
On the Soundness of Auto-completion Services for
Dynamically Typed Languages

Damian Frölich

dfrolich@acm.org
Informatics Institute, University of Amsterdam

Amsterdam, the Netherlands

L. Thomas van Binsbergen

ltvanbinsbergen@acm.org
Informatics Institute, University of Amsterdam

Amsterdam, the Netherlands

Abstract
Giving auto-completion candidates for dynamically typed

languages requires complex analysis of the source code, es-

pecially when the goal is to ensure that the completion can-

didates do not introduce bugs. In this paper, we introduce

an approach that builds upon abstract interpretation and the

scope graph framework to obtain an over-approximation of

the name binding seen at run-time. The over-approximation

contains enough information to implement auto-completion

services such that the given suggestions do not introduce

name binding errors. To demonstrate our approach, we com-

pare the suggestions given by our approach with the state

of the art completion services on a subset of the Python

programming language.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages; Development frameworks and
environments; Software notations and tools.

Keywords: scope graphs, name resolution, editor services,

abstract interpretation, auto-complete

ACM Reference Format:
Damian Frölich and L. Thomas van Binsbergen. 2024. On the Sound-

ness of Auto-completion Services for Dynamically Typed Lan-

guages. In Proceedings of the 23rd ACM SIGPLAN International Con-
ference on Generative Programming: Concepts and Experiences (GPCE
’24), October 21–22, 2024, Pasadena, CA, USA. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3689484.3690734

1 Introduction
Today’s developers have access to an abundance of program-

ming tools that increase their productivity by assisting the

programming activity itself or the management of (large)

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-1211-1/24/10

https://doi.org/10.1145/3689484.3690734

code bases through, for example, version control or deliver-

ing project insights. Integrated Development Environments

(IDEs) integrate such tools and serve as the main interface for

programmers during programming-related activities. Today,

most IDEs are decoupled from language implementations

or programming analysis tools such that a single IDE can

be used for multiple languages and multiple IDEs can be

used to work on the same code base (e.g., chosen based on

programmer-preference). The Language Server Protocol
1

(LSP) plays a crucial role in this decoupling, interfacing be-

tween the environment and so-called language services such
as ‘go-to definition’ and auto-complete. As such, the client-

server architecture of the LSP addresses the 𝑛 ×𝑚 problem

of supporting 𝑛 languages in𝑚 IDEs, reducing the (overall)

engineering efforts for both IDEs and languages. Moreover,

by modularizing the server back-end into distinct services,

tools can be developed that could specialize in particular

program analyses or programmer feedback.

Language services typically analyze source code. The type

of service determines the density of information to be ex-

tracted. For example, an abstract syntax tree provides enough

information to implement semantic highlighting (an exten-

sion of syntax highlighting). Other services may require

additional information, such as the types of variables or the

declaration to which a reference resolves. For statically typed

languages, the structure enforced by type systems aid the

implementation of such services. Inherent to statically typed

languages is a static type-checker. In contrast, a significantly

more complex analysis is needed to perform (static) type-

checking for dynamically typed languages as the type of a

variable may be determined by program input [17]. More

generally, editor services for dynamically typed languages

may require complex analyses which may not always cap-

ture all cases, or make a trade-off between soundness and

completeness.

The state of the art in auto-complete services for Python

exhibit this phenomenon, with tools generally choosing com-

pleteness over soundness. For example, an auto-complete

service providing auto-completion candidates for the pro-

gram in Figure 1 at the position indicated by the question

mark, needs to take into account that the obj variable can
point to an object of class A or to an object of class B, de-
pending on user-provided input. As a result, the completion

1https://microsoft.github.io/language-server-protocol/

https://orcid.org/0000-0003-1016-5303
https://orcid.org/0000-0001-8113-2221
https://doi.org/10.1145/3689484.3690734
https://doi.org/10.1145/3689484.3690734
https://microsoft.github.io/language-server-protocol/

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Damian Frölich and L. Thomas van Binsbergen

class A:
x = 5
z = 10

class B:
x = 0
y = 5

obj = A()
obj . x = input ()

if obj . x :
obj = B()

print(obj .?)

Figure 1. Python example on which completions from auto-

completion services can introduce erroneous execution paths.

The ? indicates the position of the cursor, i.e. the source

location from which an auto-complete request is performed.

candidates y and z introduce an erroneous execution path

since they are not present in both A and B. The x field is

present in both classes and is therefore a sound completion

candidate, since in both run-time paths that field is present

on the object assigned to the obj variable. However, Pylance2

and Jedi
3
, two prominent editor service implementations for

Python, give all three fields as completion candidates. This

result is complete as it contains all candidates that create

a valid program flow but is not sound as some candidates

introduce erroneous program flows (with respect to name

resolution).

With small programs, the programmer may be able to

detect unsound candidates and handle them appropriately.

However, with more complex programs, maintaining the

oversight required to do so becomes challenging. Further-

more, the execution of some erroneous execution paths may

be rare, complicating bug discovery. Obtaining such erro-

neous completion candidates is mentioned as one of the

most concerning issues by practitioners when using auto-

completion tools [33].

In this paper, we introduce an approach that sets a first

step towards the creation of sound editor services for dy-

namically typed languages. The approach leverages abstract

interpretation and scope graphs to build a model for resolv-

ing names in programs. Using this model, we can construct

auto-completion services that are sound with respect to the

name binding of a program across the different execution

paths the program embeds. Concretely, in this paper we

make the following contributions:

• an approach based on abstract interpretation and scope

graphs for the implementation of sound completion

services;

• an implementation of said approach in Haskell;

• a test set of Python programs with key name binding

challenges that result in unsound completion candi-

dates with the state of the art editor services.

2https://github.com/microsoft/pylance-release
3https://jedi.readthedocs.io/en/latest/

The paper is structured as follows. In Section 2 we give the

necessary background. In Section 3 we discuss the difficulties

of applying scope graphs to dynamically typed languages,

and present our extension to the scope graph framework. We

follow this up by obtaining scope graphs from the run-time

heap in Section 4, and via abstract interpretation in Section 5.

In Section 6we introduce an implementation of our approach,

and demonstrate it in Section 7 via a comparison with the

state of the art editor services for Python. We discuss the

results from our experiments and our approach in Section 8.

We finalizewith relatedwork in Section 9, and our conclusion

in Section 10.

2 Background
Our approach utilizes abstract interpretation to obtain a

sound over-approximation of the name binding seen at run-

time. The name binding is captured using scope graphs.

These two components combined form the basis for an auto-

completion service implementation.

2.1 Abstract Interpretation
Abstract interpretation [2] provides a unified framework for

sound static analysis by over-approximation of the dynamic

semantics of a programming language. With abstract in-

terpretation, the concrete domain is approximated by an

abstract domain. The abstract domain has less computa-

tional needs. However, since it is an over-approximation,

some information is lost, affecting completeness. The con-

crete and abstract domain are related via a Galois connec-

tion, with which values from two different partially ordered

sets can be related. A Galois connection on two partially

ordered sets (𝐶, ≤𝐶) and (𝐴, ≤𝐴) is given by two mono-

tone functions 𝛼 : 𝐶 → 𝐴 and 𝛾 : 𝐴 → 𝐶 , such that

𝛼 (𝑐) ≤𝑎 𝑎 ⇐⇒ 𝑐 ≤𝑐 𝛾 (𝑎) holds for all 𝑐 ∈ 𝐶 and 𝑎 ∈ 𝐴.
A common example to illustrate abstract domains is the

sign abstraction of integers. In this example, the concrete

domain is the set of integers (Z) and the abstract domain

is the set of signs: 𝑃 = {⊥, <0, 𝑍, >0,⊤}. The abstraction

function maps sets of integers to a (shared) sign.

𝛼 (∅) = ⊥
𝛼 ({𝑖 |𝑖 < 0}) =<0

𝛼 ({0}) = 𝑍
𝛼 ({𝑖 |𝑖 > 0}) =>0

𝛼 (Z) = ⊤
The concretization function can be mechanically derived

by following the requirements of a Galois connection. The

abstract semantics mirrors the concrete semantics. Opera-

tions on integers are thus mirrored by operations on signs,

for example 𝑍 + >0 = >0 and <0 + >0 = ⊤. In the second

case, we lose information. The result can be positive, nega-

tive, or zero, thus the operation yields⊤ (representing the set

of all integers). Furthermore, these operations are strict on

⊥ elements, e.g., ⊥ + 𝑍 = ⊥ (with ⊥ representing divergent

computations). Using our abstraction, we can determine the

https://github.com/microsoft/pylance-release
https://jedi.readthedocs.io/en/latest/

On the Soundness of Auto-completion Services for Dynamically Typed Languages GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

sign of integer expressions. The obtained information can

be used, for example, by a compiler to optimize conditionals

that are always true or false.

2.1.1 Abstract Interpretation and Natural Semantics.
Schmidt [25, 27] applied the framework of abstract inter-

pretation to languages with an operational semantics in

the small-step style (of Plotkin [22]) or big-step style (of

Kahn [9]). In the approach, concrete and abstract compu-

tations are related by safety relations on values and trees.

Every computation represented as a concrete tree needs to

be mirrored by an abstract tree and the safety relation on

trees needs to be preserved. When a safety relation (safe) is
both U-closed (𝑐 safe 𝑎 ∧𝑎 ⊑ 𝑎′ =⇒ 𝑐 safe 𝑎′) and G-closed
(𝑐 safe ⊓ {𝑎′ | 𝑐 safe 𝑎′}), a Galois connection is obtained for

free.

