;

The identifier s e l e c t is bound to a function which receives one argument; in other words,

Leaf x and Bin (l , r) are both considered a single pattern. If the function was defined

with fun instead, Leaf would be parsed as a constant pattern, rendering the program invalid

as Leaf is declared as a non-constant constructor. Semantically, fun is a generalisation of

function.

sem fun :: [(Int -- number of patterns in each case alternative
,Funcons)]→ Funcons

sem fun cases | n ≡ 1 = abs
| otherwise = curry n [int n, abs] -- curry n is caml light specific,

-- it curries an n-ary function
where abs = function [closure [else cases (map snd cases) sem match failure]]

n = head (map fst cases) -- alternatives have the same number of patterns
sem function scases = sem fun (map (λx → (1, x)) scases) -- each case has 1 pattern

sem scase p mg e = case match [p, cont]
where cont = case mg of Just cond → sequential [check true [cond], e]

Nothing → e

sem mcase ps mg e = (length ps, sem scase (tupler ps) mg e)
where tupler | length ps ≡ 1 = head

| otherwise = tuple

else cases cases def = else (cases ++ [def])
sem match failure = throw [variant [string "Match_failure"

, tuple [string "", int 0, int 0]]]

230

Top-level pattern alternatives may have ‘guards’ of the form when cond associated with

them, where the condition cond is a Boolean expression. After a value v has successfully

been matched to the pattern p of the pattern alternative, the condition of the pattern

alternative is evaluated in an environment in which the bindings produced by matching v

against p are active. If the condition evaluates to f a l s e , v is considered not to match the

the pattern alternative. If the condition evaluates to t rue , the result of matching v to p is

the result of matching v against the pattern alternative.

Function application is denoted by juxtaposition of expressions (left-associative):

syn application = sem apply 〈$$〉 syn expr 〈∗∗〉〉〉 syn expr
sem apply e1 e2 = apply [e1, e2]

12.7.3 Local Definitions

Local definitions introduce bindings with a limited lifetime. Local definitions are introduced

with the keywords l et and l et rec, and their scope is restricted to the expression given in

an in-clause. Several definitions can be introduced by a single l et -expression, separating

the definitions with and.

syn let = sem let 〈$$ keyword "let" 〈∗∗〉 syn rec 〈∗∗〉 syn local defs
〈∗∗ keyword "in" 〈∗∗〉 syn expr

syn rec :: SymbExpr Token Bool
syn rec = "maybe-rec" 〈:=〉 maybe False (const True) 〈$$〉 optional (keyword "rec")

syn local defs :: SymbExpr Token ([Funcons],Funcons)
syn local defs = "multiple-let-bindings" 〈:=〉

sem letbs 〈$$〉 multipleSepBy1 syn local def (keyword "and")

syn local def :: SymbExpr Token ([Funcons],Funcons)
syn local def = "single-let-binding"

-- special prioritised case for recursive bindings
〈:= sem let var 〈$$〉 syn recursive 〈∗∗ keyword "=" 〈∗∗〉 syn expr
〈||〉 sem let pat 〈$$〉 syn pat 〈∗∗ keyword "=" 〈∗∗〉 syn expr
〈||〉 sem let abs 〈$$〉 syn var 〈∗∗〉 syn pats 〈∗∗ keyword "=" 〈∗∗〉 syn expr

A local definition of the form p = e, with p a pattern and e an expression, evaluates e and

matches the result value against the pattern p. If the match is unsuccessful, a Match failure

exception is thrown. Otherwise, any resulting bindings are made active locally.

sem let var i e = ([i], bind [i , e])
sem let pat p e = ([], else cases [match [e, p]] sem match failure)
sem letbs lbs = (concatMap fst lbs,map unite (map snd lbs))

231

sem let rec lb e = scope [lb′, e]
where lb′ | rec, length (fst lb)> 0 = recursive [set (fst lb), snd lb]

| otherwise = snd lb

A local definition p = e may be recursive so that bindings produced by matching the value

of e to p are active when e is evaluated. This behaviour is only defined if p is an identifier or

a parenthesised identifier (perhaps with type annotation), and if e evaluates to a function.

syn recursive :: SymbExpr Token Funcons
syn recursive = "rec-pat-forms"

〈::=〉 string 〈$$〉 id lit 〈∗∗ optional (keyword ":" 〈∗∗ syn tyexpr)
〈||〉 parens (syn recursive)

Local definitions occurring within a single occurrence of l et rec are mutually recursive.

A local definition may also be of the form var pat1 . . . patn = expr . This form is

syntactic sugar for var = fun pat1 . . . patn → expr .

sem let abs v ps e = sem let var v (sem fun [sem mcase ps Nothing e])

The expression expr where local def is syntactic sugar for l et local def in expr and

expr where rec local def for l et rec local def in expr :

syn where = sem where 〈$$〉 syn expr 〈∗∗ keyword "where" 〈∗∗〉 syn rec 〈∗∗〉 syn local def
sem where e rec lb = sem let rec lb e

12.7.4 Control Operators

The expression expr1; . . . ; exprn is evaluated by evaluating the expressions expr1, . . . , exprn

from left to right, returning the value of exprn as a result and ignoring the values of the

other expressions.

syn seq = sem seq 〈$$〉 multipleSepBy2 syn expr (keyword ";") 〈∗∗ optional (keyword ";")
sem seq es = sequential $ map (λx → effect [x]) (init es) ++ [last es]

The expression i f expr1 then expr2 else expr3 evaluates the Boolean expression

expr1, and if the value of expr1 equals t rue , then evaluates to the value of expr2, otherwise

the value of expr3. The else -branch is optional, and defaults to else() if omitted.

syn ite = sem ite 〈$$ keyword "if" 〈∗∗〉 syn expr 〈∗∗ keyword "then" 〈∗∗〉 syn expr
〈∗∗〉〉〉 optional (keyword "else" ∗∗〉 syn expr)

sem ite e1 e2 me3 = if true else [e1, e2,maybe null id me3]

232

Using match, it is possible to perform case analysis within an expression:

syn match =
sem match 〈$$ keyword "match" 〈∗∗〉 syn expr 〈∗∗ keyword "with" 〈∗∗〉 syn smatch

sem match e scases = give [e, else cases scases sem match failure]

Looping Caml Light has two looping constructs: while and for . A while-loop is

written as while expr1 do expr2 done and is evaluated by evaluating expr2 as long as

expr1 evaluates to true, evaluating expr1 before each iteration.

syn while = sem while 〈$$ keyword "while" 〈∗∗〉 syn expr 〈∗∗ keyword "do"

〈∗∗〉 syn expr 〈∗∗ keyword "done"

sem while e1 e2 = while [e1, effect [e2]]

A for -loop is written as for ident = expr1 to expr2 do expr3 done, or as for ident =

expr1 downto expr2 do expr3 done and evaluates expressions expr1 and expr2 to integers

l and r. In the case of to, expr3 is evaluated r − l + 1 times in a context in which ident

is successively bound to the integers l, l + 1, . . . , r − 1, r. In the case of downto, expr3 is

evaluated l − r + 1 times in a context in which ident is successively bound to the integers

l, l − 1, . . . , r + 1, r.

syn for =
sem for 〈$$ keyword "for" 〈∗∗〉 id lit 〈∗∗ keyword "=" 〈∗∗〉 syn expr

〈∗∗〉 syn to 〈∗∗〉 syn expr 〈∗∗ keyword "do" 〈∗∗〉 syn expr 〈∗∗ keyword "done"

where syn to = "dir" 〈:=〉 True 〈$$ keyword "to" 〈||〉 False 〈$$ keyword "downto"

sem for i e1 asc e2 e3 =
effect [left to right map [case match [pattern bind [string i], e3], seq]]

where seq | asc = integer sequence [e1, e2]
| otherwise = reverse [integer sequence [e2, e1]]

Exceptions An expression of the form try expr with smatch evaluates expr and returns

its value if it evaluates normally. If expr raises an exception value v, this value is matched

against the patterns of the cases in smatch. The first case alternative pat → expr i such that

the exception value matches pat is selected and expr i evaluated. The bindings resulting

from matching v against pat are active when expr i is evaluated. The value of expr i is the

value of the try-expression. If no case in smatch is selected — i.e. no pattern is successfully

matched — the exception value v propagates.

syn try = sem try 〈$$ keyword "try" 〈∗∗〉 syn expr 〈∗∗ keyword "with" 〈∗∗〉 syn smatch

233

sem try e cases = handle thrown [e, else cases cases (throw [given])]

Exception values can be defined by the programmer (see Section 12.8) and raised by applying

the operation raise from the core library to an exception value.

12.7.5 Operations on Data

Tuples An expression expr1, . . . , exprn evaluates to an n-tuple holding the values of the

expressions in order. The order in which the expressions are evaluated is unspecified.

syn tuple = shortest match (sem tuple 〈$$〉 multipleSepBy2 syn expr (keyword ","))
sem tuple es = tuple es

Variants An expression ncconstr expr applies the function value to which the global name

ncconstr is bound to the value of expr (which may be a tuple). The binding of ncconstr

is introduced by a type definition (see Section 12.8). When applied, the function value

constructs a variant value with one or more mutable values as arguments (tupled, if more

than one).

syn cons application = sem unary app 〈$$〉 syn ncconstr 〈∗∗〉 syn expr
sem unary app v e1 = sem apply (bound [v]) e1

Lists The expression [expr1; . . . ; exprn] is equivalent to expr1 :: . . . :: exprn :: []. If the

behaviour of :: is modified, then so is the behaviour of list notation.

syn list = shortest match (sem list 〈$$〉
brackets (multipleSepBy1 syn expr (keyword ";") 〈∗∗ optional (keyword ";")))

sem list = foldr (flip sem cons "::") (list []) -- see Section 12.7 for sem cons

Arrays The expression [| expr1; . . . ; exprn |] evaluates to an array of n mutable values.

The array has indices 0, . . . , n−1 and the mutable value at position i−1 is the value of expr i

initially, for all 1 6 i 6 n. The order in which the expressions are evaluated is unspecified.

syn array = shortest match (sem array 〈$$〉 within
(keyword "[|")

(multipleSepBy1 syn expr (keyword ";") 〈∗∗ optional (keyword ";"))
(keyword "|]"))

sem array es = vector (map mkVecElem es)
where mkVecElem e = allocate initialised variable [values , e]

234

The expression expr1 .(expr2) is equivalent to vect item expr1 expr2. Similarly, the

expression expr1 .(expr2) ← expr3 is equivalent to vect assign expr1 expr2 expr3.

