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Abstract
Since its introduction at GPCE2020, the eFLINT norm speci-

fication language has been used in academic and industrial

applications to specify and automate compliance for various

norms, such as privacy regulations and data processing agree-

ments. The eFLINT interpreter has been used to automate

the analysis of real-time or historical cases by computing

logical consequences and reporting normative violations.

To support future language and tooling developments, we

contribute a formal definition of the language as a trans-

lation to first-order logic programming with stable model

semantics. The described semantics aligns with the previous

semi-formal descriptions of the language, but resolves issues

relating to logical inference with negative antecedent and

aggregation operators. Specifically, we formalise the connec-

tion between eFLINT’s derivation rules and Horn clauses

under the stable model semantics. Secondly, by repurposing

the Clingo answer-set solver as a highly-optimised eFLINT

interpreter, we extend the toolset for eFLINT with model-

checking abstract properties in addition to case analysis.

We evaluate the new semantics and interpreter via an

empirical comparison of the existing implementation to our

prototype implementation. We observe that the expected

subset of our tests have the equivalent behaviours.

CCS Concepts: • Applied computing→ Law; Enterprise
modeling; • Software and its engineering → Domain
specific languages; Semantics; • Theory of computation
→ Constraint and logic programming; Automated reasoning.

Keywords: norm, specification languages, dynamic seman-

tics, logic programming, model checking, answer set solving
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1 Introduction
The eFLINT language, first introduced at GPCE2020, is a

domain-specific specification language designed to enable

(static and dynamic) reasoningwith interpretations of norma-

tive documents such as laws, regulations, and contracts [34].

eFLINT has been used in research of normative multi-agent

systems [24, 37], distributed data processing systems [9, 16,

32, 33], and to develop partially automated data governance

solutions [2, 35]. In these cases, the language has been used to

specify, for example, data processing and consortium agree-

ments, data access or usage conditions, and parts of the

European General Data Protection Regulation (GDPR) [10].

From the start, eFLINT was designed to bridge the gap

between normative concepts typically expressed by legal

experts, and event-driven software systems requiring legal

regulation. Its high level of abstraction lets eFLINT serve as a

lingua franca for norms from various domains. For example,

once encoded in eFLINT, smart contracts, EU data protec-

tion regulations, and organisational policies havemeaningful

compositions [33]. The eFLINT interpreter, available online1,
checks compliance of a given eFLINT scenario against a given
eFLINT specification. Scenarios instantiate specifications by

laying out the events that happen(ed). Precisely, the tool com-

putes logical consequences and enumerates the normative

violations: unmet obligations and prohibited actions.

Section 2 explains the eFLINT language in more detail. Un-

til then, we exemplify the typical usage of the language; the

eFLINT interpreter monitors the compliance of a software

system by checking system traces (modelled as scenarios) for

compliance against regulatory norms (modelled as a specifi-

cation). Example 1 introduces our running example of such

a usage; in this case, the specification captures the norm that

data users must inform data controllers of (the purpose of

their) data accesses within a given time frame.

Example 1 (Running Example eFLINT Usage). A system
is regulated by the following specification, which expresses:
accessors of datasets must notify the dataset’s controllers (or
the administrator by default) within ten time steps of the access.
1
The Haskell implementation sees active development. But we focus on the

version authored on the 13th of February 2025: https://gitlab.com/eflint/hask
ell-implementation/-/blob/cfe73e9a0ed594e384027ea29529da62dab1fe0f
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// These lines define three basic data types

Fact instant Identified by Int

Fact user Identified by String

// 'controller ' is defined as a 'user ' alias soon

// For each controls that holds , its controller holds.

Derived from (Foreach controls: controls.controller)

Fact dataset Identified by String

Derived from (Foreach controls: controls.dataset)

// Introduces aliases for users and instants

Placeholder controller For user

Placeholder deadline For instant

// (Mutable) relations over users , instants , and datasets

Fact elapsed Identified by instant

Fact controls Identified by controller * dataset

// For each dataset that holds , the admin controls it

// if there exists no non -admin user that controls it.