2.2 Scope Graphs
Scope graphs have been introduced by Neron et al. [18] to

capture name binding in a language-independent manner.

In this paper we adopt the formal definition of scope graphs

given in Figure 2. The vertices of a scope graph represent

scopes, references, or declarations, and are assumed to be

unique such that each declaration and reference belongs to

one scope. References and declarations are indexed to distin-

guish occurrences with the same name at different source

locations. When the index is clear from the context, we omit

it. Edges denote the relation between scoping elements. A ref-

erence has an edge to the scope in which it occurs (𝑥𝑅𝑖 → 𝑠).

Scopes have edges towards the declarations made within

that scope (𝑠 → 𝑥𝐷𝑖). Scopes can also have labeled edges to-

wards other scopes (𝑠 →𝑙 𝑠
′). This can be used to model, for

example, lexically nested scopes. Finally, a declaration can

have an edge towards a scope when it introduces this scope

(𝑥𝐷𝑖 → 𝑠). For example, the scope of an object, containing

the fields and methods of that object. Object access (x.y) is

then translated into resolving the variable 𝑥 and determining

whether the resulting declaration has an outgoing scope 𝑠 .

The variable 𝑦 is then resolved starting from scope 𝑠 . In this

paper, as well as in [18], labels P (parent) and I (import) are

used. However, the usage of imports in this paper is more

rudimentary than that of [18]. We assume every scope has

at most one parent (i.e., one outgoing edge labeled P).
Cycles are permitted in scope graphs. To resolve a refer-

ence to a declaration, a resolution calculus is defined that

describes correct resolution paths in a scope graph, given

by the ↦→ relation in Figure 2. The resolution calculus keeps

track of a set of seen scopes and only visits a scope once. A

valid path in a scope graph is a sequence of edges moving

from the current scope to scope 𝑠 via the edge with label 𝑙 ,

denoted by E(𝑙, 𝑠); and declarations reachable from the cur-

rent scope, denoted by D(𝑥𝐷𝑖). A resolution from a reference

in scope 𝑠1 to a declaration 𝑦 in parent scope 𝑠2 is described

by the following path viewed from scope 𝑠1: E(P, 𝑠2) ·D(𝑦𝐷𝑖).

Using the resolution calculus and a language-specific or-

dering on paths, we can define the visible declarations in a

scope by finding all shortest resolution paths reachable from

the scope, which is defined in Figure 2 by the⇀ arrow, i.e.

𝑠 ⇀ (𝑠′, 𝑥𝐷𝑗) states that from scope 𝑠 the declaration 𝑥𝐷𝑗 in

scope 𝑠′ is visible (not shadowed).
A reference can resolve to multiple declarations by finding

multiple ‘resolution paths’. Language-specific path orderings

and well-formedness predicates are used to determine the

desired resolution. In the formal model this is reflected in

the (ResE) rule and the (Vis) rule. The ordering selects the

‘nearest’ declaration site. Different name binding policies

can be modeled with the well-formedness predicate [29].

The chosen policies may still not select a unique resolution,

for example, when the program is invalid. The scope graph

framework leaves to the user to determine whether this is

(un)desirable based on the context in which the framework

is used.

Prior work has identified a correspondence between static

name binding in scope graphs and heap-allocated frames [23].

In essence, a scope graph functions as a blueprint for the

heap at run-time. The correspondence brings several benefits,

such as uniform type soundness proofs and sound garbage

collection. In this work, we utilize this correspondence in

the other direction: we use the heap and frames approach as

a blueprint for building scope graphs.

3 Scope Graphs for Dynamic Languages
Dynamic languages may be dynamic in several regards, e.g.,

name resolution may be dynamic, the types of variables may

be established dynamically, or programs may be extended

dynamically. Similarly, at least three types of correctness can

be identified: name binding correctness, type correctness,

and syntactic correctness. In this paper, we are primarily

interested in the first type of correctness and consider an

auto-completion candidate to be sound when its inclusion

yields no name resolution errors at run-time. In this section,

we describe how we annotate and build scope graphs to

model dynamic name resolution, a first step in our approach

towards sound (auto-completion) services for dynamically

typed languages.

Scope graphs have been used to implement sound auto-

complete services for statically typed languages [20]. We

observed two main problems when applying scope graphs to

dynamically typed languages, which we shall demonstrate

by comparing the scope graph of a small statically typed

(functional) program and the scope graph of a dynamically

typed program (following the name binding semantics of

Python). Figure 3 contains the example programs and the

corresponding scope graphs. In both programs, some dy-

namic input is assigned to the variable 𝑥 and is used for

branching into one of two conditional branches, which both

introduce a binding. (The subsequent code in the branches

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Damian Frölich and L. Thomas van Binsbergen

Scope graph

𝑠 ∈ ScopeId

𝑣 ∈ Vertex ::= 𝑠 | 𝑥𝐷𝑖 | 𝑥𝑅𝑖
𝑒 ∈ Edge ::= 𝑠 →𝑙 𝑠 | 𝑠 → 𝑥𝐷𝑖 | 𝑥𝑅𝑖 → 𝑠 | 𝑥𝐷𝑖 → 𝑠

𝑙 ∈ Label ::= P | I
𝐺 ∈ ScopeGraph ::= P(Vertex) × P(Edge)

Projection functions

𝐾 (𝑠) = {𝑙 ↦→ {𝑠′ | 𝑠 →𝑙 𝑠
′}}

𝐷 (𝑠) = {𝑥𝐷𝑖 | 𝑠 → 𝑥𝐷𝑖 }
𝑅(𝑠) = {𝑥𝑅𝑖 | 𝑥𝑅𝑖 → 𝑠}

Resolution paths

𝑝 ∈ Path ::= D(𝑥𝐷𝑖) | E(𝑙, 𝑠) · 𝑝

Paths

⊢𝐺 𝑠 → 𝑥𝐷𝑖

⊢𝐺 D(𝑥𝐷𝑖) : 𝑠 ↦→ (𝑠, 𝑥𝐷𝑖)
(ResD)

𝑠′ ∉ 𝑆 S ⊢𝐺 𝑠 →𝑙 𝑠
′ {𝑠′} ∪ 𝑆 ⊢𝐺 𝑝 : 𝑠′ ↦→ (𝑠′′, 𝑥𝐷𝑖)
𝑊𝐹 (E(𝑙, 𝑠) · 𝑝)

𝑆 ⊢𝐺 E(𝑙, 𝑠) · 𝑝 : 𝑠 ↦→ (𝑠′′, 𝑥𝐷𝑖)
(ResE)

⊢𝐺 𝑥𝑅𝑖 → 𝑠 {𝑠} ⊢𝐺 𝑝 : 𝑠 ⇀ (𝑠′, 𝑥𝐷𝑖)
⊢𝐺 𝑝 : 𝑥𝑅𝑖 ↦→ (𝑠′, 𝑥𝐷𝑖)

(ResR)

Visible declarations

{𝑠} ⊢𝐺 𝑝 : 𝑠 ↦→ (𝑠′, 𝑥𝐷𝑖)
∀𝑗, 𝑝′, 𝑠′′ ({𝑠} ⊢𝐺 𝑝′ : 𝑠 ↦→ (𝑠′′, 𝑥𝐷𝑗) =⇒ 𝑝′ ≮ 𝑝)

⊢𝐺 𝑝 : 𝑠 ⇀ (𝑠′, 𝑥𝐷𝑖)
(Vis)

Figure 2. Formal definition of scope graphs with resolution calculus, and parameterized by a well-formedness predicate over

paths and an ordering on paths. Based on earlier definitions [23, 30]

.

is irrelevant to our example.) Both programs have a ‘global’

scope labeled 𝑠0 (in the graph and program text) and eval-

uate the dynamic input in this scope before it is assigned

to 𝑥 . The assignment to 𝑥 creates a new scope (𝑠1) in case

of the statically typed program. For the dynamically typed

program, it adds a declaration to the global scope. Based on

the value of the 𝑥 variable, one of the two bodies is executed.

In both bodies, an assignment is performed. In case of the

statically typed program, the right sides of the assignments

are evaluated in scope 𝑠1, and for both declarations a new

scope is created 𝑠2 and 𝑠3, respectively. For the dynamically

typed program, a new scope is created for the if body (𝑠2)

and for the else body (𝑠3), in which the respective bodies are
executed. Both scopes have a parent edge to the global scope.

The global scope also has an import edge to both scopes.

The import edge is required because after the if-else we
are back in the global scope (𝑠0), but the declarations made

in the body are still reachable, which is modeled using the

import edges. In our statically typed program, this is not the

case. From a resolution perspective, we could have given a

variety of different scope graphs for the dynamically typed

program that gives the same resolution results. For example,

one scope containing all declarations. Why we have opted to

display the scope graph for the dynamically typed program

as having multiple scopes, becomes apparent shortly.

The first problem is that a dynamically typed language

puts less restrictions a-priori on a program, which makes the

resulting scope graph an over-approximation of the name

binding seen at run-time. As a result, reasoning with the

resulting scope graph requires care. In our example, this is

illustrated by the fact that in both programs, the declarations

𝑦 and 𝑧 are never in scope at the same time. This is captured

in the scope graph obtained from the statically typed pro-

gram. However, the scope graph for the dynamically typed

language does model that both declarations are in scope: we

can take an import edge from 𝑠0 to both 𝑠2 and 𝑠3 and obtain

the respective declarations. This is incorrect. The dynami-

cally typed program actually has two scope graphs. One in

which there is an import edge towards scope 𝑠2, and thus 𝑦 is

declared; and one in which there is an import edge towards

scope 𝑠3, and thus 𝑧 is declared.