The operations vect item and vect assign are part of the core library [Leroy, 1997]. If

the programmer changes the behaviour of vect item and vect assign, the behaviour of

expr1 .(expr2) and expr1 .(expr2) ← expr3 changes accordingly.

syn arr acc = sem arr acc 〈$$〉 syn expr 〈∗∗ keyword ".(" 〈∗∗〉 syn expr 〈∗∗ keychar ’)’

syn arr mod = sem arr mod 〈$$〉 syn expr 〈∗∗ keyword ".(" 〈∗∗〉 syn expr 〈∗∗ keychar ’)’

〈〈〈∗∗ keyword "<-" 〈∗∗〉 syn expr

sem arr acc e1 e2 = sem apply (sem unary app (string "vect_item") e1) e2

sem arr mod e1 e2 e3 =
sem apply (sem apply (sem unary app (string "vect_assign") e1) e2) e3

Strings A string is a sequence of mutable characters. The mutable characters of a string

are accessed and modified similarly to array elements. The expression expr1 .[expr2]

is equivalent to nth char expr1 expr2 and expr1 .[expr2] ← expr3 is equivalent to

set nth char expr1 expr2 expr3.

syn str acc = sem str acc 〈$$〉 syn expr 〈∗∗ keyword ".[" 〈∗∗〉 syn expr 〈∗∗ keychar ’]’

syn str mod = sem str mod 〈$$〉 syn expr 〈∗∗ keyword ".[" 〈∗∗〉 syn expr 〈∗∗ keychar ’]’

〈〈〈∗∗ keyword "<-" 〈∗∗〉 syn expr

sem str acc e1 e2 = sem apply (sem unary app (string "nth_char") e1) e2

sem str mod e1 e2 e3 =
sem apply (sem apply (sem unary app (string "set_nth_char") e1) e2) e3

Records The expression {label1 = expr1, . . . , labeln = exprn} evaluates to a record value

in which label i maps to a mutable value, initially the value of expr i, for all 1 6 i 6 n. The

order in which the expressions are evaluated is unspecified. No label may occur twice.

syn record = shortest match (sem rec 〈$$〉
braces (multipleSepBy1 syn entry (keyword ";") 〈∗∗ optional (keyword ";")))
where syn entry = "entry" 〈:=〉 sem entry 〈$$〉 syn label 〈∗∗ keyword "=" 〈∗∗〉 syn expr

sem entry l e = tuple [l , allocate initialised variable [values , e]]
sem rec entries = record [map entries]

Record fields are accessed and modified similarly to the elements of an array. However, the

behaviour of these operations cannot be changed. The expression expr1 . label evaluates

expr1 to a record and returns the mutable value mapped to by label in the record. The

expression expr1 . label ← expr2 evaluates expr1 to a record, and mutates the value mapped

to by label in the record, and returns ().

235

syn rec acc = sem rec acc 〈$$〉 syn expr 〈∗∗ keyword "." 〈∗∗〉 syn label
syn rec mod = sem rec mod 〈$$〉

syn expr 〈∗∗ keyword "." 〈∗∗〉 syn label 〈〈〈∗∗ keyword "<-" 〈∗∗〉 syn expr
sem rec acc e1 e2 = assigned [record select [e1, e2]]
sem rec mod e1 e2 e3 = assign [record select [e1, e2], e3]

If identifier ident is bound to the mutable value, then the expression ident ← expr makes

an in-place modification, changing the mutable value bound by ident to the value of expr .

syn mutate = sem mutate 〈$$〉 id lit 〈〈〈∗∗ keyword "<-" 〈∗∗〉 syn expr
sem mutate e1 e2 = assign [bound [string e1], e2]

As an example, consider the following program (mutable is introduced in Section 12.8):

1 type coord = { mutable x : i n t ; mutable y : i n t } ; ;
2
3 l et o r i g i n = { x = 0 ; y = 0 } ; ;
4 l et move north { x = xp } = xp <− xp + 1 ; ;
5
6 (∗ the f o l l o w i n g p r i n t s { x = 2 , y = 0 } ∗)
7 move north o r i g i n ; move north o r i g i n ; o r i g i n ; ;

12.7.6 Operators

The priorities and associativity of the operators in Caml Light’s core library are listed in the

operator-table shown in Figure 12.4. The semantics of these operators, and of functions in

the core library generally, are described in Chapter 13 of [Leroy, 1997] and are not repeated

here.

caml light core library = ... -- caml light specific funcon

Two operators do not appear in the operator-table of Figure 12.4: ! and := . This

is because ! has a higher priority than function application, which in turn has a higher

priority than all other operators. Conversely, := has a lower priority than , (tuple

constructor), which in turn has a lower priority than all other operators (see Figure 12.3).

syn assign = sem infix 〈$$〉 syn expr 〈∗∗〉 keyword ":=" 〈〈〈∗∗〉 syn expr
syn deref = sem prefix 〈$$〉 keyword "!" 〈∗∗〉 syn expr

The operators & and or (and their synonyms && and ||) are special because they are

not strict. The expression expr1 & expr2 is equivalent to i f expr1 then expr2 else f a l s e

236

operator syntax = [
(11, [("-", Prefix sem minus), ("-.",Prefix sem minusf)])
, (10, [("**", Infix sem infix RAssoc)])
, (9, [("mod", Infix sem infix LAssoc)])
, (8, [("*", Infix sem infix LAssoc) , ("*.", Infix sem infix LAssoc)

, ("/", Infix sem infix LAssoc) , ("/.", Infix sem infix LAssoc)])
, (7, [("+", Infix sem infix LAssoc) , ("+.", Infix sem infix LAssoc)

, ("-", Infix sem infix LAssoc) , ("-.", Infix sem infix LAssoc)])
, (6, [("::", Infix sem cons RAssoc)])
, (5, [("@", Infix sem infix RAssoc), ("^", Infix sem infix RAssoc)])
, (4, [("=", Infix sem infix LAssoc) , ("<>", Infix sem infix LAssoc)

, ("==", Infix sem infix LAssoc) , ("!=", Infix sem infix LAssoc)
, ("<", Infix sem infix LAssoc) , ("<.", Infix sem infix LAssoc)
, ("<=", Infix sem infix LAssoc) , ("<=.", Infix sem infix LAssoc)
, (">", Infix sem infix LAssoc) , (">.", Infix sem infix LAssoc)
, (">=", Infix sem infix LAssoc) , (">=.", Infix sem infix LAssoc)])

, (3, [("not",Prefix sem prefix)])
, (2, [("&", Infix sem and LAssoc) , ("&&", Infix sem and LAssoc)])
, (1, [("or", Infix sem or LAssoc) , ("||", Infix sem or LAssoc)])]

syn operators :: SymbExpr Token Funcons
syn operators = fromOpTable "operators" (opTableFromList operator syntax) syn expr

sem infix e1 op e2 = sem apply (sem prefix op e1) e2

sem prefix op e1 = sem unary app (sem op var op) e1

Figure 12.4: Relative priorities and associativity of operators.

unless prefix & is redefined by the programmer. Similarly, the expression expr1 or expr2

is equivalent to i f expr1 then t rue else expr2, unless prefix or is redefined.

sem and e1 op e2 = else [sequential [effect [bound [sem op var op]], sem infix e1 op e2]
, sem ite e1 e2 (Just (bool False))]

sem or e1 op e2 = else [sequential [effect [bound [sem op var op]], sem infix e1 op e2]
, sem ite e1 (bool True) (Just e2)]

The programmer can change the behaviour of & and &&, as well as the behaviour of or

and ||, separately.

The core library defines minus and minus float for the prefix operators − and −.

respectively, avoiding overlap with the identifiers prefix − and prefix −. which are used

for the infix versions of these operators:

sem minus e1 = sem unary app (string "minus") e1

sem minusf e1 = sem unary app (string "minus_float") e1

The operator :: is special in that it is the constructor of a variant value. Just as other

237

constructors, it is therefore uncurried, and receives a single pair as argument. The expression

expr1 :: expr2 is therefore equivalent to prefix :: (expr1, expr2).

sem cons e1 op e2 = sem prefix op (tuple [e1, e2])

12.8 Module Implementations

A module is a sequence of ‘phrases’, where each phrase is either a type definition, an excep-

tion definition, a value definition, a directive, or a top-level expression.

syn phrase :: SymbExpr Token (Funcons → Funcons)
syn phrase = "impl-phrase"

〈:=〉 sem phrase expr 〈$$〉 syn expr
〈||〉 sem phrase let 〈$$ keyword "let" 〈∗∗〉 syn rec 〈∗∗〉 syn local defs
〈||〉 sem global variants 〈$$〉 syn type
〈||〉 sem global variants 〈$$〉 syn exc
〈||〉 id 〈$$ keyword "#" 〈∗∗ id lit 〈∗∗ string lit -- directives

sem global variants envs rest = scope [map unite envs, rest]

Phrases are executed in order, and their effects may influence subsequent phrases. Di-

rectives control the behaviour of compilers and are ignored here. Top-level expressions are

evaluated and the resulting value is converted to a string and printed to the standard output.

After a top-level expression is executed, the next phrase is executed uninfluenced.

sem phrase expr e1 next = sequential [show excs (print [cl output e1]) null ,next]

-- report any uncaught exceptions
show excs code def = handle thrown [code, sequential [print [cl exc output given], def]]

-- funcon caml light show is a language specific funcon for pretty-printing values
cl output e1 =

string append [string "#- : <type> = ", caml light show [e1], string "\n"]
cl exc output e1 =

string append [string "Uncaught exception: ", caml light show [e1], string "\n"]

If evaluating the expression raises an exception, the exception is converted to a string and

printed to the standard output — in a way which distinguishes it from a regular value —

and the next phrase is executed uninfluenced.

A value definition is a l et expression without an in-clause. The bindings introduced

by the definition range over the subsequent phrases.

sem phrase let rec lbs next = sem let rec (fst lbs, show excs (snd lbs) (map [])) next

238

If computing the bindings raises an exception, the exception is converted to a string and

printed to the standard output. In this case, the next phrase is executed without any new

active bindings.