Derived from (Foreach dataset:

controls(user("Admin"),dataset)

Where Not(Exists user:

user != user("Admin") && controls(user ,dataset )))

Act access Actor user Related to dataset , instant

Derived from (Foreach user , controls , instant:

access(user , controls.dataset , instant ))

// When triggered , the access has these effects

Creates (Foreach controls:

must_notify(user , controls.controller ,

access(user ,dataset ,instant), instant + 10)

Where controls.dataset == dataset)

// Facts , but their elements are conditionally violated

Duty must_notify Holder user Claimant controller

Related to access , deadline

// Predicates when these duties are violated

Violated when Holds(elapsed(deadline ))

Act notify Actor user Recipient controller

Related to must_notify Terminates must_notify

Derived from (Foreach must_notify: notify(

must_notify.user ,must_notify.controller ,must_notify ))

The following eFLINT scenario models a hypothetical system
configuration just after user Bob accesses the X-Ray dataset.
+dataset("X-Rays").

+controls(user("Amy"),dataset("X-Rays")).

+instant (9).

+user("Bob").

access(user("Bob"), dataset("X-Rays"), 9).

Given the above input, the eFLINT interpreter emits the follow-
ing output, showing the consequences of each scenario step in
turn: derived created (derived) instances, and that Bob’s access
action is ultimately permitted (enabled).
+dataset("X-Rays").

| +user("Admin")

| +controls(user("Admin"),dataset("X-Rays"))

+controls(user("Amy"),dataset("X-Rays")).

| user("Amy")

+user("Bob").

+instant (9).

| +access(user("Admin"),dataset("X-Rays"),instant (9))

| +access(user("Amy" ),dataset("X-Rays"),instant (9))

| +access(user("Bob" ),dataset("X-Rays"),instant (9))

access(user("Bob"),dataset("X-Rays"),instant (9)) ENABLED
| +notify(user("Bob"),user("Admin"), ... ,instant (19)))

| +must_notify(user("Bob"),user("Admin"), ... )

| +notify(user("Bob"),user("Amy"), ... ,instant (19)))

| +must_notify(user("Bob"),user("Amy"), ... ,instant (19))

The eFLINT language is motivated, described, and demon-

strated in research articles [33, 34]. The syntax and funda-

mentals of the semantics are defined using conventional

mathematical notation and precise natural language. For

example, [34] makes clear that each specification denotes

an action-labelled transition system, and that each scenario

denotes a sequence of actions that traces a path through the

transition system. Figure 1 visualises a scenario.

𝑠1 𝑠2 𝑠3 𝑠4

𝑖1 𝑎1 ∪ 𝑖′1 𝑖2 𝑎2 ∪ 𝑖′2 𝑖3 𝑎3 ∪ 𝑖′3 𝑖4

𝑡1 𝑡2 𝑡3

Figure 1.A trace through states 𝑠1−4 over transitions 𝑡1−3, in-
duced by a scenario triggering actions [𝑎1, 𝑎2, 𝑎3] in sequence.
Each state and transition models the (current) normative re-

lationships as (elements of) some structured data base 𝑖 .

However, at time of writing, some language features are

not rigorously defined. For example, the eFLINT descrip-

tion in [34] suffices for users to agree that the syntactic

term Derived from (Foreach dataset: ...) in Example 1 denotes an

eFLINT derivation clause which gives the administrator con-

trol of datasets which have no other controllers. But some

details remain unclear. Does the administrator retain control

over the X-Rays once Amy has successfully claimed control?

In the original interpreter, querying ?controls("Admin","X-Rays")

after Example 1 yields query successful; the administrator ap-

pears to retain control. But this behaviour conflicts with

the plausible interpretation of what is documented in [34]:

derivation clauses should apply (only) when their conditions

are satisfied. The identified issue is that negation (Not), univer-

sal quantification (Forall), and aggregation (e.g., Max) exhibit
unspecified (thus unexpected) behaviour. For example, the

outcome of the query is flipped if user is named agent instead.