The second problem is that the scope graph for the dynam-

ically typed program only describes the name binding at a

specific program point. As a result, the obtained scope graph

cannot be used to reason about every program point. In our

example this is illustrated if we use the obtained scope graphs

and query the available declarations in the conditional of the

if-else. In the statically typed scope graph, the scope in

which the conditional is executed is 𝑠1, so we start our resolu-

tion from that scope, and obtain only 𝑥 as a declaration. For

the dynamically typed language, the condition expression

is executed in scope 𝑠0, and from that scope we obtain the

declarations 𝑥,𝑦, 𝑧, where𝑦 and 𝑧 are obtained via the import

edges. However, at that point, only 𝑥 is in scope. Our scope

graph for the dynamically typed language is thus only valid

at the end of our program, but not at intermediate stages.

On the Soundness of Auto-completion Services for Dynamically Typed Languages GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

(s0)
let x = ...
in (s1) if x

then let y = x in (s2) ...
else let z = x in (s3) ...

𝑠0 𝑠1

𝑠2

𝑠3

𝑥

𝑥𝑖, 𝑗,𝑘

𝑦

𝑧

P
P

P

(s0)
x = ...
if x: (s2)

y = x
else: (s3)

z = x
(s0)

𝑠0

𝑠2

𝑠3
𝑥

𝑥

𝑦

𝑥

𝑧

𝑥

PI

PI

Figure 3. A similar program written in a statically typed (functional) language and a dynamically typed language with Python

like scoping rules, with their corresponding scope graphs. Scopes changes in the programs are indicated with parentheses.

𝑖, 𝑗, 𝑘 denote source locations for the different references to 𝑥 in scope 𝑠1.

3.1 Annotated Scope Graphs
To solve the first problem, we extend the scope graph frame-

work with annotated vertices to denote uncertainty.

As observed, a scope graph for a dynamically typed lan-

guage describes an over-approximation of the scope graphs

seen at run-time. In our example, the obtained

over-approximation only describes which variables might
be in scope. However, it is unknown which variables are

definitely in scope. Reasoning with our example scope graph

results in unsound completion candidates. To overcome this,

we extend the scope graph definition with annotations on

declarations and references. We define the set of annota-

tions as 𝐴𝑛 = {𝑁, 𝐷,𝑀}, representing not present, defi-

nitely present, and maybe present, respectively. The anno-

tation set forms a join-semilattice by the following partial

order 𝑁 ≤𝐴𝑛 𝑀 and 𝐷 ≤𝐴𝑛 𝑀 . The vertices of the scope

graph model are updated with an annotation component:

𝑣 ∈ Vertex ::= 𝑠 | (𝑥𝐷𝑖 , 𝑎) | (𝑥𝑅𝑖 , 𝑎) where 𝑎 ∈ 𝐴𝑛. We also add

an annotation to labels on edges, which models the uncer-

tainty of edges between scopes. We do not annotate scopes,

because we operate from a scope perspective: the correct

annotation for a scope differs depending on the scope from

which we observe the annotated scope.

Using the annotated scope graphmodel, we define a partial

order on scope graphs as follows, where 𝐷𝑣 projects the

annotated vertices with annotation 𝐷 , and 𝐷𝑒 projects the

labeled edges with annotation 𝐷 .

(𝑉1, 𝐸1) ≤𝑠 (𝑉2, 𝐸2) iff
∀𝑣 ∈ 𝑉1. ∃𝑣 ′ ∈ 𝑉2. 𝑣 ≤𝑣 𝑣

′

Dv (𝑉2) ⊆ Dv (𝑉1)
∀𝑒 ∈ 𝐸1 . ∃𝑒′ ∈ 𝐸2. 𝑒 ≤𝑒 𝑒

′

De (𝐸2) ⊆ De (𝐸1)

The order on vertices (≤𝑣) and edges (≤𝑒) is defined by equal-

ity on vertices and labels, and by comparison of the annota-

tions using the ≤𝐴𝑛 relation. A small excerpt of the full defi-

nition is given by the following two cases: 𝑠 ≤𝑣 𝑠
′ iff 𝑠 = 𝑠′

and (𝑣, 𝑎) ≤𝑣 (𝑣 ′, 𝑏) iff 𝑣 = 𝑣 ∧ 𝑎 ≤𝐴𝑛 𝑏. We lift this partial

order to a lattice (⊔𝑠) by adding a bottom and top element.

The partial order on scope graphs captures the idea of over-

approximation as introduced in the previous section. The

second and last constraints ensure that the definitely present

vertices and edges in the second scope graph are also present

in the first graph. This ensures that conclusions made over

the definitely present vertices and edges in the ‘abstract’

scope graph also hold in the concrete scope graph.

Figure 4 displays the two scope graphs observed in our dy-

namically typed example program and the annotated scope

graph that over-approximates both. In our annotated scope

graph, all the declaration are annotated as definitely present.

But, the two import labels are annotated as maybe present.

Performing a query from 𝑠0 will not follow themaybe present

edges, and thus will not obtain the declarations 𝑦 and 𝑧, only

the declaration 𝑥 . When performing a query from another

scope, for example 𝑠2, we will collect both 𝑦 and 𝑥 as defi-

nitely present declarations. From the perspective of scope 𝑠2,

this indeed holds.

3.2 Context-Dependent Name Resolution
To solve the second problem,we introduce context-dependent

name resolution, in which resolutions are performed in the

context of an index. We use source locations as the index.

The location captures the program location from where the

resolution is performed, and affects the resolution results by

only accepting declarations that have been declared before

the program location from where the resolution occurs. In

our example, this means that when we resolve from the pro-

gram location if ?, we only find x to be in scope, since both

y and z are defined after the if ? location. To achieve this,

we extend scopes with a location component, and update

the path rules from the resolution calculus to propagate a

location that affects the available paths. The updated rules

are displayed in Figure 5. Both the ResD and ResE rules now

contain a comparison on indices, which results in the filter-

ing of several paths that are present without this condition.

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Damian Frölich and L. Thomas van Binsbergen

𝑠0𝑠2

𝑥𝑦

𝑥𝑥

P

I

𝑠0𝑠2 𝑠3

𝑥𝑦

𝑥

𝑧

𝑥𝑥

P

I

P

I

𝑠0 𝑠3

𝑥 𝑧

𝑥 𝑥

P

I

Figure 4. The two scope graphs seen at run-time for the Python example (left and right), and the combined scope graph

with annotations (middle). For both edges and vertices, a blueish color represents the 𝐷 annotation and a red color the 𝑀

annotation.

The Vis rules also needs to be adapted, but only by including

the location in the context.

3.3 Multi-Stage Resolution
More complex naming structures require multiple resolution

steps. As shown earlier, an object access x.y first requires

the resolution of the variable x to determine its type and

associated scope, which can then be used to resolve y. De-
termining the type in a dynamically typed language means

to determine its value(s). Consequently, name resolution

for dynamically typed languages depends on the values of

variables. To be able to support more complex queries, we

combine our previous extensions to the scope graph model

with abstract interpretation.

4 Obtaining Scope Graphs via Heaps
To obtain an over-approximating scope graph while also

having access to the types of values assigned to variables, we

utilize abstract interpretation. In our abstract domain, we uti-

lize the 1-to-1 correspondence between scopes and frames to

obtain scope graphs from heaps. Our abstract interpretation

results in an over-approximation of the abstract heaps seen

at all program points. This provides us with a mapping from

variables to values per program point. The abstract heaps

are then translated into scope graphs and joined into one

over-approximating scope graph.

4.1 Updated Heaps and Frames
The original definition of heap and frames uses the statically

obtained scope graph for resolution. However, we do not

have such a scope graph and need to modify the original

definition. Our modification is given in Figure 6. A frame

is thus a 4-tuple containing a scope id; a set of references

made within the scope of the frame; a mapping from labels

to frame ids, modeling connections between frames; and a

mapping from declarations to values. A heap is a mapping

from frame ids to frames. Two types of relations are defined:

frame operations (⇒) and the resolution relation (→). Frame

operations operate in the context of a modifiable heap, which

is represented by the /ℎ syntax. The resolution rules operate

under a immutable heap (indicated by ⊢ℎ) and in the context

of a set of seen frame ids (𝐹).

The main differences with the original formulation are

that the frame component is extendedwith a set of references

(Σ) and that resolution of variables to declarations happens

at run-time. This is reflected by the change in the DLookup
rule, and the introduction of the DPath and EPath rules. The

DLookup rule results in an Addr which points to a unique

location in the heap via the frame id and the declaration,

and contains the resolution path. The path can be used in

the dynamic semantics of a language to decide whether an

existing declaration needs to be overwritten or shadowed.

The remaining two elements provide the required data for

both the 𝑔𝑒𝑡 and 𝑠𝑒𝑡 operations to get and respectively set

values at the specific location. The extended definition also

includes the Link rule, which makes it possible to extend the

dynamic links component of frames. Moreover, in contrast

to the original definition, the available declarations are not

fixed, as indicated by the removal of the requirement that a

declaration is in the domain of 𝐷ℎ (𝑓) in the set rule.
Although we have removed the static scope graph depen-

dency, we still have a ScopeId component in the definition of

frames. This component is required to enable the translation

from frames to scope graphs, since multiple frames can refer

to the same scope, which is something we want reflected in

the scope graph obtained from this translation: the informa-

tion in all those frames needs to be captured by the shared

scope in the resulting scope graph. A language semantics

thus needs to label frames with this information. In practice,

the source location of frame producing constructs, such as

functions, can be used as the scope id. With this in mind, we

give a translation function (𝜙) that translate a heap into a

scope graph, which uses a helper function (𝜓) that translates

a frame into a scope graph. 𝐷𝑜𝑚𝑠 (ℎ) projects all frames with

scope id 𝑠 .