A type definition introduces a new type, which is either a variant type, a record type, or

a type abbreviation. Type definitions are written following the keyword type and, if more

than one, are separated by and.

syn type :: SymbExpr Token [Funcons]
syn type = "type-definition"

〈:=〉 concat 〈$$ keyword "type" 〈∗∗〉 multipleSepBy1 syn type def (keyword "and")

syn type def :: SymbExpr Token [Funcons]
syn type def = "typedef"

〈:=〉 id 〈$$ syn params 〈∗∗ id lit 〈∗∗ keyword "=" 〈∗∗〉 syn decl constrs
〈||〉 [] 〈$$ syn params 〈∗∗ id lit 〈∗∗ keyword "=" 〈∗∗ syn decl labels
〈||〉 [] 〈$$ syn params 〈∗∗ id lit 〈∗∗ keyword "==" 〈∗∗ syn tyexpr
〈||〉 [] 〈$$ syn params 〈∗∗ id lit -- abstract types

syn params :: SymbExpr Token [String]
syn params = "type-params"

〈:=〉 satisfy []
〈||〉 (:[]) 〈$$ keyword "’" 〈∗∗〉 id lit
〈||〉 parens (multipleSepBy1 (keyword "’" ∗∗〉 id lit) (keyword ","))

syn decl labels :: SymbExpr Token [String]
syn decl labels = "label-decls" 〈:=〉 braces (multipleSepBy1 syn decl label (keyword ";"))

syn decl label :: SymbExpr Token String
syn decl label = "label-decl" 〈:=〉 syn mutable ∗∗〉 id lit 〈∗∗ keyword ":" 〈∗∗ syn tyexpr

syn mutable = maybe False (const True) 〈$$ optional (keyword "mutable")

A variant type definition describes its constructors and binds the names of its construc-

tors to their implementation. The bindings are active during the execution of subsequent

phrases.

syn decl constrs :: SymbExpr Token [Funcons]
syn decl constrs = "const-decls" 〈:=〉 multipleSepBy1 syn decl constr (keyword "|")

syn decl constr :: SymbExpr Token Funcons
syn decl constr = "const-decl"

〈:=〉 sem null constr 〈$$〉 alt id lit
〈||〉 sem constr 〈$$〉 alt id lit 〈∗∗ keyword "of" 〈∗∗ syn mutable 〈∗∗ syn tyexpr

sem null constr i = bind [string i , variant [string i , null]]
sem constr i = bind [string i , function [closure [variant [string i , args]]]]

where args = if true else
[is in type [given , tuples [values ∗]]
, tuple [interleave map [allocate initialised variable [values , given]

, tuple elements [given]]]
, allocate initialised variable [values , given]]

239

A constructor receiving at least one argument may be applied to a single argument or to a

tuple of arguments. In both cases, the arguments need to be assigned to newly allocated

variables. The definition of sem constr above checks whether multiple arguments are given

in a tuple (with is in type). If this is the case, interleave map is used to allocate fresh

variables for all elements of the tuple. Otherwise, one fresh variable is allocated for the

single given argument.

Exception values are the values of a built-in variant type exn. An exception definition

extends this type with one or more constructors.

syn exc :: SymbExpr Token [Funcons]
syn exc = "exception-definition"

〈:=〉 keyword "exception" ∗∗〉 multipleSepBy1 syn decl constr (keyword "and")

Record type definitions and type abbreviations introduce no bindings.

The phrases of a module are followed by a double semicolon.

syn module :: SymbExpr Token Funcons
syn module = "module" 〈:=〉

sem module 〈$$〉 foldr multiple (syn phrase 〈∗∗ keyword ";;") null

sem module body = initialise [scope [caml light core library , body]]
where initialise b = initialise storing [initialise binding [initialise giving b]]

A module is executed by executing its phrases in order. The core library is loaded by default.

12.9 Interpretation

The following code fragment defines a main function for interpreting Caml Light programs

by parsing them, translating them to funcon terms, and executing them.

main = do
args ← getArgs
case args of

[] → putStrLn "Please provide me with an input file"

f : opts → go f opts
where

go :: FilePath → [String]→ IO ()
go f opts = do

str ← readFile f
let tokens = lexer str
let fcts = parse syn module tokens
if (null fcts)

240

then putStrLn "no parse"

else runWithExtensions CL.funcons CL.entities CL.types opts (Just (head fcts))

The function lexer :: String → [Tokens] is imported from the module Lexer (not given).

The Caml Light specific funcons are exported by the module Funcons.CamlLight.Library,

which is imported under the qualified name CL.

241

Chapter 13

Tool Evaluation

References The material in Section 13.1 is taken from [Van Binsbergen et al., 2018].

The data on Caml Light differs slightly because the syntax description of Caml Light in

this thesis is a modified version of the description used to collect the data in the paper.

In this chapter we investigate the runtime efficiency of the main tools of the gll and

funcons-tools packages (Section 13.1 and Section 13.2) and reflect on using these tools in

the case studies of the previous chapters (Section 13.3).

13.1 Parsing with BNF Combinators

In this section we evaluate the efficiency of the BNF combinators provided by the gll

package. Compared to gll, the code fragments of Chapter 5 omit several features that

improve usability. For example, the implementation of FUN-GLL in gll can produce

BSPPFs, not just EPNs, and throws error messages to aid debugging. Most significant

are the omission of lookahead and ambiguity reduction. Ambiguity reduction strategies,

such as longest match, are implemented in variations of 〈::=〉, 〈||〉, and 〈∗∗〉 by filtering the

pivots extracted from an EPN set during the semantic phase. Configuration options en-

able ambiguity reduction strategies globally. Lookahead is performed in the way described

by [Scott and Johnstone, 2013]: functions descend and ascend yield only the descriptor

((x , α, β), l , k) if the k-th terminal of the input is in the lookahead-set pre-computed for

242

(x , α, β).

The gll package exports two modules — GLL.Combinators.Interface and

GLL.Combinators.BinaryInterface — providing BNF combinators that are very similar

superficially, but differ significantly internally. The core combinators of BinaryInterface

specialise the core combinators of Interface, converting all expressions to symbol expres-

sions as in §5.3.4. The grammars generated by the underlying grammar combinator ex-

pressions are binarised in the same sense as P3’s internal grammars [Ridge, 2014]. The two

modules are often interchangeable, as the combinators of Interface have more general types

than those of BinaryInterface. Specifically, when a syntax description is originally written

with the combinators of BinaryInterface, one can change the import of BinaryInterface

to Interface and the syntax description is still valid. In this section we take advantage of

this fact and evaluate the two modules, demonstrating the effects of grammar binarisation

and lookahead on running FUN-GLL.

Parser evaluation The syntax descriptions of three software languages written with the

BNF combinators are evaluated: ANSI-C, Caml Light, and CBS. The syntax description

of Caml Light is given in Chapter 12. The syntax description of CBS has been taken from

the CBS compiler (package funcons-intgen). The syntax description of ANSI-C has been

generated and is based on the grammar originally given in [Kernighan and Ritchie, 1988].

The running times include a lexicalisation phase which produces a sequence of tokens (values

of type Token, see §5.1.1), given as input to the parsing phase. For each language we selected

considerable software-language engineering projects: a parser generator in ANSI C, a Caml

Light compiler in Caml Light, and a complete semantic specification in CBS. The test files

are the result of composing varying selections of source files taken from these projects. The

tests have been executed on a laptop with quad-core 2.4GHz processors and 8GiB of RAM,

under Ubuntu 14.04.

The data for ANSI-C is given in Table 13.1 and is visualised in Figure 13.1. The syntax

description is a direct transcription of the grammar listed in [Kernighan and Ritchie, 1988],

which is written in BNF without extensions. The grammar is nondeterministic and left-

recursive. The internal grammar given to FUN-GLL has 229 alternates and 71 nonterminals.

When written with BinaryInterface, a large number of alternates and nonterminals is

243

Tokens 1515 8411 15589 26551 36827
Flexible 0.44 2.46 4.83 7.86 10.40
+lookahead 0.50 2.77 4.75 7.23 10.27
Binarised 1.12 7.17 13.47 22.47 32.41
+lookahead 1.31 6.67 12.02 18.9 25.30

Table 13.1: Parsing ANSI-C files (in seconds).

Figure 13.1: Visualisation of the data in Table 13.1.

generated: the internal grammar has 848 alternates and 690 nonterminals. The running

times of FUN-GLL are strongly affected by the binarisation of the grammar, differing with

a factor between 2.4 and 2.6 with lookahead and between 2.5 and 3.1 without lookahead.

Lookahead only has a significant effect when the grammar is binarised.

The data in Table 13.2 (visualised in Figure 13.2) shows the running times for Caml

Light. The syntax description is that of Chapter 12, which is based on the grammar of

the Caml Light reference manual [Leroy, 1997]. The grammar is highly nondeterministic

and has many sources of ambiguity. In particular, the grammar contains a large and highly

nondeterministic nonterminal for expressions. The combinator description of the grammar

makes heavy use of abstraction to capture EBNF notations, and some coercions between

combinator expressions are necessary when written with Interface. The difference in size

between the grammars given to FUN-GLL are therefore smaller: 300 versus 694 alternates

244

Tokens 1097 2813 4534 8846 15910 28703
Flexible 1.69 3.23 5.09 11.51 17.52 35.94
+lookahead 1.74 3.21 5.32 10.87 17.84 33.08
Binarised 2.07 4.18 6.90 15.40 25.59 49.79
+lookahead 2.06 3.90 6.50 13.06 21.56 39.62

Table 13.2: Parsing Caml Light files (in seconds).

Figure 13.2: Visualisation of the data in Table 13.2.

and 139 versus 533 nonterminals. The negative effect of grammar binarisation is also smaller,

around 1.2 with lookahead and between 1.22 and 1.46 without lookahead.

Evaluating the semantic phase The data in Tables 13.1 and 13.2 exclude the semantic

phase. The data in Table 13.3 (visualised in Figure 13.3) shows the running times of

parsing CBS files, applying the semantics phase with disambiguation, and pretty-printing

the resulting abstract syntax tree. The effect of binarising the grammar is not as big as

in the case of ANSI-C: between 1.7 and 2.1 with lookahead (without lookahead omitted).

The grammar given to FUN-GLL by Interface has 257 alternates and 126 nonterminals,

versus 771 alternates and 640 nonterminals by BinaryInterface. The effect of lookahead

is dramatic and lookahead is required to keep the running times under control as the input

grows.

245

Tokens 2653 14824 17593 21162 26016
Flexible 1.36 12.01 15.24 20.17 29.54
+lookahead 1.10 5.56 6.54 7.86 9.57
Binarised 2.94 41.83 – – –
+lookahead 2.31 9.51 11.38 13.48 16.62

Table 13.3: Parsing and pretty-printing CBS files (in seconds).

Figure 13.3: Visualisation of the data in Table 13.3.

The syntax descriptions used in this evaluation have not been refactored to enhance

parser performance. Running times will decrease when the grammars are rewritten to

avoid, for example, nonterminal generation (when using Interface) and nondeterminism.

Constant overhead The running times include a constant component depending1 on the

size of the grammar, because the internal grammar, and lookahead sets for the grammar, are

computed the first time a particular syntax description is used for parsing. This is a waste

when a compiler or interpreter does not use the same syntax description a second time (with-

out being restarted itself). Dureg̊ard and Jansson have developed an ‘embedded parser gen-

erator’ library using meta-programming, in which Template Haskell fragments define a gram-

mar for which a parser is generated at compiletime [Dureg̊ard and Jansson, 2011]. Similarly,

Devriese and Piessens have used Template Haskell to perform grammar transformation on

the grammars generated by their combinators at compiletime [Devriese and Piessens, 2011].

1But crucially independent of the size of the input sentence.

246

We expect these techniques are applicable to the BNF combinators so that grammar gen-

eration and lookahead computation can be performed at compiletime, thus avoiding the

constant overhead.

13.2 Interpreting Funcon Terms

The funcon term interpreters of the Haskell Funcon Framework are used to verify CBS speci-

fications [Van Binsbergen et al., 2016, Van Binsbergen et al., 2019], replacing the Prolog in-

terpreters previously used by the plancomps project [Bach Poulsen and Mosses, 2014b].