In this article, we (re)define the eFLINT semantics. Our

goal is to formalise eFLINT’s existing semantic concepts in

detail, such that eFLINT scenarios and specifications have

unique and unambiguous meanings. We select an intuitive

and mature foundation: first-order logic programming un-

der the stable model semantics [13]. This is also pragmatic

choice, as it lets us leverage existing logic programming

tools. Precisely, we define the semantics of eFLINT with a

translation to the Clingo language, i.e., the input language
of the Clingo answer-set solver tool. Thus, eFLINT inherits

the clarity of the Clingo semantics, and we repurpose the

Clingo solver as our new eFLINT interpreter.

We recreate the existing eFLINT descriptions and inter-

preter as much as possible. Specifically, we realise the de-

scription in [34] by aligning key eFLINT constructs with the

inference rules (Horn clauses) of logic programming. Thus,

users are afforded powerful, (de)compositional reasoning
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about scenarios and systems via specifications. As part of

this (re)design, we make two changes relative to the exist-

ing eFLINT interpreter. Firstly, the ambiguity of the original

description regarding the semantics of derivation clauses

with negation, iteration and aggregation is resolved. We do

so by connecting these constructions to the literature on

(the challenges of) reasoning with negated conditions in

logic programming. In the running example, the result is

that control over a dataset is exclusive to controllers or to

the administrator (if there are no controllers). Secondly, we

leverage our translation to Clingo to support a new, more

general use case for eFLINT: via Clingo, our tool searches for
scenarios with user-defined properties. For example, ‘find all

counterexamples to the proposition: scenarios taking only

permitted actions violate no duties’. This use case has many

practical applications, e.g., in model-checking and recom-

mendation, and is already popular with languages related to

eFLINT, such as Symboleo [25] and FIEVEL [36].

We formulate our translation from eFLINT to Clingo as the

multi-stage translation pipeline shown in Figure 2. This helps

to structure our presentation. But moreover, it introduces

novel intermediate representations which are useful in their

own right. For example, Core eFLINT is entirely embedded

in Clingo, but it captures much of th eFLINT semantics, and

unifies eFLINT specifications with scenarios.

Concretely, this article makes the following contributions:

• A translational semantics for eFLINT specifications

and scenarios with first-order logic programming and

stable model semantics as the semantic domain.

• An implementation of our semantics that leverages

the Clingo solver for reasoning.

• A Clingo-embedded, domain-specific, core language

for reasoning with dynamic facts, acts and violations.

• An evaluation of contributions by confirming the ex-

pected input/output (in)equalities of the interpreters.

Our artefact [19] at https://doi.org/10.5281/zenodo.15188
959 includes our implementation and experimental data.

This article proceeds as follows. Sections 2 and 3 give

accounts for eFLINT and Clingo, the source and target lan-

guages of our translation, and their respective background

literature. Sections 4 to 7 build up the translation stages

‘bottom-up’, i.e., we build layers of abstraction atop Clingo.

The stage in Section 7 handles the two forms of reasoning:

scenario-compliance and scenario-search. Section 8 evalu-

ates our contributions, and Section 9 identifies related and

future work, before Section 10 concludes.

spec. × scenario⇒ 𝑒𝐹𝐿𝐼𝑁𝑇 core→ state trace→ Clingo

Figure 2. Translation from an eFLINT specification-scenario

pair to Clingo via the intermediate eFLINT core and state

trace abstractions (⇒ = translation,→ = dependency).

2 Translation Source Language: eFLINT
Normative Specification Languages in General. Each

(formal) specification language affords the systematic devel-

opment of complex artifacts called specifications. The rigour
of a formal language definitions is useful because it ensures

that each specification has a precise, unambiguous meaning.

Automated analyses can then reveal or confirm (un)desirable

properties of specifications and the concepts they model. For

example, a formal specification of a communication protocol

can be used to regulate a distributed system; events that

deviate from the specification can be ruled out beforehand,

monitored, or audited via the inspection of system logs.

Normative specification languages are designed to model

norms that regulate social systems, e.g., laws and contracts.