𝜓 (⟨𝑠, Σ, 𝑘𝑠, 𝜎⟩) = {𝑠 → (𝑑, 𝐷) | ∀𝑑 ∈ 𝐷𝑜𝑚(𝜎)}
∪ {(𝑟, 𝐷) → 𝑠 | ∀𝑟 ∈ Σ} ∪ {𝑠 →(𝑙,𝐷) 𝑠

′

| ∀𝑙 ∈ 𝐿𝑎𝑏𝑒𝑙 ∧ S(𝑘𝑠 (𝑙)) = 𝑠′}

𝜙 (ℎ) =
⋃

{
⊔

{𝜓 (ℎ(𝑓)) | 𝑓 ∈ 𝐷𝑜𝑚𝑠 (ℎ)} | 𝑠 ∈ S(ℎ)}

On the Soundness of Auto-completion Services for Dynamically Typed Languages GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

𝑘 ⊢𝐺 𝑠 → 𝑥𝐷𝑖 𝑖 ≤ 𝑘
𝑘 ⊢𝐺 D(𝑥𝐷𝑖) : 𝑠 ↦→ (𝑠, 𝑥𝐷𝑖)

(ResD)

𝑠′
𝑘2

∉ 𝑆 𝑘, 𝑆 ⊢𝐺 𝑠𝑘1 →𝑙 𝑠
′
𝑘2

𝑘2 ≤ 𝑘 𝑘1, {𝑠′𝑘2 } ∪ 𝑆 ⊢𝐺 𝑝 : 𝑠′ ↦→ (𝑠′′, 𝑥𝐷𝑖) 𝑊𝐹 (E(𝑙, 𝑠) · 𝑝)
𝑘, 𝑆 ⊢𝐺 E(𝑙, 𝑠) · 𝑝 : 𝑠 ↦→ (𝑠′′, 𝑥𝐷𝑖)

(ResE)

⊢𝐺 𝑥𝑅𝑖 → 𝑠 𝑖, {𝑠} ⊢𝐺 𝑝 : 𝑠 ⇀ (𝑠′, 𝑥𝐷𝑖)
⊢𝐺 𝑝 : 𝑥𝑅𝑖 ↦→ (𝑠′, 𝑥𝐷𝑖)

(ResR)

Figure 5. Resolution calculus extended with context-dependent name resolution via a visibility index.

The translation is sound with respect to definitely present

edges, references, and declarations, which follows from the

definition of the ≤𝑠 relation. The translation is not sound

on maybe present entities, i.e. the scope graph can contain

resolution paths with 𝑀 labels that are not present in the

heap. Reasoning thus happens purely with the 𝐷 annotated

values.

4.2 Natural Semantics with Heap and Frames
The modifications to the heap and frames definition requires

additional bookkeeping in the dynamic semantics of a lan-

guage. Frames need to be annotated with their scope id, and

modified heaps need to be propagated. Also, the dynamic

semantics needs to decide when a declaration is constructed

versus when an existing declaration is used. To illustrate

these adjuncts, we introduce a small dynamically typed lan-

guage à la Cousot [1] with functions, which we utilize as

a running example throughout the rest of this paper. The

concrete syntax specification is given in Figure 7, and the

dynamic semantics is given in Figure 8. As in prior work [23],

we define the dynamic semantics in the context of a current

frame id and the current heap: 𝑓 ⊢ 𝑒/ℎ ⇒ 𝑣/ℎ′ means that

program 𝑒 evaluates in the context of heapℎ with the current

frame identified by 𝑓 to 𝑣 and updated heap ℎ′.
Most of the resolution is hidden within the frames defini-

tion. In the dynamic semantics we only differentiate between

declarations and modifications. In our example language,

this is done with the S-assign and S-assign-new rules. The

S-assign-new rule creates a declaration in the current frame,

while the S-assign rule updates an existing declaration. In

addition, most rules of the dynamic semantics now modify

the heap, as indicated by the change in subscripts. This is

especially apparent in the E-min rule. Expressions generally

do not alter the heap. In our case, heap modifications might

arise due to variable references, which extend the Σ set of the

current frame. The Def-fn rule demonstrates the choice of

scope ids when constructing frames. In the rule, the source

label, indicated by the 𝑙 subscript, is stored in the closure

(identified by Clos). When calling a function, described by

the E-call rule, the source label is used as the scope id for

the newly created frame in which the body of the function

is evaluated. Multiple calls to the same function thus result

in different frames that share the same scope id.

5 Abstract Interpretation with Heap and
Frames

Having defined heap and frames without an underlying

scope graph, we focus on abstract interpretation using this

new definition. We provide a language-independent abstrac-

tion, which is parameterized by an abstraction for values.

5.1 Safe Heap and Frames
We provide a language-independent abstract definition of

heap and frames, and define a safety relation between con-

crete and abstract heap and frames. Using this safety relation,

we obtain a Galois connection between the concrete and ab-

stract definitions. In our abstract definition, we restrict the

number of frame ids to a finite amount. This requires re-

moval of the 𝑓 ′ ∉ 𝐷𝑜𝑚(ℎ) premise in the abstract definition

of the InitFrame rule. Moreover, the slots function becomes

a mapping from declarations to abstract values, with the re-

quirement that the abstract values domain forms a complete

lattice. We also annotate declarations, references, and labeled

edges in our abstract frames. Also, we define an ordering on

abstract frames that is similar to the ordering defined on an-

notated scope graphs, but altered to align with the heap and

frames definition, and extended with a constraint on slots:

∀𝑑 ∈ 𝐷𝑜𝑚(𝜎1).𝜎1 (𝑑) ≤ 𝜎2 (𝑑), where 𝜎1 and 𝜎2 are the slots
functions for the two frames under comparison. We also re-

quire that the associated scopes of the two compared frames

are equal. This ordering is also extended to a lattice. With

our abstract definition, we define a safety relation between

concrete heaps and abstract heaps.

ℎ𝑐 safeHeap ℎ𝑎 iff

∀𝑓 ∈ 𝐷𝑜𝑚(ℎ𝑐). ∃𝑓𝑎 ∈ 𝐷𝑜𝑚(ℎ𝑎). ℎ𝑐 (𝑓) safeFrame ℎ𝑎 (𝑓𝑎),

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Damian Frölich and L. Thomas van Binsbergen

Frames and Heaps

𝑓 ∈ FrameId = {𝑓1, 𝑓2, . . . }
ks ∈ DynLinks = Label → FrameId

𝜎 ∈ Slots = Decl → Val

Σ ∈ Refs = P(𝑉𝑎𝑟𝑠)
⟨𝑠, Σ, ks, 𝜎⟩ ∈ Frame = ScopeId × Refs × DynLinks × Slots

ℎ ∈ Heap = FrameId → Frame

Projection functions

Sℎ (𝑓) = 𝑠 where ℎ(𝑓) = ⟨𝑠, Σ, ks, 𝜎, ⟩
Rℎ (𝑓) = Σ where ℎ(𝑓) = ⟨𝑠, Σ, ks, 𝜎, ⟩
Kℎ (𝑓) = ks where ℎ(𝑓) = ⟨𝑠, Σ, ks, 𝜎, ⟩
Dℎ (𝑓) = 𝜎 where ℎ(𝑓) = ⟨𝑠, Σ, ks, 𝜎, ⟩

Frame modifications
𝑓 ′ ∉ 𝐷𝑜𝑚(ℎ)

𝑖𝑛𝑖𝑡𝐹𝑟𝑎𝑚𝑒 (𝑠, Σ, 𝑘𝑠, 𝜎)/ℎ ⇒ 𝑓 ′/ℎ[𝑓 ′ ↦→ ⟨𝑠, Σ, 𝑘𝑠, 𝜎⟩]
(initFrame)

ℎ′ = 𝐾ℎ (𝑓) [𝑙 ↦→ 𝑓 ′]
𝑙𝑖𝑛𝑘 (𝑓 , 𝑓 ′, 𝑙)/ℎ ⇒ ℎ′

(link)

Paths

𝑥𝐷𝑗 ∈ 𝐷𝑜𝑚(Dℎ (𝑓))
⊢ℎ D(𝑥𝐷𝑗) : 𝑓 → (𝑓 , 𝑥𝐷𝑗)

(DPath)

𝑥𝐷𝑗 ∉ 𝐷𝑜𝑚(Dℎ (𝑓)) 𝑙 ∈ 𝐷𝑜𝑚(Kℎ (𝑓)) Kℎ (𝑓) (𝑙) = 𝑓 ′ 𝑓 ′ ∉ 𝐹

𝐹 ∪ {𝑓 ′} ⊢ℎ 𝑝 : 𝑓 ′ → (𝑓 ′′, 𝑥𝐷𝑗) 𝑊𝑃 (𝑝)
𝐹 ⊢ℎ E(𝑙, 𝑓) · 𝑝 → (𝑓 ′′, 𝑥𝐷𝑗)

(EPath)

Dynamic lookup

{𝑓 } ⊢ℎ 𝑝 : 𝑓 → (𝑓 ′, 𝑥𝐷𝑗)
�𝑘, 𝑝′, 𝑓 ′′ .(𝑝′ : 𝑓 → (𝑓 ′′, 𝑥𝐷

𝑘
) ∧ 𝑝′ < 𝑝)

𝑙𝑜𝑜𝑘𝑢𝑝 (𝑓 , 𝑥𝑅𝑖)/ℎ ⇒ 𝐴𝑑𝑑𝑟 (𝑓 ′, 𝑥𝐷𝑗 , 𝑝)/ℎ[𝑓 ↦→ (Rℎ (𝑓) ↦→ Rℎ (𝑓) ∪ {𝑥𝑅𝑖 })
(Dlookup)

Slot value operations
𝑥𝐷𝑖 ∈ Dom(Dℎ (𝑓)) Dℎ (𝑓) (𝑥𝐷𝑖) = 𝑣

𝑔𝑒𝑡 (𝑓 , 𝑥𝐷𝑖)/ℎ ⇒ 𝑣
(get) 𝑠𝑒𝑡 (𝑓 , 𝑥𝐷𝑖 , 𝑣)/ℎ ⇒ ()/ℎ[𝑓 ↦→ (𝐷ℎ (𝑓) [𝑥𝐷𝑖 ↦→ 𝑣])]

(set)

Figure 6.Modified formal definition of frames and heaps [23].