The interpreters have been developed to gain confidence in the correctness of language spec-

ifications by executing programs that test specific aspects of the specified language. This

section provides empirical data demonstrating that the funcon term interpreters are fit for

purpose.

The Haskell Funcon Framework has been used to test the CBS specifications of the

example languages provided as part of the beta release of CBS (IMP, Simple, MiniJava, SL,

and OCaml Light), the case studies of this thesis, and the CBS specification of a significant

subset of C#. The experience with these languages has shown that:

• Specifications can be tested for the most part with programs that execute in a matter

of seconds. However, specific programs may prove difficult for reasons related to the

specifics of individual funcon definitions

• Refocussing is crucial and speeds up the execution of a large variety of programs. The

impact of refocussing is most significant on programs that involve iteration and nested

function calls, making it possible to execute such programs with larger inputs

• The backtracking approach may undo the results of potentially costly rewrites and

computations as part of rule selection. The order in which rules are considered can

therefore significantly impact performance

To confirm the usability of the tools, we include Table 13.4, which has been taken

from [Van Binsbergen et al., 2019]. The table compares the funcon term interpreter of the

Simple language with the K tools of the K framework (in which Simple was originally

defined), by running a number of test programs that come bundled with distributions of

247

Test Program Funcon Term Interpreter K tool
Unoptimised Refocussing Enabled

exception tests 1 to 15 11.4 1.67 30.3
div-nondet 0.2 0.06 1.9
factorial 2.8 0.18 1.9
collatz 11.3 0.53 1.9

running total 25.6 2.43 35.9

higher-order - 3.02 10.1
matrix - 5.84 2.2
sortings - 6.11 2.9

running total - 17.4 51.1

Table 13.4: Running times in seconds of the Simple funcon interpreter and K tool.

the K tool [Lazar et al., 2012, The K Framework, 2018]. These results were produced on

a virtual private server with four 2.2GHz virtual CPUs and 8GiB of RAM, under Ubuntu

18.04. The Haskell funcon modules were compiled using GHC 8.0.2. The K specification

of Simple was compiled with the Java back end of version 5 of the K tool and loaded in

server-mode to avoid compilation overhead on each run. Several runs of ‘JVM warm up’

have been performed. The numbers are the average runtimes of 10 runs.

Without refocussing enabled, the tests higher-order, matrix and sortings cause the

memory to overflow. These tests involve a relatively large number of function calls or

loop-iterations, which result in considerable growth of the funcon term under evaluation,

thus increasing the overhead of decomposing and recomposing the term at each step of the

small-step evaluation. Decomposition involves potentially a lot of backtracking and undoing

context-free rewrites unnecessarily, as discussed in §9.2.1. With refocussing, these programs

execute within two to four seconds.

The data for Simple is exemplary for the behaviour of funcon term interpreters on the test

programs of the aforementioned languages. In the next subsections we focus on the effects

of rule orderings and refocussing. All tests that follow have been executed on a laptop with

quad-core 2.4GHz processors and 8GiB of RAM, under Ubuntu 14.04 with GHC 8.2.1. The

tests are performed with refocussing enabled, unless otherwise specified.

13.2.1 The Costs of Backtracking

The funcon translation of Mini is such that every procedure invocation involves handle-

return (although in principle handle-return is redundant under some circumstances, e.g. if

248

a procedure has no return statements). As this section demonstrates, the implementation of

handle-return has a tremendous influence on the efficiency with which procedure invocations

are evaluated. Consider its definition:

Funcon handle-return(:⇒T) :⇒T (13.1)

Rule
X

abrupted()−−−−−−→ X ′

handle-return(X)
abrupted()−−−−−−→ handle-return(X ′)

(13.2)

Rule
X

abrupted(returned(V :values))−−−−−−−−−−−−−−−−−→ X ′

handle-return(X)
abrupted()−−−−−−→ V

(13.3)

Rule
X

abrupted(V ′:∼returning)−−−−−−−−−−−−−−→ X ′

handle-return(X)
abrupted(V ′)−−−−−−−−→ X ′

(13.4)

Rule handle-return(V : T) ; V (13.5)

Each computational rule is only applicable if there is a −→-transition on X . Which of

the computational rules is applicable depends on the presence of an abrupted signal and, if

there is a signal, whether it is a signal of type returning. The funcon term interpreter may

transition X three times to determine which rule is applicable, discarding the result of each

unsuccessful attempt by backtracking. The order in which these rules are considered makes

a big difference, because X may be an expensive computation, which we demonstrate with

an example. The following Mini programs print the greatest common divisor (GCD):

1 procedure gcd (var p , var q) begin
2 i f (p == q) then return p ;
3 else i f (p < q) then return (gcd (q , p)) ;
4 else return (gcd (p−q , q)) ;
5 end
6 print (gcd (2 2 , 8)) ;

1 procedure gcdp (var p , var q) begin
2 i f (p == q) then print p ;
3 else i f (p < q) then gcdp (q , p) ;
4 else gcdp (p−q , q) ;
5 end
6 gcdp (2 2 , 8) ;

249

Figure 13.4: Running times of GCD programs with different rule order for handle-return.
The x-axis shows the number of recursive calls.

The second program (gcdp) prints the GCD as soon as it is found, whereas the first program

(gcd) returns the GCD for subsequent printing. Running times for these two programs are

given in Figure 13.4. If the rules of handle-return are considered in the order they are written

above, then gcd exhibits exponential running times in the number of recursive calls, whereas

gcdp exhibits small, linear growth (left-hand side of Figure 13.4). If rules (13.2) and (13.3)

are swapped then, the growth in running times of the two programs is reversed (right-hand

side of Figure 13.4). This experiment shows that the details of funcon definitions may

have tremendous impact on the efficiency of the funcon interpreters generated from them.

Moreover, the experiment shows that it is not possible to determine the optimal rule order

by inspecting the rules alone.

Besides premises, backtracking also undoes the work of any side-conditions that may have

been executed. As a result, many rewrites may be undone. However, because rewriting is

context independent, there is never a need to undo rewrites. It would therefore be beneficial

to somehow memoise the results of rewrites, for example by maintaining the funcon term in

a mutable data structure and letting rewrites mutate the funcon term directly.

In general, the negative impact of backtracking can be reduced by ‘left-factoring’: merg-

ing the common parts of rules and pushing the point to which backtracking reverts for-

ward [Pettersson, 1999]. In the case of handle-return, this involves separating: (1) perform-

ing the transition from X to X ′ and (2) matching any abrupted signal that emerges from

that transition against a pattern. When separated, the work involved with (1) can be shared

across rule implementations so that backtracking only undoes the work involved with (2).

The translation of CBS rules to IML, discussed in Chapter 8, separates premises in this

way. Moreover, the CBS to IML translation makes rewriting explicit. The IML definitions

250

of funcons are therefore a suitable target for left-factoring.

13.2.2 Dynamic Refocussing

This subsection looks at the effects of refocussing, confirming that the implementation of dy-

namic refocussing in the Haskell Funcon Framework has similar effects as originally reported

for the Prolog interpreters [Bach Poulsen and Mosses, 2014b].

This experiments involves three Caml Light programs: another recursive GCD program,

a recursive Fibonacci program, and an iterative factorial program:

1 l et rec gcd = fun p q −>
2 i f p == q then p
3 else i f p < q then gcd q p
4 else gcd (p−q) q ; ;
5 gcd 230 1 7 8 ; ;

1 l et rec f i b = fun 0 −> 0
2 | 1 −> 1
3 | x −> f i b (x−1) + f i b (x−2) ; ;
4 f i b 1 1 ; ;

1 l et prod = r e f 1 ; ;
2 for i = 1 to 17 do prod := ! prod ∗ i done ; ;
3 ! prod ; ;

The running times of these programs with and without refocussing are shown in Figure 13.5.

The GCD program has been tested with inputs that result in one to 17 function calls, the

Fibonacci program with inputs 1 to 11, and the factorial program with one to 17 iterations.

Without refocussing, the GCD and Fibonacci program show incredible growth in running

times, making it impossible to execute these programs with non-trivial input. The running

times of the Factorial program grow linearly with about a second per additional iteration.

These runtimes are heavily affected by the large core library of Caml Light, which appears as

an environment in the first argument of scope in the funcon terms generated for these pro-

grams. The first argument of scope is type-checked to ensure that it is of type environments

(see Rules (8.93) and (8.94) on page 168). Type-checking maps involves decomposing the

map and type-checking all its keys and values. Without refocussing, this needs to happen

repeatedly for each occurrence of scope, and backtracking undoes the action when selecting

between the rules of scope.

251

Figure 13.5: Three Caml Light programs with and without dynamic refocussing.

With refocussing, the Fibonacci program grows exponentially, as expected, at a much

lower rate than without refocussing. Particularly positive is that the growth-rate is not

greater than the golden ratio, i.e. the funcon term interpreter does not add to the worst-

case complexity of the program, which is O(1.618n). With refocussing, both the GCD and

factorial program grow linearly at a very slow pace.

13.3 Case Study Evaluation

This section reflects on the formal descriptions of syntax and semantics in the Mini and

Caml Light case studies specifically, and the usability of the tools in general.

13.3.1 BNF Combinators

In our experience, the BNF combinators are practical and easy to use. Besides the case

studies, we have used the gll library to describe the syntax of ANSI-C for the experiments

of Section 13.1, CBS as part of the CBS compiler, IML as part of the IML interpreter,

the lambda-calculi in [Mitchell et al., 2018] and [Van Binsbergen, 2018], as well as funcon

terms and configurations files within the Haskell Funcon Framework. We found these syntax

descriptions easy to develop, verify and debug. And as demonstrated in Section 13.1, FUN-

GLL shows acceptable running times on grammars generated from combinator expressions.

The benefits of developing syntax abstractly, without having to apply factorisation or left-

recursion removal, are certainly worth costlier generalised parsing. Moreover, if parsing

252

speed is essential, the descriptions can be refactored for efficiency.

With the BNF combinators of the gll package, it has been possible to define the syntax

of Mini and Caml Light comfortably and concisely. A syntax description is suggestive of

a grammar superficially, and when executed as a parser, the behaviour of the parser is in

accordance with this grammar. The internal grammar generated from the combinator ex-

pressions, and given to the underlying parser procedure, can be analysed for the purposes

of debugging or efficiency (by applying grammarOf). For debugging, we find that analysing

the internal grammar is not necessary in practice, because individual symbol expressions

can be tested in isolation and because analysing the superficial grammar is often sufficient.

When a program is not recognised by the parser, the provided error messages are often

informative enough to quickly find the mistake in the input string or in the syntax de-

scription. To improve parser efficiency, it may be helpful to analyse the internal grammar,

especially when the details of a nonterminal’s alternates are separated, as we have chosen

to do in our case studies. For example, from the definition of syn command alone (given

in the introduction of Chapter 11), it is not possible to determine whether the grammar

generated for syn command is left-factored, recursive, nondeterministic, or ambiguous. We

have chosen to separate the alternates of expressions, commands, and declarations so that

every language construct can be introduced separately, grouping together the construct’s

informal explanation and its syntactic and semantic details. This makes it harder to deter-

mine the grammar generated for syn command , without inspecting the internal grammar,

as the necessary details are separated across pages.