These languages formalise notions of permission, prohibition,
and obligation, and their tools perform systematic reasoning

and case analysis. Languages based on Hohfeld’s legal frame-

work [4, 8], such as Symboleo [26, 30] and eFLINT [33, 34]

are action-oriented, formalising mutable relations between

institutional entities: their powers and duties to act. The focus
on actions affords the specification and control over software

systems’ interactions with the social world. Such systems

are also beholden to norms; e.g., systems processing personal

data may be subjected to the GDPR.

The eFLINT Language. Here, we give a brief account of
the eFLINT language constructs and how they afford the

modelling of (normative) domains of discourse. Throughout,

we exemplify concepts with the running example Example 1.

Each specification lays the ontological foundations of the

model as a collection of record-type definitions. E.g., controls
is a record with controller and dataset fields. Each type is also

defined alongside a collection of clauses, which instantiate
these types, identifying particular (relationships between)

entities. For example, controls(agent("Amy"),dataset("X-Rays")) is

an instance of controls. The specification models the system

by building up a collection of current instances. However,
instances never occur alone; they are always contextualised

by an attribute, such as holds or actViol. Users of the lan-

guage (statically) agree on how these attributes are inter-

preted as modalities. For example, instances with actViol
witness particular cases of violating actions, because they

were not permitted when they were triggered. Later, we

see how the eFLINT semantics formalises such meanings

by inferring some attributes from others. For example, by

definition, instances with created also have enabled. Users
model systems by defining clauses like (Derived from ...) and

(Terminates ...) to capture different normative abstractions. For

example, associating Derived from (Foreach user...)) to the access

type, the user associates derived to access(-type) instances.

Clauses are evaluated in the context of a concrete current
state. The states only become concrete when the specifica-

tion is evaluated alongside a scenario. The scenario lays out

the instance-attribute pair which gets each successive state

https://doi.org/10.5281/zenodo.15188959
https://doi.org/10.5281/zenodo.15188959
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started. Typically, the attribute is trigger, such that the in-

stance identifies an action that happens in transition to the

next state. E.g., because access is marked Act, its instances can

be triggered. Some attributes have effects that persist over

subsequent states. E.g., when triggered, access instances create
new control instances, which persist until they are terminated.
Thus, eFLINT models complex and stateful cyber-social

systems, unambiguously specifies which states are (not) de-

sirable, and lays out the details of concrete scenarios.

3 Translation Target Language: Clingo
Logic- and Answer-Set-Programming. The logic pro-

gramming paradigm operationalises formal logics: logical

theories correspond to declarative programs, and the search

for proofs of formulae corresponds to program execution

and expression evaluation. Different logic programming lan-

guages and tools strike different compromises between lan-

guage expressivity, runtime characteristics, guarantees, and

so on. For example, [6] overviews the work and tools around

the Datalog language, which sees active study and applica-

tion; consider the PhD thesis of André Pecak in 2024 [23].

Answer-set-programming (or -solving) is a form of logic

programming with an emphasis on modelling complex prob-

lems via rich language features. The name comes from the

basis on the answer-set semantics, which is also called the

stable model semantics [13]. This semantics is characterised

by attributing a set of stable models to each program; each is

interpreted as a solution to the search problem. [12] studies

the formulation of search problems in these languages.

Clingo is an answer-set solving language and toolset [11].

It is well-known in the answer-set solving community for

its maturity and its high performance in solving; e.g., [5]
reports on the results of an answer-set competition where

various Clingo components outcompeted similar tools.

Features of The Target Fragment of Clingo. Recall Fig-
ure 2: we ultimately define the semantics of eFLINT by trans-

lating arbitrary eFLINT specifications and scenarios toClingo
programs: rule sets in the Clingo language. Thus, eFLINT

acquires the stable model semantics that underlies Clingo.
Here, we explain the features of Clingo that we target with

our translation. Section 9 discusses the potential to target

other languages (e.g., Soufflé) with many of these features.

We pervasively use Clingo’s general logic program-
ming features, e.g., these are shared with Datalog. Each rule

asserts that the truth of a consequent term (or ‘conclusion’) is

implied by the conjunction of listed antecedent terms (or ‘con-

ditions’). Each rule denotes a set of concrete rules for all sub-
stitutions of the variables. E.g., wet(Day) :- rainy(Day), cold(Day)

expresses that ‘rainy and cold days are wet’. The :- can be

omitted from rules with no conditions.