𝑥, fn ∈ Var (variables, function variables)

𝑝 ∈ 𝑃 ::= 𝑙 (programs)

𝑙 ∈ 𝑆𝑙 ::= 𝑠 𝑙 | 𝜖 (lists of statements)

𝑠 ∈ 𝑆 ::= 𝑥 = 𝑒 | if(𝑒) {𝑙1} else {𝑙2} | def fn(𝑥) { 𝑙 }
(statements)

𝑒 ∈ 𝐸 ::= 𝑒1 − 𝑒2 | 1 | 𝑥 | fn(𝑒) (expressions)

Figure 7. Grammar of a simple procedural language.

⟨𝑠, Σ, 𝑘𝑠, 𝜎⟩ℎ𝑐 safeFrame ⟨𝑠𝑎, Σ𝑎, 𝑘𝑠𝑎, 𝜎𝑎⟩ℎ𝑎 iff

𝑠 = 𝑠𝑎 ∧ Σ ⊆ Σ𝑎

∀𝑙 ∈ 𝐷𝑜𝑚(𝑘𝑠) . ℎ𝑐 (𝑘𝑠 (𝑙)) safeFrame ℎ𝑎 (𝑘𝑠𝑎 (𝑙))
∀𝑑 ∈ 𝐷𝑜𝑚(𝜎). 𝜎 (𝑑) safeVal 𝜎𝑎 (𝑑)
D𝜎 (𝜎𝑎) ⊆ 𝐷𝑜𝑚(𝜎) ∧ D𝑘𝑠 (𝑘𝑠𝑎) ⊆ 𝐷𝑜𝑚(𝑘𝑠)

The safeFrame relation is parametric in the language-specific

safeVal relation, and recursive, so the largest set satisfying

the relation is required. D𝜎 projects the definitely present

declarations, and D𝑘𝑠 projects the definitely present links.

We define the collection semantics as a function 𝑐𝑜𝑙𝑙𝑡 𝑝 :

ProgramPoint → P(𝐻𝑒𝑎𝑝 × 𝐻𝑒𝑎𝑝) from program points to

heaps, with 𝑡 the tree representing an execution.

𝑐𝑜𝑙𝑙𝑡 (𝑝) = {(ℎ1, ℎ2) | 𝑓 ⊢ 𝑝/ℎ1 ⇒ 𝑣/ℎ2 is a state in 𝑡}
∪ {(ℎ1, ℎ2) | 𝑓 ⊢ 𝑝/ℎ1 ⇒ ℎ2 is a state in 𝑡}

The collection semantics collects all heap pairs seen at a

program point, with which we can obtain the pair of over-

approximating scope graphs for a program point: G𝑡 (𝑝) =
(⊔{𝜙 (ℎ1) | (ℎ1, ℎ2) ∈ 𝑐𝑜𝑙𝑙𝑡 𝑝},

⊔{𝜙 (ℎ2) | (ℎ1, ℎ2) ∈ 𝑐𝑜𝑙𝑙𝑡 𝑝}).

5.2 Reasoning with Over-Approximated Scope
Graphs

Using the over-approximated scope graphs defined previ-

ously, we can define auto-completion services. When the

evaluation is productive – (ℎ1, 𝑝) ⇒ ℎ2 =⇒ G(ℎ1) ≤ G(ℎ2)
– we can take the resulting heaps of the root of the compu-

tation tree and reason with the obtained scope graph pair.

Otherwise, reasoning does not happen on one scope graph,

instead it happens on the scope graph of the program point

from where we are reasoning. The advantage of reasoning

On the Soundness of Auto-completion Services for Dynamically Typed Languages GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

𝑓 ⊢ 𝑒/ℎ1 ⇒ 𝑣1/ℎ2 𝑙𝑜𝑜𝑘𝑢𝑝 (ℎ2, 𝑓 , 𝑥) ⇏
𝑠𝑒𝑡 (ℎ2, 𝑓 , 𝑥) ⇒ ℎ3

𝑓 ⊢ 𝑥 = 𝑒/ℎ1 ⇒ ℎ3
(S-assign-new)

𝑓 ⊢ 𝑒/ℎ1 ⇒ 𝑣1/ℎ2 𝑙𝑜𝑜𝑘𝑢𝑝 (ℎ2, 𝑓 , 𝑥) ⇒ 𝐴𝑑𝑑𝑟 (𝑓 ′, 𝑥𝐷𝑖 , 𝑝)/ℎ3
𝑠𝑒𝑡 (ℎ3, 𝑓 ′, 𝑥) ⇒ ()/ℎ4
𝑓 ⊢ 𝑥 = 𝑒/ℎ1 ⇒ ℎ4

(S-assign)

𝑓 ⊢ 𝐸1/ℎ1 ⇒ 𝑉1/ℎ2 𝑓 ⊢ 𝐸2/ℎ2 ⇒ 𝑉2/ℎ3
𝑉1,𝑉2 ∈ Z

𝑓 ⊢ 𝐸1 − 𝐸2/ℎ1 ⇒ 𝑉1 −𝑉2/ℎ3
(E-min)

𝑠𝑒𝑡 (ℎ1, 𝑓 , fn,𝐶𝑙𝑜𝑠 (𝑥, 𝑠𝑙, 𝑙, fn)) ⇒ ()/ℎ2
𝑓 ⊢ (def fn(𝑥){𝑠𝑙})𝑙/ℎ1 ⇒ ℎ2

(def-fn)

𝑓 ⊢ 𝑒1/ℎ1 ⇒ 𝑣1/ℎ2 𝑙𝑜𝑜𝑘𝑢𝑝 (ℎ2, 𝑓 , 𝑓 𝑛) ⇒ 𝐴𝑑𝑑𝑟 (𝑓 ′, 𝑓 𝑛𝐷 , 𝑝)/ℎ3
𝑔𝑒𝑡 (ℎ3, 𝑓 ′, 𝑓 𝑛𝐷) ⇒ 𝐶𝑙𝑜𝑠 (𝑥, 𝑏, 𝑙, fn𝑐)

𝑖𝑛𝑖𝑡𝐹𝑟𝑎𝑚𝑒 (𝑙, {}, {(𝑃, fn𝑐)}, {(𝑥, 𝑣1)})/ℎ3 ⇒ 𝑓 ′′/ℎ4
𝑓 ′′ ⊢ 𝑏/ℎ4 ⇒ 𝑣2/ℎ5

𝑓 ⊢ fn(𝑒1)/ℎ1 ⇒ 𝑣2/ℎ5
(E-call)

Figure 8. Big-step operational semantics of part of our running example with explicit frame and heaps.

with one scope graph, is that edit operations can be inter-

preted as a modification on the single scope graph. As a

result, the editor service does not need to re-evaluate the

program on every edit. Auto-completion candidates at pro-

gram point 𝑝 for computation tree 𝑡 are given by the visible

declarations that are definitely present, where S(𝑝) gives the
scope associated with program point 𝑝 .

𝐴𝐶𝑡 (𝑝) = {𝑥𝐷𝑖 | ⊢𝐺 S(𝑝) ⇀ (𝑠′, (𝑥𝐷𝑖 , 𝐷))}.

6 Implementation
We have implemented our approach in Haskell, providing a

library for the construction of concrete and abstract inter-

preters with explicit heap and frames operations.

6.1 Heaps and Frames
The main component of our implementation is the encoding

of our formalized heap and frames model. A substantial part

of this encoding is a simple 1-to-1 translation from the formal

model to Haskell code. Heap and frames are implemented as

parameterized data types, with the parameters representing

the type for frame ids, scope ids, type of declarations, and

the type of values.

data Heap f s d v = Heap (Map f (Frame f s d v))
data Frame f s d v = Frame
{ sid :: s , refs :: Set d, ks :: Map Label f , slots :: Map d v}

The operations on heap and frames follow the formal model

and are defined in terms of the parameterized data types. One

difference is the handling of frame ids. In our implementation,

fresh frame ids need to be provided by the language, since

the implementation is parametric in the type of frame ids.

6.2 Abstract and Concrete Interpreters
The abstract and concrete interpreters are language-specific.

To ease the construction of these interpreters, we provide

several helper functions around a systematic approach based

on Sturdy [11], which splits a language implementation into

three parts: a generic interpreter, a concrete interpreter, and

an abstract interpreter. The generic interpreter describes

functionality that is common among all interpretations, and

is defined in terms of indeterminate operations. These op-

erations are determined by the concrete and abstract inter-

preters, resulting in a working interpreter in the respective

domain. We define an abstract signature for the operations

of the language using type classes. Instances of the type class

then give an interpretation to the signature.