The syntax descriptions of Mini and Caml Light have been developed with a focus on

clarity rather than efficiency. Refactoring the syntax description to improve parser efficiency

was not necessary, despite the abstract nature of the described grammar. The 50+ programs

developed to test the specification of Mini are small and simple. The Caml Light syntax

description enables parsing large input files, as demonstrated in Section 13.1. The types of

the BNF combinators are flexible, using the type-class mechanism explained in Section 5.3.3,

and they are as easy to use as conventional parser combinators. The semantic values of

combinator expressions are strongly-typed, but the case studies hardly take advantage, as

most semantic functions return a funcon term and all funcon terms are of type Funcons

(more about this in §13.3.3).

253

Termination Although a generalised parser is guaranteed to terminate, grammar gener-

ation may not terminate, which is a significant concern whilst syntax descriptions are being

developed. Nontermination is avoided in most cases by consistently inserting nonterminal

names manually when symbol expressions are defined, as we have done in our case stud-

ies. However, as language definitions grow, are being revisited, or are worked on by several

people, it is hard to guarantee that inserted nonterminal names are unique. Moreover, ac-

cidentally using a nonterminal name a second time will result in unexpected behaviour for

which the cause may not be easy to determine. Termination of grammar generation cannot

be guaranteed generally, as discussed in §3.2.3 by giving the scales example. When defining

a recursive combinator that combines grammar fragments, care must be taken to ensure

that the inserted nonterminal reflects the parameters.

A pure alternative to nonterminal insertion is provided by [Devriese and Piessens, 2012],

in which primitive recursion constructs are defined with datatype generic programming.

Impure alternatives typically involve automatically generated references to represent non-

terminals [Gill, 2009, Claessen and Sands, 1999, Ljunglöf, 2002].

Ambiguity reduction Syntax descriptions rely on (versions of) combinators that per-

form ambiguity reduction during the semantic phase, e.g. longest match, 〈:=, and 〈∗∗〉〉〉.

Combinators such as 〈:= and 〈∗∗〉〉〉 do not compromise the clarity of combinator expres-

sions as they are variations of core combinators which behave identically outside the semantic

phase. However, a combinator such as longest match somewhat obfuscates the combinator

expressions in which it appears, as it has no effect on the described syntax, i.e. the inter-

nal grammar. Ideally, ambiguity reduction strategies are given separately, as in CBS and

SDF3/Spoofax [Kats and Visser, 2010]. This is in conflict with the combinator approach,

however.

The current ambiguity reductions strategies are low-level, defined directly on EPN sets,

and may not comfortably deal with certain ambiguities. Further research is required to

determine which high-level strategies are necessary, to discover how these strategies are

realised by filtering EPN sets, and to determine how these strategies are best made available

to the user.

254

13.3.2 Translation

An important property of a component-based approach is that the components can be used

successfully without the need to be continuously conscious of the precise details of the

components’ definitions, as without this property, writing formal specification would not be

much easier. We believe that the case studies show that the core BNF combinators and the

majority of the funcons can be used in this way, especially those combinators and funcons

which occur frequently. For this reason, it is the aim that reusable components have names

suggestive of their behaviour and that they are accompanied by sufficient documentation.

Shallow embedding The semantic functions associated with combinator expressions

translate concrete ‘flat’ representations of programs into funcon terms. No intermediate

abstract syntax representation of the program is formed. An advantage of such a direct

translation is that the resulting language definitions are more concise.

With an intermediate representation, however, it is easier to perform static analyses,

for example to determine whether syntactically valid inputs are actually valid programs.

Throughout Chapter 11, we have given constraints that restrict the validity of Mini pro-

grams. Static analyses could determine whether programs satisfy these constraints. More-

over, the Caml Light case study reveals that it may be beneficial to use an intermediate

representation as a vehicle for statically computing information about a program as part of

its translation. For example, for the expression l et rec local defs in expr it is necessary

to compute the identifiers of local defs that can be bound recursively in order to translate

the expression to a funcon term. However, local defs needs to be translated itself as well.

This has been achieved by taking ([Funcons],Funcons) as the semantic domain of local

definitions, thus ‘fusing’ two computations together. This makes the semantic functions

sem let var , sem let pat , and sem letbs harder to reuse. With an intermediate representa-

tion, we could simply have defined a separate semantic function for each computation. A

similar example is given by Caml Light’s function definitions. The translation of function

definitions involves curry n , currying an n-ary function. To apply curry n , the translation

thus needs to compute the arity of the function being defined, thus we need two interpreta-

tions of function definitions (see sem fun and sem mcase).

The choice of whether to use an intermediate representation in an embedded domain

255

specific language is known as the choice between a shallow or deep embedding of that lan-

guage. Using this terminology, we have chosen for a shallow embedding of Mini and Caml

Light within Haskell, where the semantic functions take the role of syntactic operators.

Theoretically, shallow and deep embeddings are closely related [Gibbons and Wu, 2014],

but in practice implementations differ significantly. In general, a shallow embedding is usu-

ally easier to extend, and its implementation more succinct. With a deep embedding it

is easier to perform program transformations and static computations. Techniques have

been developed to overcome the practical differences between shallow and deep embed-

dings [Svenningsson and Axelsson, 2013, Carette et al., 2007], of which the most notable is

the ‘finally tagless’ style [Devriese and Piessens, 2012, Carette et al., 2007].

Multiple interpretations For Caml Light, we have given different interpretations to

string literals depending on whether they appear in expressions or patterns. In an expression,

a string is interpreted as a list of variables holding characters, whereas in a pattern a string

is simply a list of characters. The first interpretation (sem string) is applied as part of the

syntax description of constants (syn const). The syntax description of constants is reused in

the syntax description of patterns (syn pat). To give the alternative interpretation (string)

to string literals in patterns, we have introduced syn pat const :

syn pat const :: SymbExpr Token Funcons
syn pat const = "constant-pattern" 〈:= sem pat string 〈$$〉 string lit

〈||〉 match constant 〈$$〉 syn const

match constant p = pattern [closure [match [structural assigned [given], p]]]
sem pat string s = match constant (string s) -- no need to initialise variables

A string literal is recognised by both alternatives of syn pat const , each giving an alternative

interpretation. We (ab)use ambiguity reduction to indicate that the first alternative of

syn pat const is preferred, and thus that the semantic function sem pat string gives the

correct interpretation. This is not ideal, as we have introduced unnecessary ambiguity to

the syntax description with the purpose of simplifying the funcon translation.

No interpretations Caml Light type-expressions do not influence the behaviour of pro-

grams in which they appear. However, combinator expressions must produce a semantic

value. In the syntax description of type-expressions (syn tyexpr), we have chosen the value

256

() (of type ()) which gives no information. The fact that () appears as a semantic value in

most of the alternatives of syn tyexpr distracts from the relevant syntactic details.

Efficiency In our experience it has not been necessary to refactor syntactic descriptions

for the purposes of efficiency in order to execute test programs comfortably. The efficiency of

funcon term interpretation is more precarious and, in the case of Caml Light, modifications

to the funcon translation have had significant impact on the runtimes with which test

programs are executed. In general, it may thus be necessary to refactor funcon translations

to improve efficiency of interpretation, which is undesirable, especially when it compromises

clarity. Some of these issues have been discussed in Section 13.2.

13.3.3 Funcon Implementations

The definitions of semantic functions involve applying the smart constructors exported by

Funcons.EDSL of the funcons-tools package, applying smart constructors generated for

language specific funcons (e.g. mini show , caml light show , and curry n), applying other

semantic functions, as well as applying auxiliary functions (e.g. given1 and vector length).

Auxiliary functions like given1 , vector length, and then, and else cases abbreviate com-

mon patterns and increase conciseness through code reuse. Semantic functions themselves

can be reused, which makes it easy to define additional constructs as syntactic sugar (see

Mini’s for-loops or Caml Light’s value definitions as examples). The majority of smart

constructors is generated from CBS files, including the language specific funcons. These

CBS files must be studied in order to understand the semantics of Mini and Caml Light in

detail. As language definitions, Chapter 11 and 12 are therefore not self-contained. We do

think that most funcon names are suggestive of their behaviour or usage, and that is there-

fore possible to get a good intuition about the semantics of Mini and Caml Light, without

studying the funcons themselves.

Funcon term correctness The smart constructors are all2 of type [Funcons]→ Funcons

and provide no information that can be exploited by a Haskell compiler to determine whether

their applications are meaningful. This is a significant weakness; there are no static guar-

2Except those for some built-in nullary funcons such as values.

257

antees about the correctness of funcon translations. Basic arity-checking and type-checking

would be able to prevent many common errors. For example, if a semantic function involves

the application of several smart constructors, it is easy to misplace a closing bracket and

provide a term as an argument to the wrong funcon. When writing a translation, it is up to

the developer to keep track of the kinds of funcon terms produced by semantic functions.

For example, all forms of Mini commands should yield null as a result, and Caml Light

patterns should evaluate to patterns. These are properties that a compiler should be able

to check. A consistent naming policy can be introduced as a remedy.

At the time of writing, the funcon term interpreters of the Haskell Funcon Framework do

not always provide error messages that make it easy to diagnose errors in funcon terms. It

has been necessary to execute programs in a step-by-step fashion (using the --max-restart

option) to find errors whilst developing the case studies of this thesis, and whilst testing

CBS’ example languages. This process can be tedious and time-consuming. Although the

error messages of funcon term interpreters can be improved, we expect that biggest gain is

made by generating smart constructors with more informative types.

258

Appendix A

Generalised Parsing

A.1 Equivalence of BPTs and Big-Step Derivations

Theorem A.1.1.

〈α, l, r〉 ⇒γ I ⇐⇒ b0 ∈ bpts(γ), lb(b0) = 〈α, l, r〉, frontierγ(b0) = I

Proof. Given a proof of 〈α, l, r〉 ⇒γ I, we use structural induction to show that there is a

b0 ∈ bpts(γ) with lb = 〈α, l, r〉 and frontierγ(b0) = Il,r.

If the proof is by application of term, then α ∈ T (γ), r = l + 1 and I = α. Thus

〈〈α, l, r〉, []〉 is a valid BPT with frontier I.

If the proof is by application of eps, then α = ε = I and l = r. Thus 〈〈α, l, r〉, []〉 is a

valid BPT with frontier I.

If the proof is by application of nterm, then α ::= β ∈ prods(γ), and there is a proof

of 〈β, l, r〉 ⇒γ I. The induction hypothesis gives a BPT b1 with lb(b1) = 〈β, l, r〉 and

frontierγ(b1) = I. Thus 〈〈α, l, r〉, b1〉 is a valid BPT with frontier I.