Clingo admits negated antecedents, matching not 𝑎, ex-

pressingweak negation or negation by default of 𝑎: the inabil-
ity to infer the truth of 𝑎, i.e., promoting the unprovability

of 𝑎 to a proof of ¬𝑎. E.g., wet(Day) :- rainy(Day), not sunny(Day)

expresses that ‘rainy but not sunny days are wet’. Languages

supporting weak negation must address the absence of a

canonical (i.e., unique) semantic interpretation for certain

syntactically valid rules like p :- not p. Many solutions have

been explored in the literature. Some languages opt to simply

disallow these programs. Answer-set solvers like Clingo gen-

erally embrace the lack of a unique interpretation and simply

enumerate all the separate stable models as alternative an-
swers. Intuitively, this enumerates the possible combinations

of assignments to logical variables (‘models’) that satisfy each

program rule. For example, p :- not p has zero stable models

as none satisfies this contradictory rule.

Clingo’s answer-set semantics supports the expression of

(integrity) constraints over the values of logical variables.
These take the form of rules with no explicit consequent,

which condition the truth of ⊥: logical inconsistency. For
example, :- not wet(monday) asserts that ‘it is inconsistent to

assume thatMonday is not wet’ or, more intuitively, ‘Monday

must be wet’. We use such constraints in Sections 4 and 5 to

protect the abstractions in our intermediate representations.

In each stage, we argue that the constraints of prior stages

are satisfied, documenting semantic properties.

Clingo admits (syntactically) nested terms. For example,

rule controls(agent("Amy"), dataset(D)) :- dataset(D) is admissible.

In the literature, this feature is also called function sym-
bols; reflecting the distinction between the function symbol
constants of nested terms (e.g., agent above) in contrast to

predicate symbols (e.g., controls above); only the latter con-

struct terms that are valuated by the model. Some formalisms

emphasise their separation by drawing these symbols from

different alphabets, but like eFLINT and Clingo, we do not

(e.g., dataset above acts as a function and predicate symbol).

Regardless, the ability to nest terms affords significant mod-

ularity in definitions. Consider how controls(user,dataset) in

Example 1 is independent of the syntactic structure of users.

We exploit Clingo’s convenient tuple terms, which ef-

fectively have the empty function symbol. E.g., (agent,"Amy")
approximates agent("Amy"), but only in the former can agent

bind variables. Note that Clingo forbids tuple consequents

or antecedents, so rule f(x) :- x is valid but (f,x) :- x is not.

Unfortunately, by supporting nested terms, inference is

not guaranteed to terminate. This problem has no straight-

forward solution [28], and we make no attempt to solve it.

Instead, we inherit the behaviour of the current eFLINT in-

terpreter and Clingo alike: the evaluation of some programs

simply does not terminate. For example, the Clingo inter-

preter diverges on input f(f(X)) :- f(X). f(0). Intuitively, these

programs denote infinitely large models. In Section 6, we

address the only threat to the termination of our programs:

user-defined eFLINT-derivation and -synchronisation rules.

Like eFLINT, Clingo provides integer theory. Integer
operators (e.g., < , + ,- ) and integer and string constants (e.g.,
100, "Douglas") are constant symbols given special treatment;
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the operators are concretely denoted in infix position, and

their applications are normalised under evaluation, as one

is likely to expect. For example, in Clingo and eFLINT, 3 + 1

normalises to 4 and 0 < 1 holds true.

Section 6 relies on (and discusses and demonstrates) fea-

tures that make individual Clingo rules more expressive.

Firstly, we use conditioned conditions (or ‘nested rules’)

such as (b : c, d nested in) a :- b : c, d ; e. Thus we model

disjunctive conditions; e.g., x : not y models 𝑥 ∨ 𝑦 (𝑥 ← ¬𝑦).
Note that (:) and (,) are the nested counterparts of (:-) and

(;), respectively. Secondly, nested rules can be aggregated
by a preceding #sum, #count, #max, or #min, yielding integers. For

example, f(1) :- 0 = #count{x : f(N)} is contradictory.