6.3 Collecting Semantics and Termination
We utilize lenses [7] to get access to the parameterized heap

from the opaque interpreter context. Interpreters are written

in an open recursive style, where recursive evaluations are

handled by continuation functions. We provide a generic

continuation function that annotates program points with

the current heap and ensures termination via the productive

caching algorithm [4]. Program points are identified by a

label, which we obtain via a type class. To sequence computa-

tions we utilize monads [16, 32]. Our continuation function

is thus parametric in the monad it evaluates in. The final set

of annotations corresponds to the collecting semantics.

7 Experiment Design and Results
To demonstrate our approach, we implement a small subset

of Python and compare the auto-completion candidates given

by our approach with the state of the art auto-completion

service providers for Python. To ensure correctness of our

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Damian Frölich and L. Thomas van Binsbergen

implementation, we utilize the existing Python (3.12.3) im-

plementation as an oracle. We have chosen Python because

it is a popular programming language
4
and has several edi-

tor service implementations, making it a suitable vehicle for

us to provide a compelling example of our approach. Our

subset supports functions with parameters, classes and ob-

jects, primitive types and operations on those types, if-else

statements, and while loops.

We have constructed a test set of programs around our

subset with key name binding challenges for completion

services [8]. In our experiment, we filter the possible com-

pletion candidates by prefixing all variables with an 𝑥 , and

only completing on variables starting with an 𝑥 . This is to

prevent the completion list from being filled with standard

Python constructs, such as __name__.
To implement an abstract interpreter for our Python sub-

set, we use the approach from prior work [17], which per-

forms type checking using abstract interpretation. Our ab-

stract domain thus maps values to their type. The modeling

of the heap is slightly different, since we use our heap and

frames approach, which is a less compact representation.

To determine in-scope variables, we execute the Python in-

terpreter and execute the dir and globals functions, which
provide access to the available names in the current scope

and the global variables currently in scope, respectively. The

dir function can also be used to obtain the attributes of an

object. We execute our programs with these functions placed

at the location where we will perform an auto-completion

request to obtain the variables in-scope at run-time at the spe-

cific location. We run the programs under a variety of inputs

to ensure 100% path coverage and then take the intersec-

tion of the variables obtained from these executions, which

corresponds to the set of variables that are present among

all possible paths. In case of the fn-not-called program,

we obtained in-scope variables by utilizing the respective

Python file as a library and testing the function externally.

We have chosen three auto-completion service providers

for Python: Pylance, PyCharm
5
(professional edition), and

Jedi. Pylance is an implementation of the LSP for Python and

uses Pyright
6
, a static type checker for Python; PyCharm is a

Python IDE developed by JetBrains, which provides Python

support via a plugin
7
; and Jedi is a static analysis tool for

Python with a focus on auto-completion and goto-definition.

As not all implementations have a public API, we have

performed our experiments manually, via VSCode
8
for Jedi

and Pylance, and using the PyCharm GUI for PyCharm. For

our approach, we have implemented the auto-complete part

4https://survey.stackoverflow.co/2024/technology#2-programming-
scripting-and-markup-languages
5https://www.jetbrains.com/pycharm/
6https://github.com/microsoft/pyright
7https://plugins.jetbrains.com/plugin/631-python
8https://code.visualstudio.com/

of the LSP protocol and also used interactions via VSCode

to evaluate our approach.

7.1 Results
The results of our experiment are displayed in Table 1, as

precision and recall pairs. A precision of 100% equates to

soundness. A recall of 100% equates to completeness. In the

table, 𝑃 describes the number of sound completion candi-

dates, and 𝑃 +𝑁 describes the number of sound and unsound

completion candidates. This number is constrained by the

variables in a program. Modifying the values of 𝑃 and 𝑁 can

result in a different percentages for precision and recall, but

the relation with respect to 𝑃 and 𝑁 stays consistent.

The results highlight a strategy present in the current

state of the art: completeness is preferred over soundness.

Consequently, even on simple programs, the state of the art

introduces completion candidates that can introduce name

binding errors when selected by the user. Our approach

prefers soundness over completeness, and presents no un-

sound completion candidates with respect to name binding

for programs in our experiment. Additionally, among the

state of the art we observe similar results. The small differ-

ences can be explained by the underlying approach of the

different services, or by the development hours put into a ser-

vice. Another observation is that recall is generally around a

100%. In most cases, obtaining a high percentage for recall

can be easy, because an editor service can collect all variables

in the program and present those as completion candidates.

Some of the programs in our demonstration could also be

handled by the state of the art tools by strengthening their

analyses without adding significant complexity. There are

also programs, such as add-field, which requiremore complex

analysis and the gain of soundness on such candidates might

not be worth the increase in complexity. Nevertheless, the

set of evaluated programs gives an overview of key name

binding constructs on which analysis can be improved in the

state of the art auto-complete services for Python.

8 Discussion
In this section we compare our approach to the state of the

art, and give several suggestions for future work, including

steps towards (full) soundness.

8.1 Missing Candidates and Uncalled Functions
Our approach misses several valid completion candidates.

For example, the if-else1 program contains a condition that

is always false, which is detected by Jedi. Since we used an

abstract domain that maps values to types, we lose such

information, which can lead to lower recall. This is also

shown by the program if-else-both, where both branches of

an if-else are taken by repeating the statement but taking

a different branch. Due to our chosen abstract domain, our

approach fails to determine that the variables introduced in

https://survey.stackoverflow.co/2024/technology#2-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2024/technology#2-programming-scripting-and-markup-languages
https://www.jetbrains.com/pycharm/
https://github.com/microsoft/pyright
https://plugins.jetbrains.com/plugin/631-python
https://code.visualstudio.com/

On the Soundness of Auto-completion Services for Dynamically Typed Languages GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

Table 1. Results of our experiment on the state of the art on the Python test set. 𝑃 denotes the sound completion candidates.

𝑃+𝑁 denotes the total available completion candidates, so sound and unsound. Precision describes the percentage of completion

candidates that were sound compared to all given completion candidates by a tool. Recall describes the percentage of sound

completion candidates that were reported by the tool compared to all possible sound completion candidates at the program

point. N/A indicates that a tool gave no completion candidates.

PyCharm Jedi Pylance Our work
Program 𝑃 : (𝑃 + 𝑁) Precision Recall Precision Recall Precision Recall Precision Recall
self-ref 1 : 2 50% 100% 50% 100% 50% 100% 100% 100%

if-else1 2 : 3 66.7% 100% 100% 100% 66.7% 100% 100% 50%

if-else2 1 : 3 33.3% 100% 33.3% 100% 33.3% 100% 100% 100%

if-else3 2 : 3 100% 100% 66.7% 100% 66.7% 100% 100% 100%

if-else-both 3 : 3 100% 100% 100% 100% 100% 100% 100% 33%

duck-type 1 : 3 33.3% 100% 33.3% 100% 33.3% 100% 100% 100%

use-before-define 1 : 2 100% 100% 100% 100% 50% 100% 100% 100%

use-before-define-fn 1 : 2 50% 100% 50% 100% 50% 100% 100% 100%

add-field 2 : 2 100% 50% 100% 50% 100% 50% 100% 100%

fn-not-called 2 : 2 100% 100% 100% 100% 100% 100% N/A N/A

obj-param 1 : 3 33.3% 100% 33.3% 100% N/A N/A 100% 100%

global-add 2 : 2 100% 50% 100% 100% 100% 100% 100% 100%

not-global-add 1 : 2 100% 100% 50% 100% 50% 100% 100% 100%

both branches are definitely in scope. This can be solved by

modifying the abstract domain. However, as is inherent to

abstract interpretation, there is a trade-off between perfor-

mance and the precision of the abstract domain. In future

work, we would like to investigate the effects of different

abstract domains on the recall and performance.

A major drawback of our approach is that uncalled func-

tions have an associated empty scope. Ergo, completion can-

didates within such a function are limited to what is available

via the parent scope. This is tested by the fn-not-called pro-

gram. The state of the art has no problem with this specific

case. In future work we aim to investigate suitable condi-

tions under which we can safely simulate the calling of these

functions to still obtain an over-approximated scope graph.

8.2 Being Fully Sound
In this work we have made a first step towards our goal,

which is to obtain sound editor services. To attain it, we

need to fully formalize our approach and prove that our

heap and frames operations respect the safety relations. We

are currently in the process of proving our approach using

Lean [5]. Furthermore, languages need to prove that their ab-

stract evaluation relation is sound by showing that it respects

that safety relation.

During informal discussions with Python developers, they

indicated that unsound completion candidates can helpful

during exploration or refactoring. Hence, just providing

sound completion candidates might hamper developers dur-

ing such activities. We overcome this by retaining the possi-

bly unsound completion candidates. These can still be pro-

vided as candidates by utilizing the annotations to provide

developers with more information. For example, by giving

unsound suggestions an indicator to communicate that they

might introduce erroneous execution paths. This would also

provide a fallback option for uncalled functions. In future

work, we aim to investigate this further and compare the

user experience via user studies.

8.3 Incremental Analysis and Imports
The original scope graph framework supports module im-

ports. We have omitted this to simplify the presentation.

However, we do not see any theoretical difficulties in sup-

porting module imports with an extra rule to the resolution

calculus. However, difficulties with modules might arise with

respect to scalability and usefulness. Building detailed scop-

ing information for modules which are not modified by the

programmer is not beneficial. Nevertheless, imported func-

tions can modify variables in such a way that they affect the

scoping in the module in which the programmer is working.