If the proof is by application of seq, then α = s1 . . . sn−1sn (with n > 1), there is a

proof of 〈s1 . . . sn−1, l, k〉 ⇒γ u (for some l 6 k 6 r), and there is a proof of 〈sn, k, r〉 ⇒γ v

with I = uv. The induction hypothesis gives a BPT b1 with lb(b1) = 〈s1 . . . sn−1, l, k〉

and frontierγ(b1) = u, and a BPT b2 with lb(b2) = 〈sn, k, r〉 and frontierγ(b2) = v. Thus

259

〈〈α, l, r〉, b1b2〉 is a valid BPT with frontier I.

Given a BPT b0 with lb(b0) = 〈α, l, r〉 and frontierγ(b0) = I, we prove by structural

induction that 〈α, l, r〉 ⇒γ I.

If b0 has no children (n = 0) then I = α (definition of frontierγ). If α ∈ T (γ) then

r = l+ 1 and we can prove 〈α, l, r〉 ⇒γ I by applying term. If α = ε then l = r and we can

prove 〈α, l, r〉 ⇒γ I by applying eps.

If b0 has one child b1, then lb(b1) = 〈β, l, r〉, for some α ::= β ∈ prods(γ), and

frontierγ(b1) = I. The induction hypothesis gives a proof for 〈β, l, r〉 ⇒γ I which we

use in an application of nterm to prove 〈α, l, r〉 ⇒γ I.

Finally, if b0 has two children b1 and b2, then α = s1 . . . sn−1sn (with n > 1), lb(b1) =

〈s1 . . . sn−1, l, k〉 (for some k), frontierγ(b1) = u, lb(b2) = 〈sn, k, r〉, and frontierγ(b2) =

v with I = uv. The induction hypothesis gives proofs for 〈s1 . . . sn−1, l, k〉 ⇒γ u and

〈sn, k, r〉 ⇒γ v which are used in an application of seq to prove 〈α, l, r〉 ⇒γ I.

A.2 Proof of Completeness CDS

Theorem A.2.1. For any grammar γ and string I it holds that 〈U(γ, I), E〉 = cds(γ, I)

Proof. The obligation is to show UC = U(γ, I) for any grammar γ and string I, where

〈UC , E〉 = cds(γ, I). Every element in UC was in R in some call of loopγ,I and vice versa.

By construction, cds is conservative and adds only an item d toR if one the rules R(1)−R(4)

of Definition 2.2.2 justifies it, proving the minimality of UC . More complicated is the proof

that no items have been omitted. The initialisation of R in the first call to loopγ,I shows

R(1) holds on UC (see Definition 2.2.2). For any d ∈ UC there is a call loopγ,I(R,U , E) with

d ∈ R and d 6∈ U and thus a call processγ,I(d,U ∪ {d}) (because items are only added to

U as part of their processing). R(2) holds for UC , as follows from the call and definition of

matchγ,I for each descriptor 〈X ::= α·tβ, l, k〉 ∈ UC (with t terminal). R(3) holds for UC , as

follows from the call and definition of descendγ,I for each descriptor 〈X ::= α·Y β, l, k〉 ∈ UC

(with Y nonterminal). To prove that R(4) holds for UC , we assume arbitrary d1 = 〈X ::=

α · Y β, l, k〉 ∈ UC and d2 = 〈Y ::= δ·, k, r〉 ∈ UC and show d3 = 〈X ::= αY · β, l, r〉 ∈ UC

is implied. There are four cases to consider: there is a call to loopγ,I with d1 = select(R)

260

and d2 ∈ U , a call with d1 ∈ U and d2 = select(R), a call with d1 = select(R) and d2 6∈ U ,

and finally a call with d1 6∈ U and d2 = select(R). In the first two cases, d3 ∈ UC follows

from the call and definition of skipγ,I and ascendγ,I respectively. In the third case, even

though d2 6∈ U in the ‘current’ call to loopγ,I we know, because d2 ∈ UC , that there must be

a future call to loopγ,I which corresponds to the second of our cases (because by that time

d1 ∈ U). In the fourth case, even though d1 6∈ U in the ‘current’ call to loopγ,I we know,

because d1 ∈ UC , that there must be a future call to loopγ,I which corresponds to the first

of our cases (because by that time d2 ∈ U).

A.3 Proving CDS Computes a Complete Set of EPNs

Theorem A.3.1. Given a grammar γ and a string I, EC = ∆(U(γ, i)) when 〈UC , EC〉 =

cds(γ, I).

Proof. According to Theorem A.2.1, UC = U(γ, I), thus every element in U(γ, I) is processed

in some call of loopγ,I by the call cds(γ, I).

A packed node of the form 〈Y ::= ·, k, r, r〉 is in EC only if, and whenever, an item of

the form 〈Y ::= ·, k, r〉 is processed. Thus there is no spurious EPN of that form in EC and

P (3) is satisfied (see Definition 2.2.3).

A packed node of the form 〈X ::= αt · β, l, k, k + 1〉 (with t terminal) is added to EC

only if, and whenever, an item of the form 〈X ::= α · tβ, l, k〉 is processed and Ik = t. Thus

there is no spurious EPN of that form in EC and P (1) is satisfied.

A packed node of the form 〈X ::= αY ·β, l, k, r〉 (with Y nonterminal) is added to EC only

when an item of the form 〈X ::= α ·Y, l, k〉 is processed whilst there is an item 〈Y ::= δ·, k, r〉

in U , or when an item of the form 〈Y ::= δ·, k, r〉 is processed whilst an item of the form

〈X ::= α · Y β, l, k〉 is in U . Thus there is no spurious EPN of the form 〈X ::= αY · β, l, k, r〉

in EC .

To prove that P (2) holds, we show that any d1 = 〈X ::= α · Y β, l, k〉 ∈ UC and d2 =

〈Y ::= δ·, k, r〉 ∈ UC imply that e1 = 〈X ::= αY · β, l, k, r〉 ∈ EC . There are four cases

to consider: there is a call to loopγ,I with d1 = select(R) and d2 ∈ U , a call with d1 ∈ U

and d2 = select(R), a call with d1 = select(R) and d2 6∈ U , and finally a call with d1 6∈ U

and d2 = select(R). In the first two cases, e3 ∈ EC follows from the call and definition of

261

skipγ,I and ascendγ,I respectively. In the third case, even though d2 6∈ U in the ‘current’

call to loopγ,I we know, because d2 ∈ UC , that there must be a future call to loopγ,I which

corresponds to the second of our cases (because by that time d1 ∈ U). In the fourth case,

even though d1 6∈ U in the ‘current’ call to loopγ,I we know, because d1 ∈ UC , that there

must be a future call to loopγ,I which corresponds to the first of our cases (because by that

time d2 ∈ U).

A.4 Building BSPPFs from Extended Packed Nodes

The Binarised Shared Packed Parse Forest (BSPPF) is a specialised data structure us-

ing sharing to represent all possible derivations of some string in O(n3) space. State-of-

the-art complete parsers can construct a BSPPF in worst-case O(n3) time [Tomita, 1985,

Scott and Johnstone, 2010b, Scott and Johnstone, 2013].

Nodes in BSPPFs are labelled with a symbol, a left extent and a right extent (symbol

nodes); a grammar slot, a left extent and a right extent (intermediate node); or a grammar

slot and a pivot (packed node). The definitions of BSPPFs in [Scott and Johnstone, 2010b,

Scott and Johnstone, 2013] also mention epsilon nodes, but we do not use them here. We

denote symbol nodes, intermediate nodes, and packed nodes as (s, l, r), (X ::= α · β, l, r),

and (X ::= α · β, k) respectively, for arbitrary choices of s ∈ S, l, k, r ∈ N, and X ::= α · β

with X ::= αβ ∈ S × S∗.

Intermediate nodes, and symbol nodes labelled with a nonterminal, have one or more

packed node children. The intuition is that each packed node represents particular choices

leading to the successful recognition of a string. Thus, multiple packed nodes under the

same node implies that multiple choices lead to success.

A packed node has either zero, one or two children. If it has no children, the packed

node is labelled with a slot of the form X ::= · (the only slot for the production X ::= ε).

If it has one child, the packed node is labelled with a slot of the form X ::= s · β, with

s ∈ S, and the child is a symbol node labelled with s. If a packed node has two children, it

is labelled with a slot of the form X ::= αs · β and some pivot k (α 6= ε). Its first child is an

intermediate node with label X ::= α · sβ, left extent l (from the grandparent), and right

extent k. The second child is a symbol node labelled with s, left extent k and right extent

262

r (from the grandparent). A BSPPF has one or more symbol nodes as roots.

Figure A.1 shows an BSPPF representing both parse trees of Figure 2.2. The packed

nodes labelled e7 and e6 represent the two possible choices for k when proving 〈AA, 0, 1〉 ⇒γ

a by applying rule im.

S, 0, 1

S ::= AA·, 0 e7

S ::= A ·A, 0, 0

S ::= A ·A, 0 e4

A, 0, 0

A ::= E·, 0 e3

E, 0, 0

E ::= ·, 0

A, 0, 1

A ::= a·, 0 e1

a, 0, 1

S ::= AA·, 1 e6

S ::= A ·A, 0, 1

A, 1, 1

A ::= E·, 1 e5

E, 1, 1

E ::= ·, 1

S ::= A ·A, 0 e2

Figure A.1: BSPPF embedding both parse trees of Figure 2.2.

A.4.1 The Construction

Given a set of extended packed nodes ∆, a BSPPF is constructed by performing the following

actions for each extended packed node in (X ::= αs·β, l, k, r) ∈ ∆ (in any order). (Extended

packed nodes of the form (X ::= ·β, l, k, r) can be ignored.)

1. Create packed node p = (X ::= αs · β, k), and:

• If β = ε, make p a child of the symbol node (X, l, r) (which may need to be

created if it does not exist)

• If β 6= ε, make p a child of the intermediate node (X ::= αs · β, l, r) (which may

need to be created if it does not exist)

263

e1 = (A ::= a·, 0, 0, 1)

e2 = (S ::= A ·A, 0, 0, 1)

e3 = (A ::= E·, 0, 0, 0)

e4 = (S ::= A ·A, 0, 0, 0)

e5 = (A ::= E·, 1, 1, 1)

e6 = (S ::= AA·, 0, 1, 1)

e7 = (S ::= AA·, 0, 0, 1)

Figure A.2: Extended packed nodes for constructing the BSPPF from Figure A.1.

2. If α = ε, then the symbol node n = (s, l, r) is the only child of p (n may need to be

created if it does not exist)

3. If α 6= ε, then the intermediate node i = (X ::= α · sβ, l, k) is the first child of p and

symbol node n = (s, k, r) is the second child of p (i and n may need to be created if

they do not exist)

4. If a symbol node n was created with nonterminal label X, left extent l, right extent

r = l and if there is a production X ::= ε, then create a packed node q = (X ::= ·, l)

and add it to the children of n unless n already has such a child

The BSPPF of Figure A.1 is constructed from the set of extended packed nodes given in

Figure A.2. A (regular) packed node in Figure A.1 has been labelled when it corresponds to

an extended packed node. The extended packed node is the regular packed node extended

with the left and right extent of its parent.