Think of a function that adds fields to an object. To handle

this, we want to investigate capturing the transformations

made by imported functions using predicate transformer

semantics [6].

8.4 Handling of Incorrect Programs
In this paper we have worked under the assumption that

programs are correct, while editor services often operate on

broken programs or programs with holes. In case of broken

programs, we can continue our abstract interpretation but

mark all results as unsound, and show them with an an-

notation to indicate the possible introduction of erroneous

execution paths. For programs with holes, a language can

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Damian Frölich and L. Thomas van Binsbergen

define the semantics and do the interpretation over such

programs. However, it is unclear how scalable this is. Alter-

natively, language designers can define a projection from

programs with holes to programs without . The interpreta-

tion is then performed on the program without holes and

the results can be applied on the program with holes. Fur-

thermore, for simple editing operations, we can modify the

scope graph without re-interpretation of the program, and

can therefore work with holed programs. We thus do not

see any substantial difficulties in adapting our approach to

handle incorrect program and programs with holes.

9 Related Work
Scope graphs [18] have been used as a blueprint for dynamic

memory [23]. Van Antwerpen et al. [29, 30] have used scope

graphs to perform static analysis of types, initialization, and

name binding in a language-independent manner. Zwaan et

al. [36] give a detailed overview of these developments.

Scope graphs have also been used to obtain language-

parametric editor services for statically typed languages [21];

to preservewell-typedness during automated refactoring [15];

and in the construction of completion services for statically

typed languages [20] that support both syntactic and seman-

tics completions. Compared to our work, we do not see an

immediate way to obtain preservation of well-typedness for

automated refactorings, due to incompleteness. With regards

to completion services, priorwork focused on statically typed

languages and used grammars and type specifications. Our

work requires an abstract interpreter, and is purely focused

on semantic completions and dynamically typed languages.

Stack graphs [3] is a modification of scope graphs that

support file-incremental analysis with type-dependent look

ups, and powers code navigation at GitHub. The approach

is mostly focused on code navigation, which boils down to

resolving references to declarations. To be able to support

new languages with ease, the authors have constructed a

graph construction language on top off the tree-sitter parser

framework. Languages which have a tree-sitter parser can

define patterns that map language constructs to operations

on stack graphs, independent of the type of language. To

handle more complex situations, the approach uses data-flow

analysis. However, it is unclear whether the data-flow se-

mantics is extracted out of patterns or requires additional

effort. With our approach, the primary focus is on comple-

tion services, and no additional effort is required to support

more complex name resolution scenarios. However, the ini-

tial effort required by our approach is much more substantial

due to the need of a working abstract interpreter.

9.1 Data-Flow Analysis and Abstract Interpretation
Many editor services use some kind of data-flow analy-

sis [13, 19] to support more complex scenarios. For example,

use-definition chains [12] can be used to determine to which

declaration(s) a reference belongs. The monotone frame-

work [10] provides a reusable pattern for defining data-flow

analysis in a systematic manner.

Data-flow analysis and abstract interpretation are tightly

connected [26, 28]. Our approach could be more data-flow

oriented, using the monotone framework. Nevertheless, the

usage of abstract interpretation in combination with the code

structuring technique promoted by Sturdy [11], provides

much opportunity for reuse between the interpreters.

Prior work combined abstract interpretation with statis-

tical models to provide completion candidates [24]. The ap-

proach was evaluated on Java, and only a small percentage

of the completion proposals gave type errors. It is unclear

whether that included name binding errors, and how it per-

forms on a dynamically typed language.

9.2 Code Completion Using Machine Learning
In recent years, code tasks, such as auto-completion, have

received significant attention from the machine learning

community [34]. Transformers [31] have been used by Kim

et al. [14] to improve candidates over pre-existing machine-

learning based techniques, and shows promising results, but

incorrect predictions are possible. Besides just giving com-

pletion suggestions, modern systems are capable of more by

synthesizing snippets from comments or from context, such

as GitHub Copilot
9
and Tabnine

10
. We have not included

such systems in our comparison since the tasks performed

by these systems is rather different and requires a different

form of evaluation [35].

10 Conclusion
In this paper we have investigated the construction of auto-

completion services for dynamically typed languages, such

that the given completion candidates do not cause name

binding errors. To achieve this, we have extended the scope

graph framework with annotations and context-dependent

name resolution. Furthermore, we have used abstract inter-

pretation to obtain a sound over-approximation of the name

binding seen at run-time. Combined with the 1-to-1 corre-

spondence between scopes and frames, we obtained an over-

approximated scope graph. To demonstrate our approach,

we applied it to a small subset of Python and compared it to

the state of the art editor services. On this test set, our ap-

proach outperformed the state of the art with respect to the

sound completion candidates, and sometimes also with re-

spect to completeness. However, uncalled functions presents

a difficulty for our approach, missing some valid completion

candidates. Finally, we have discussed the steps needed to

obtain auto-completion services that are fully sound with

respect to name binding.

9https://github.com/features/copilot/
10https://www.tabnine.com/

https://github.com/features/copilot/
https://www.tabnine.com/

On the Soundness of Auto-completion Services for Dynamically Typed Languages GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

References
[1] Patrick Cousot. 2021. Principles of abstract interpretation. MIT Press.

[2] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A

Unified Lattice Model for Static Analysis of Programs by Construction

or Approximation of Fixpoints. In Conference Record of the Fourth
ACM Symposium on Principles of Programming Languages, Los Angeles,
California, USA, January 1977, Robert M. Graham, Michael A. Harrison,

and Ravi Sethi (Eds.). ACM, 238–252. https://doi.org/10.1145/512950.
512973

[3] Douglas A. Creager and Hendrik van Antwerpen. 2023. Stack Graphs:

Name Resolution at Scale. In Eelco Visser Commemorative Symposium,
EVCS 2023, April 5, 2023, Delft, The Netherlands (OASIcs, Vol. 109),
Ralf Lämmel, Peter D. Mosses, and Friedrich Steimann (Eds.). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 8:1–8:12. https://doi.org/
10.4230/OASICS.EVCS.2023.8

[4] David Darais, Nicholas Labich, Phuc C. Nguyen, and David Van Horn.

2017. Abstracting definitional interpreters (functional pearl). Proc.
ACM Program. Lang. 1, ICFP (2017), 12:1–12:25. https://doi.org/10.
1145/3110256

[5] Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem

Prover and Programming Language. In Automated Deduction - CADE
28 - 28th International Conference on Automated Deduction, Virtual
Event, July 12-15, 2021, Proceedings (Lecture Notes in Computer Science,
Vol. 12699), André Platzer and Geoff Sutcliffe (Eds.). Springer, 625–635.

https://doi.org/10.1007/978-3-030-79876-5_37
[6] Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and

Formal Derivation of Programs. Commun. ACM 18, 8 (1975), 453–457.

https://doi.org/10.1145/360933.360975
[7] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-

jamin C. Pierce, and Alan Schmitt. 2007. Combinators for bidi-

rectional tree transformations: A linguistic approach to the view-

update problem. ACM Trans. Program. Lang. Syst. 29, 3 (2007), 17.

https://doi.org/10.1145/1232420.1232424
[8] Damian Frolich and Thomas van Binsbergen. 2024. A selection

of Python programs with key name binding challenges for auto-

completion services. https://doi.org/10.5281/zenodo.13628718
[9] Gilles Kahn. 1987. Natural Semantics. In STACS 87, 4th Annual Sym-

posium on Theoretical Aspects of Computer Science, Passau, Germany,
February 19-21, 1987, Proceedings (Lecture Notes in Computer Science,
Vol. 247), Franz-Josef Brandenburg, Guy Vidal-Naquet, and Martin

Wirsing (Eds.). Springer, 22–39. https://doi.org/10.1007/BFB0039592
[10] John B. Kam and JeffreyD. Ullman. 1977. MonotoneData FlowAnalysis

Frameworks. Acta Informatica 7 (1977), 305–317. https://doi.org/10.
1007/BF00290339

[11] Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg. 2018. Compo-

sitional soundness proofs of abstract interpreters. Proc. ACM Program.
Lang. 2, ICFP (2018), 72:1–72:26. https://doi.org/10.1145/3236767

[12] Ken Kennedy. 1978. Use-Definition Chains with Applications. Comput.
Lang. 3, 3 (1978), 163–179. https://doi.org/10.1016/0096-0551(78)90009-
7

[13] Uday P. Khedker, Amitabha Sanyal, and Bageshri Sathe. 2009. Data
Flow Analysis - Theory and Practice. CRC Press.

[14] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. 2021.

Code Prediction by Feeding Trees to Transformers. In 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid,
Spain, 22-30 May 2021. IEEE, 150–162. https://doi.org/10.1109/
ICSE43902.2021.00026

[15] Luka Miljak, Casper Bach Poulsen, and Flip van Spaendonck. 2023.

Verifying Well-Typedness Preservation of Refactorings using Scope

Graphs. In Proceedings of the 25th ACM International Workshop on
Formal Techniques for Java-like Programs, FTfJP 2023, Seattle, WA, USA,
18 July 2023, Aaron Tomb (Ed.). ACM, 44–50. https://doi.org/10.1145/
3605156.3606455

[16] Eugenio Moggi. 1991. Notions of Computation and Monads. Inf.
Comput. 93, 1 (1991), 55–92. https://doi.org/10.1016/0890-5401(91)
90052-4

[17] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. 2020. Static

Type Analysis by Abstract Interpretation of Python Programs. In 34th
European Conference on Object-Oriented Programming, ECOOP 2020,
November 15-17, 2020, Berlin, Germany (Virtual Conference) (LIPIcs,
Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 17:1–17:29. https://doi.org/10.4230/
LIPICS.ECOOP.2020.17

[18] Pierre Neron, Andrew P. Tolmach, Eelco Visser, and GuidoWachsmuth.