A.4.2 Avoiding Spurious Derivations

The following recursive procedure produces a trace of extended packed nodes. Given a set

∆ of extended packed nodes and an element of ∆ of the form (X ::= α · β, l, k, r):

1. Do nothing if α = ε

2. If α = α1s, make a recursive call with ∆ for all extended packed nodes (X ::=

α1 · sβ, l, k1, k) ∈ ∆ and for all extended packed nodes (s ::= β0, k, k2, r) ∈ ∆

264

Consider the traces of extended packed nodes produced by applying this procedure to

∆(U(γ, I)) and all extended packed nodes of the form (Z ::= α·, 0, k, |I|) ∈ ∆(U(γ, I)), for

some grammar γ with start symbol Z and input string I. If the procedure of Section A.4.1

is applied to all extended packed nodes in these traces, then the resulting BSPPF embeds

all derivations of I according to γ but embeds no spurious derivations.

265

Bibliography

[Afroozeh et al., 2013] Afroozeh, A., van den Brand, M., Johnstone, A., Scott, E., and

Vinju, J. (2013). Safe specification of operator precedence rules. In Software Language

Engineering: 6th International Conference, SLE 2013, pages 137–156. Springer Interna-

tional Publishing.

[Astesiano, 1991] Astesiano, E. (1991). Inductive and operational semantics. In Neuhold,

E. and Paul, M., editors, IFIP State-of-the-Art Reports, Formal Descriptions of Program-

ming Concepts, pages 51–136. Springer.

[Aycock and Horspool, 2002] Aycock, J. and Horspool, R. N. (2002). Practical earley pars-

ing. The Computer Journal, 45(6):620–630.

[Baars and Swierstra, 2004] Baars, A. I. and Swierstra, S. D. (2004). Type-safe, self in-

specting code. In Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell, Haskell

2004, pages 69–79. ACM.

[Bach Poulsen, 2016] Bach Poulsen, C. (2016). Extensible Transition System Semantics.

PhD thesis, Swansea University.

[Bach Poulsen and Mosses, 2014a] Bach Poulsen, C. and Mosses, P. D. (2014a). Deriving

pretty-big-step semantics from small-step semantics. In Programming Languages and Sys-

tems: 23rd European Symposium on Programming, ESOP 2014, pages 270–289. Springer

Berlin Heidelberg.

[Bach Poulsen and Mosses, 2014b] Bach Poulsen, C. and Mosses, P. D. (2014b). Generat-

ing specialized interpreters for modular structural operational semantics. In 23rd Inter-

266

national Symposium on Logic-Based Program Synthesis and Transformation, LOPSTR

2013, pages 220–236. Springer.

[Benzaken et al., 2003] Benzaken, V., Castagna, G., and Frisch, A. (2003). CDuce: An

xml-centric general-purpose language. In Proceedings of the Eighth ACM SIGPLAN In-

ternational Conference on Functional Programming, ICFP 2003. ACM.

[Berger and Tratt, 2010] Berger, M. and Tratt, L. (2010). Program logics for homogeneous

meta-programming. In Clarke, E. M. and Voronkov, A., editors, Logic for Programming,

Artificial Intelligence, and Reasoning, pages 64–81. Springer Berlin Heidelberg.

[Berger et al., 2017] Berger, M., Tratt, L., and Urban, C. (2017). Modelling homogeneous

generative meta-programming. In Proceedings of the 31st European Conference on Object-

Oriented Programming.

[van Binsbergen, 2018] van Binsbergen, L. T. (2018). Funcons for HGMP - the fundamental

constructs of homogeneous generative meta-programming (short paper). In Proceedings

of the 17th ACM SIGPLAN International Conference on Generative Programming: Con-

cepts & Experience, GPCE 2018.

[van Binsbergen et al., 2019] van Binsbergen, L. T., Mosses, P. D., and Sculthorpe, N.

(2019). Executable component-based semantics. Journal of Logical and Algebraic Methods

in Programming, 103:184–212.

[van Binsbergen et al., 2018] van Binsbergen, L. T., Scott, E., and Johnstone, A. (2018).

GLL parsing with flexible combinators. In Proceedings of the 11th ACM SIGPLAN In-

ternational Conference on Software Language Engineering, SLE 2018.

[van Binsbergen et al., 2016] van Binsbergen, L. T., Sculthorpe, N., and Mosses, P. D.

(2016). Tool support for component-based semantics. In Companion Proceedings of the

15th International Conference on Modularity, MODULARITY Companion 2016, pages

8–11. ACM.

[van den Brand et al., 2003] van den Brand, M. G., Klusener, A., Moonen, L., and Vinju,

J. (2003). Generalized parsing and term rewriting: Semantics driven disambiguation.

Electronic Notes in Theoretical Computer Science, 82(3):575 – 591.

267

[Carette et al., 2007] Carette, J., Kiselyov, O., and Shan, C.-C. (2007). Finally tagless,

partially evaluated: Tagless staged interpreters for simpler typed languages. In Proceed-

ings of the 5th Asian Conference on Programming Languages and Systems, APLAS 2007,

pages 222–238. Springer-Verlag.

[Churchill and Mosses, 2013] Churchill, M. and Mosses, P. D. (2013). Modular bisimulation

theory for computations and values. In Foundations of Software Science and Computation

Structures, pages 97–112. Springer Berlin Heidelberg.

[Churchill et al., 2015] Churchill, M., Mosses, P. D., Sculthorpe, N., and Torrini, P. (2015).

Reusable components of semantic specifications. In Transactions on Aspect-Oriented

Software Development XII, TAOSD 2015, pages 132–179.

[Claessen and Sands, 1999] Claessen, K. and Sands, D. (1999). Observable sharing for

functional circuit description. In In Asian Computing Science Conference, pages 62–73.

Springer Verlag.

[Danvy and Nielsen, 2004] Danvy, O. and Nielsen, L. (2004). Refocusing in reduction se-

mantics. BRICS Report Series, 11(26).

[Day and Hutton, 2012] Day, L. E. and Hutton, G. (2012). Towards modular compilers for

effects. In 12th International Symposium on Trends in Functional Programming, volume

7193 of Lecture Notes in Computer Science, pages 49–64. Springer.

[Devriese and Piessens, 2011] Devriese, D. and Piessens, F. (2011). Explicitly recursive

grammar combinators. In Practical Aspects of Declarative Languages, PADL 2011, pages

84–98.

[Devriese and Piessens, 2012] Devriese, D. and Piessens, F. (2012). Finally tagless observ-

able recursion for an abstract grammar model. Journal of Functional Programming,

22(6):757–796.

[Dureg̊ard and Jansson, 2011] Dureg̊ard, J. and Jansson, P. (2011). Embedded parser gen-

erators. In Proceedings of the 4th ACM Symposium on Haskell, Haskell 2011. ACM.

[Earley, 1970] Earley, J. (1970). An efficient context-free parsing algorithm. Communica-

tions of the ACM, 13(2):94–102.

268

[Felleisen et al., 2009] Felleisen, M., Findler, R. B., and Flatt, M. (2009). Semantics Engi-

neering with PLT Redex. The MIT Press, 1st edition.

[Frost et al., 2008] Frost, R. A., Hafiz, R., and Callaghan, P. (2008). Parser combinators for

ambiguous left-recursive grammars. In Practical Aspects of Declarative Languages, volume

4902 of Lecture Notes in Computer Science, pages 167–181. Springer Berlin Heidelberg.

[Gibbons and Wu, 2014] Gibbons, J. and Wu, N. (2014). Folding domain-specific languages:

Deep and shallow embeddings (functional pearl). In Proceedings of the 19th ACM SIG-

PLAN International Conference on Functional Programming, ICFP 2014, pages 339–347.

[Gill, 2009] Gill, A. (2009). Type-safe observable sharing in haskell. In Proceedings of the

2nd ACM SIGPLAN Symposium on Haskell, Haskell 2009, pages 117–128. ACM.

[Gordon, 1995] Gordon, A. D. (1995). A tutorial on co-induction and functional program-

ming. In Hammond, K., Turner, D. N., and Sansom, P. M., editors, Functional Program-

ming, Glasgow 1994, pages 78–95. Springer London.

[Groote, 1993] Groote, J. F. (1993). Transition system specifications with negative premises.

Theoretical Computer Science, 118(2):263 – 299.

[Grune, 2010] Grune, D. (2010). Parsing Techniques: A Practical Guide. Springer Publish-

ing Company, Incorporated, 2nd edition.

[Hall et al., 1994] Hall, C., Hammond, K., Peyton Jones, S., and Wadler, P. (1994). Type

classes in haskell. In European Symposium on Programming, volume 788 of Lecture Notes

in Computer Science, pages 241–256. Springer Verlag.

[Hoare, 1969] Hoare, C. A. R. (1969). An axiomatic basis for computer programming.

Communications of the ACM, 12(10):576–580.

[Hudak et al., 2007] Hudak, P., Hughes, J., Peyton Jones, S., and Wadler, P. (2007). A

history of haskell: Being lazy with class. In Proceedings of the Third ACM SIGPLAN

Conference on History of Programming Languages, HOPL III, New York, NY, USA.

ACM.

269

[Izmaylova et al., 2016] Izmaylova, A., Afroozeh, A., and van der Storm, T. (2016). Prac-

tical, general parser combinators. In Proceedings of the 2016 ACM SIGPLAN Workshop

on Partial Evaluation and Program Manipulation, PEPM 2016, pages 1–12. ACM.

[Johnson, 1995] Johnson, M. (1995). Memoization in top-down parsing. Computational

Linguistics, 21(3):405–417.

[Johnstone and Scott, 2011] Johnstone, A. and Scott, E. (2011). Modelling gll parser imple-

mentations. In Proceedings of the Third International Conference on Software Language

Engineering, SLE 2010, pages 42–61. Springer-Verlag.

[Jones, 1995] Jones, M. P. (1995). Functional programming with overloading and higher-

order polymorphism. In Advanced Functional Programming, First International Spring

School on Advanced Functional Programming Techniques-Tutorial Text, pages 97–136.

Springer-Verlag.

[Kats and Visser, 2010] Kats, L. C. L. and Visser, E. (2010). The Spoofax language work-

bench: Rules for declarative specification of languages and IDEs. In International Con-

ference on Object Oriented Programming Systems Languages and Applications, OOPSLA

2010, pages 444–463. ACM.

[Kernighan and Ritchie, 1988] Kernighan, B. W. and Ritchie, D. M. (1988). The C Pro-

gramming Language. Prentice Hall.

[Lazar et al., 2012] Lazar, D., Arusoaie, A., Şerbǎnuţǎ, T. F., Ellison, C., Mereuta, R.,

Lucanu, D., and Roşu, G. (2012). Executing Formal Semantics with the K Tool, volume

7436 of Lecture Notes in Computer Science, pages 267–271. Springer Berlin Heidelberg.

[Leijen and Meijer, 2001] Leijen, D. and Meijer, E. (2001). Parsec: Direct style monadic

parser combinators for the real world. Technical Report UU-CS-2001-35, Department of

Computer Science, Universiteit Utrecht.

[Leroy, 1997] Leroy, X. (1997). Caml Light manual. http://caml.inria.fr/pub/docs/

manual-caml-light.

270

http://caml.inria.fr/pub/docs/manual-caml-light
http://caml.inria.fr/pub/docs/manual-caml-light

[Liang et al., 1995] Liang, S., Hudak, P., and Jones, M. (1995). Monad transformers and

modular interpreters. In 22nd Symposium on Principles of Programming Languages, pages

333–343. ACM.

[Ljunglöf, 2002] Ljunglöf, P. (2002). Pure Functional Parsing. PhD thesis, Chalmers Uni-

versity of Technology and Göteborg University.

[Mcbride and Paterson, 2008] Mcbride, C. and Paterson, R. (2008). Applicative program-

ming with effects. Journal of Functional Programming., 18(1):1–13.

[Mitchell et al., 2018] Mitchell, D., van Binsbergen, L. T., Loring, B., and Kinder, J. (2018).

Checking cryptographic API usage with composable annotations (short paper). In Pro-

ceedings of ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,

PEPM 2018. ACM.

[Mosses, 1990] Mosses, P. (1990). Denotational semantics. In van Leeuwen, J., editor,

Handbook of Theoretical Computer Science (Vol. B): Formal Models and Semantics, pages

577–631. MIT Press.

[Mosses, 1999] Mosses, P. D. (1999). A modular SOS for ML concurrency primitives. BRICS

Report Series, (57).

[Mosses, 2004] Mosses, P. D. (2004). Modular structural operational semantics. Journal of

Logic and Algebraic Programming, 60–61:195–228.

[Mosses and New, 2009] Mosses, P. D. and New, M. J. (2009). Implicit propagation in struc-

tural operational semantics. Electronic Notes in Theoretical Computer Science, 229(4).

[Norvig, 1991] Norvig, P. (1991). Techniques for automatic memoization with applications

to context-free parsing. Computational Linguistics, 17(1):91–98.

[Okasaki and Gill, 1998] Okasaki, C. and Gill, A. (1998). Fast mergeable integer maps. In

In Workshop on ML, pages 77–86.

[Pettersson, 1999] Pettersson, M. (1999). Compiling Natural Semantics, volume 1549 of

Lecture Notes in Computer Science. Springer.

271

[Peyton Jones, 1987] Peyton Jones, S. L. (1987). The Implementation of Functional Pro-

gramming Languages. Prentice Hall.

[Pingali and Bilardi, 2015] Pingali, K. and Bilardi, G. (2015). A graphical model for

context-free grammar parsing. In Franke, B., editor, Compiler Construction, volume

9031 of Lecture Notes in Computer Science, pages 3–27. Springer Berlin Heidelberg.

[Plotkin, 2004a] Plotkin, G. D. (2004a). The origins of structural operational semantics.

The Journal of Logic and Algebraic Programming, 60:3 – 15.

[Plotkin, 2004b] Plotkin, G. D. (2004b). A structural approach to operational semantics.

Journal of Logic and Algebraic Programming, 60–61:17–139. Reprint of Technical Report

FN-19, DAIMI, Aarhus University, 1981.

[Rhiger, 2009] Rhiger, M. (2009). Type-safe pattern combinators. Journal of Functional

Programming, 19(2):145–156.

[Ridge, 2014] Ridge, T. (2014). Simple, efficient, sound and complete combinator parsing

for all context-free grammars, using an oracle. In International Conference on Software

Language Engineering, SLE 2014, volume 8706 of Lecture Notes in Computer Science,

pages 261–281. Springer International Publishing.

[Roşu and Şerbǎnuţǎ, 2014] Roşu, G. and Şerbǎnuţǎ, T. F. (2014). K overview and simple

case study. Electronic Notes in Theoretical Computer Science, 304:3 – 56.

[Scott and Johnstone, 2010a] Scott, E. and Johnstone, A. (2010a). GLL parsing. Electronic

Notes in Theoretical Computer Science, 253(7):177 – 189. Proceedings of the Ninth

Workshop on Language Descriptions Tools and Applications (LDTA 2009).

[Scott and Johnstone, 2010b] Scott, E. and Johnstone, A. (2010b). Recognition is not pars-

ing - SPPF-style parsing from cubic recognisers. Science of Computer Programming,

75(1-2):55–70.

[Scott and Johnstone, 2013] Scott, E. and Johnstone, A. (2013). GLL parse-tree generation.

Science of Computer Programming, 78(10):1828 – 1844.

272

[Scott and Johnstone, 2016] Scott, E. and Johnstone, A. (2016). Structuring the GLL pars-

ing algorithm for performance. Science of Computer Programming, 125:1 – 22.

[Scott et al., 2019] Scott, E., Johnstone, A., and van Binsbergen, L. T. (2019). Derivation

representation using binary subtree sets. Science of Computer Programming, 175:63–84.

[Scott et al., 2007] Scott, E., Johnstone, A., and Economopoulos, R. (2007). BRNGLR: a

cubic Tomita-style GLR parsing algorithm. Acta Informatica, 44(6):427–461.

[Sculthorpe et al., 2016] Sculthorpe, N., Torrini, P., and Mosses, P. D. (2016). A modular

structural operational semantics for delimited continuations. In Post-Proceedings of the

2015 Workshop on Continuations, volume 212 of Electronic Proceedings in Theoretical

Computer Science, pages 63–80. Open Publishing Association.

[Sheard and Peyton Jones, 2002] Sheard, T. and Peyton Jones, S. (2002). Template meta-

programming for Haskell. SIGPLAN Notices, 37(12):60–75.

[Svenningsson and Axelsson, 2013] Svenningsson, J. and Axelsson, E. (2013). Combining

deep and shallow embedding for EDSL. In Internal Symposium on Trends in Functional

Programming, TFP 2012, volume 7829 of Lecture Notes in Computer Science, pages 21–

36.

[Swierstra, 2009] Swierstra, S. D. (2009). Combinator parsing: A short tutorial. In Bove, A.,

Barbosa, L. S., Pardo, A., and Pinto, J. S., editors, Language Engineering and Rigorous

Software Development, volume 5520 of Lecture Notes in Computer Science, pages 252–300.

Springer Berlin Heidelberg.

[Swierstra and Duponcheel, 1996] Swierstra, S. D. and Duponcheel, L. (1996). Determinis-

tic, error-correcting combinator parsers. In Launchbury, J., Meijer, E., and Sheard, T.,

editors, Advanced Functional Programming, volume 1129 of Lecture Notes in Computer

Science, pages 184–207. Springer Berlin Heidelberg.

[Swierstra, 2008] Swierstra, W. (2008). Data types à la carte. Journal of Functional Pro-

gramming., 18(4):423–436.

273

[Taha and Sheard, 2000] Taha, W. and Sheard, T. (2000). MetaML and multi-stage pro-

gramming with explicit annotations. Theoretical Computer Science, 248(1):211 – 242.

PEPM 1997.

[The K Framework, 2018] The K Framework (2018). The K tools. GitHub:

https://github.com/kframework/k5. [Online, accessed 7th September 2018].

[Tomita, 1985] Tomita, M. (1985). Efficient Parsing for Natural Language: A Fast Algo-

rithm for Practical Systems. Kluwer Academic Publishers.

[Tratt, 2005] Tratt, L. (2005). Compile-time meta-programming in a dynamically typed

OO language. In Proceedings of the 2005 Symposium on Dynamic Languages, DLS 2005,

pages 49–63. ACM.

[Vergu et al., 2015] Vergu, V. A., Neron, P., and Visser, E. (2015). DynSem: A DSL for

dynamic semantics specification. In 26th International Conference on Rewriting Tech-

niques and Applications, RTA 2015, volume 36 of Leibniz International Proceedings in

Informatics, pages 365–378. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[Visser, 2001] Visser, E. (2001). Stratego: A language for program transformation based

on rewriting strategies. In 12th International Conference on Rewriting Techniques and

Applications, volume 2051 of Lecture Notes in Computer Science, pages 357–361. Springer.

[Wadler, 1985] Wadler, P. (1985). How to replace failure by a list of successes. In Conference

on Functional Programming Languages and Computer Architecture, volume 201 of Lecture

Notes in Computer Science, pages 113–128. Springer Berlin Heidelberg.

[Wu et al., 2014] Wu, N., Schrijvers, T., and Hinze, R. (2014). Effect handlers in scope.

In Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell, Haskell 2014, pages

1–12. ACM.

274

	Introduction
	Personal Reflection
	Part 1: Syntax Analysis
	Part 2: Interpretation
	Part 3: Evaluation
	Supplementary Material

	I Syntax Analysis
	Generalised Parsing
	Preliminaries
	Recursive Descent Parsing
	Descriptor Processing
	GLL Parsing

	Generalising Combinator Parsing
	Combinator Parsing
	Generating a Binarised Grammar
	Memoising Continuation-passing Combinators

	Explicit BNF Combinator Parsing
	Explicit BNF Combinators
	Generating a Grammar
	Direct FUN-GLL Parsing

	Haskell: Reusable Components for Syntax Specification
	FUN-GLL Implementation
	Backtracking Recursive Descent Evaluators
	Explicit BNF Combinators

	II Interpretation
	Transition System Semantics
	Transition Systems
	An Exemplary Language Definition
	Generalised Transition Systems

	Modular Rule-Based Semantics
	Modular Rule-Based Specifications
	The Syntax of IML Programs
	The Semantics of IML Programs
	An Implementation of IML

	CBS to IML Translation
	Preliminaries
	Types
	Rewrite Rules
	Entities
	Overcoming Translation Restrictions
	Homogeneous Generative Meta-Programming
	Static Refocussing
	Evaluation

	The Haskell Funcon Framework
	Funcon Modules
	CBS Rules
	Ambiguous Patterns and Types
	Configuration Files
	Homogeneous Generative Meta-Programming

	III Evaluation
	Tools
	Functions for Describing Syntax
	Functions for Building Funcon Terms

	Case Study - Mini
	Basic Expressions
	Variables
	Basic Commands
	Procedures
	Control Flow
	Arrays
	Programs
	Interpretation

	Case Study - Caml Light
	Lexical Conventions
	Values
	Global Names
	Type Expressions
	Constants
	Patterns
	Expressions
	Module Implementations
	Interpretation

	Tool Evaluation
	Parsing with BNF Combinators
	Interpreting Funcon Terms
	Case Study Evaluation

	Appendices
	Generalised Parsing
	Equivalence of BPTs and Big-Step Derivations
	Proof of Completeness CDS
	Proving CDS Computes a Complete Set of EPNs
	Building BSPPFs from Extended Packed Nodes