2015. A Theory of Name Resolution. In Programming Languages
and Systems - 24th European Symposium on Programming, ESOP 2015,
Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings
(Lecture Notes in Computer Science, Vol. 9032), Jan Vitek (Ed.). Springer,

205–231. https://doi.org/10.1007/978-3-662-46669-8_9
[19] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Prin-

ciples of program analysis. Springer. https://doi.org/10.1007/978-3-
662-03811-6

[20] Daniël A. A. Pelsmaeker, Hendrik van Antwerpen, Casper Bach

Poulsen, and Eelco Visser. 2022. Language-parametric static semantic

code completion. Proc. ACM Program. Lang. 6, OOPSLA1 (2022), 1–30.
https://doi.org/10.1145/3527329

[21] Daniël A. A. Pelsmaeker, Hendrik van Antwerpen, and Eelco Visser.

2019. Towards Language-Parametric Semantic Editor Services Based

on Declarative Type System Specifications (Brave New Idea Paper).

In 33rd European Conference on Object-Oriented Programming, ECOOP
2019, July 15-19, 2019, London, United Kingdom (LIPIcs, Vol. 134), Alas-
tair F. Donaldson (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Infor-

matik, 26:1–26:18. https://doi.org/10.4230/LIPICS.ECOOP.2019.26
[22] Gordon D. Plotkin. 2004. A structural approach to operational seman-

tics. J. Log. Algebraic Methods Program. 60-61 (2004), 17–139.
[23] Casper Bach Poulsen, Pierre Néron, Andrew P. Tolmach, and Eelco

Visser. 2016. Scopes Describe Frames: A Uniform Model for Mem-

ory Layout in Dynamic Semantics. In 30th European Conference on
Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome,
Italy (LIPIcs, Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner

(Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 20:1–20:26.

https://doi.org/10.4230/LIPICS.ECOOP.2016.20
[24] Veselin Raychev, Martin T. Vechev, and Eran Yahav. 2014. Code com-

pletion with statistical language models. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’14, Edin-
burgh, United Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and

Keshav Pingali (Eds.). ACM, 419–428. https://doi.org/10.1145/2594291.
2594321

[25] David A. Schmidt. 1995. Natural-Semantics-Based Abstract Interpreta-

tion (Preliminary Version). In Static Analysis, Second International Sym-
posium, SAS’95, Glasgow, UK, September 25-27, 1995, Proceedings (Lec-
ture Notes in Computer Science, Vol. 983), Alan Mycroft (Ed.). Springer,

1–18. https://doi.org/10.1007/3-540-60360-3_28
[26] David A. Schmidt. 1998. Data Flow Analysis is Model Checking of

Abstract Interpretations. In POPL ’98, Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Diego, CA, USA, January 19-21, 1998, David B. MacQueen and Luca

Cardelli (Eds.). ACM, 38–48. https://doi.org/10.1145/268946.268950
[27] David A. Schmidt. 1998. Trace-Based Abstract Interpretation of Oper-

ational Semantics. LISP Symb. Comput. 10, 3 (1998), 237–271.
[28] David A. Schmidt and Bernhard Steffen. 1998. Program Analysis as

Model Checking of Abstract Interpretations. In Static Analysis, 5th
International Symposium, SAS ’98, Pisa, Italy, September 14-16, 1998,
Proceedings (Lecture Notes in Computer Science, Vol. 1503), Giorgio Levi
(Ed.). Springer, 351–380. https://doi.org/10.1007/3-540-49727-7_22

https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.4230/OASICS.EVCS.2023.8
https://doi.org/10.4230/OASICS.EVCS.2023.8
https://doi.org/10.1145/3110256
https://doi.org/10.1145/3110256
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.5281/zenodo.13628718
https://doi.org/10.1007/BFB0039592
https://doi.org/10.1007/BF00290339
https://doi.org/10.1007/BF00290339
https://doi.org/10.1145/3236767
https://doi.org/10.1016/0096-0551(78)90009-7
https://doi.org/10.1016/0096-0551(78)90009-7
https://doi.org/10.1109/ICSE43902.2021.00026
https://doi.org/10.1109/ICSE43902.2021.00026
https://doi.org/10.1145/3605156.3606455
https://doi.org/10.1145/3605156.3606455
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.4230/LIPICS.ECOOP.2020.17
https://doi.org/10.4230/LIPICS.ECOOP.2020.17
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1145/3527329
https://doi.org/10.4230/LIPICS.ECOOP.2019.26
https://doi.org/10.4230/LIPICS.ECOOP.2016.20
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1007/3-540-60360-3_28
https://doi.org/10.1145/268946.268950
https://doi.org/10.1007/3-540-49727-7_22

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Damian Frölich and L. Thomas van Binsbergen

[29] Hendrik van Antwerpen, Pierre Neron, Andrew P. Tolmach, Eelco

Visser, and Guido Wachsmuth. 2016. A constraint language for

static semantic analysis based on scope graphs. In Proceedings of
the 2016 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, PEPM 2016, St. Petersburg, FL, USA, January 20 - 22,
2016, Martin Erwig and Tiark Rompf (Eds.). ACM, 49–60. https:
//doi.org/10.1145/2847538.2847543

[30] Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and

Eelco Visser. 2018. Scopes as types. Proc. ACM Program. Lang. 2,
OOPSLA (2018), 114:1–114:30. https://doi.org/10.1145/3276484

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.

Attention is All you Need. InAdvances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.

Vishwanathan, and Roman Garnett (Eds.). 5998–6008.

[32] Philip Wadler. 1992. Monads for functional programming. In Program
Design Calculi, Proceedings of the NATO Advanced Study Institute on
Program Design Calculi, Marktoberdorf, Germany, July 28 - August 9,
1992 (NATO ASI Series, Vol. 118), Manfred Broy (Ed.). Springer, 233–264.

https://doi.org/10.1007/978-3-662-02880-3_8
[33] Chaozheng Wang, Junhao Hu, Cuiyun Gao, Yu Jin, Tao Xie, Hailiang

Huang, Zhenyu Lei, and YuetangDeng. 2023. HowPractitioners Expect

Code Completion?. In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2023, San Francisco, CA, USA, December
3-9, 2023, Satish Chandra, Kelly Blincoe, and Paolo Tonella (Eds.). ACM,

1294–1306. https://doi.org/10.1145/3611643.3616280
[34] Man-Fai Wong, Shangxin Guo, Ching Nam Hang, Siu-Wai Ho, and

Chee-Wei Tan. 2023. Natural Language Generation and Understanding

of Big Code for AI-Assisted Programming: A Review. Entropy 25, 6

(2023), 888. https://doi.org/10.3390/E25060888
[35] Burak Yetistiren, Isik Ozsoy, and Eray Tuzun. 2022. Assessing the

quality of GitHub copilot’s code generation. In Proceedings of the 18th
International Conference on Predictive Models and Data Analytics in
Software Engineering, PROMISE 2022, Singapore, Singapore, 17 November
2022, Shane McIntosh, Weiyi Shang, and Gema Rodríguez-Pérez (Eds.).

ACM, 62–71. https://doi.org/10.1145/3558489.3559072
[36] Aron Zwaan and Hendrik van Antwerpen. 2023. Scope Graphs: The

Story so Far. In Eelco Visser Commemorative Symposium, EVCS 2023,
April 5, 2023, Delft, The Netherlands (OASIcs, Vol. 109), Ralf Lämmel,

Peter D. Mosses, and Friedrich Steimann (Eds.). Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 32:1–32:13. https://doi.org/10.4230/
OASICS.EVCS.2023.32

Received 2024-06-18; accepted 2024-08-15

https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/3276484
https://doi.org/10.1007/978-3-662-02880-3_8
https://doi.org/10.1145/3611643.3616280
https://doi.org/10.3390/E25060888
https://doi.org/10.1145/3558489.3559072
https://doi.org/10.4230/OASICS.EVCS.2023.32
https://doi.org/10.4230/OASICS.EVCS.2023.32

	Abstract
	1 Introduction
	2 Background
	2.1 Abstract Interpretation
	2.2 Scope Graphs

	3 Scope Graphs for Dynamic Languages
	3.1 Annotated Scope Graphs
	3.2 Context-Dependent Name Resolution
	3.3 Multi-Stage Resolution

	4 Obtaining Scope Graphs via Heaps
	4.1 Updated Heaps and Frames
	4.2 Natural Semantics with Heap and Frames

	5 Abstract Interpretation with Heap and Frames
	5.1 Safe Heap and Frames
	5.2 Reasoning with Over-Approximated Scope Graphs

	6 Implementation
	6.1 Heaps and Frames
	6.2 Abstract and Concrete Interpreters
	6.3 Collecting Semantics and Termination

	7 Experiment Design and Results
	7.1 Results

	8 Discussion
	8.1 Missing Candidates and Uncalled Functions
	8.2 Being Fully Sound
	8.3 Incremental Analysis and Imports
	8.4 Handling of Incorrect Programs

	9 Related Work
	9.1 Data-Flow Analysis and Abstract Interpretation
	9.2 Code Completion Using Machine Learning

	10 Conclusion
	References