Section 7 relies on a feature of Clingo that is atypical out-

side of answer-set solving: rules with disjunct consequents.
For example, the Clingo rule {a}. supports but does not imply

that a is true. There are two stable models: either nothing is

true, or only a is true. Section 7 demonstrates how we use

these rules to encode search spaces of eFLINT scenarios.

4 State Traces
Essentials of the Event Calculus. eFLINT models dy-

namic (normative) systems as event-labelled transition sys-

tems as was visualised in Figure 1. The original article [34]

explicitly bases this approach on the event calculus, a logical
theory for modelling dynamic systems. It formalises notions

of state, fluent, and their relation as (holds) in ⊆ fluent× state.
The fundamental notion of inertia is formalised as an axiom,

formalising ‘the truth-value of fluents persist from each state

to the next until it is acted upon’, where actions and states

are (inter-)related by a (partial) ordering on times. Particular
systems are modelled by naming actions and specifying their
effects: how they change truth in the future as a function of

truth at present. Particular scenarios are modelled by causing

particular actions to happen at particular times.

State Traces. We capture this fundamental layer of the

eFLINT semantics in our most abstract intermediate repre-

sentation: state traces. Each state trace characterises a single

eFLINT scenario. We adopt a simplistic model, in which

many features of the event and situation calculi coincide: the

system is unfolded as a sequence of states, indexed by a finite
prefix of the natural numbers {1, 2, 3, ..., 𝑛}. We use Clingo’s

integer theory for traversing and comparing states: (𝑆 + 1) is
the successor of state 𝑆 , and (<) orders states. We likewise

index the sequence of transitions, i.e., each 𝑖 in 1 ≤ 𝑖 < 𝑛

identifies the 𝑖th transition from state 𝑖 to state 𝑖 + 1. We

denote the truth fluent 𝐹 in state 𝑆 as in(𝐹, 𝑆); note how we

colour these (ubiquitous) in terms to aid readability.

Figure 3 lays out the semantics of state traces as a Clingo

rule set. The first four rules characterise the states: state
predicates some non-empty and contiguous prefix of the

natural numbers. Rule (inertia) models the main axiom

of the event calculus: 𝐹 is true in each state where it was

Notation 1 (Semantic Rules in Clingo). As per the tradi-
tion of formal languages, when they encode our semantics, we
notate Clingo rules in the style of the Gentzen-style sequent
calculus or natural deduction. For brevity, we fuse rules with
identical antecedents by conjoining their consequents. E.g., we
notate a :- f ; g(P,Q) and b(Q) :- f ; g(P,Q) together as 𝑓 ∧𝑔 (𝑃,𝑄 )

𝑎∧𝑏 (𝑄 ) .

⊤
state(1)

in(𝐹, 𝑆)
state(𝑆)

state(𝑆) ∧ 1 < 𝑆

state(𝑆 − 1)
state(𝑆) ∧ 0 ≮ 𝑆

⊥
in(add (𝐹 ), 𝑆) ∧ ¬in(rem(𝐹 ), 𝑆) ∧ state(𝑆 + 1)

in(𝐹, 𝑆 + 1) ∧ in(add (𝐹 ), 𝑆 + 1) (inertia)

Figure 3. Semantics of state traces encoded as Clingo rules,

defining the contiguity of state-identifiers in {1, 2, 3, ..., 𝑛},
and encoding the inertia axiom of the event calculus: each

add (𝐹 ) implies the truth of fluent 𝐹 until after rem(𝐹 ).

Definition 1 (state-internal). Rule 𝑟 is state-internal iff, for
each antecedent identical to in(𝐹, 𝑆) for some 𝐹 and 𝑆 , each
consequent of 𝑟 is identical to in(𝐹 ′, 𝑆) for some 𝐹 ′.

Example 2 (state-internal rules). Intuitively, state-internal
rules do not let truths of the form in(𝐹, 𝑆) ‘leak’ out of 𝑆 .
• Rule in(f,S) :- state(S) is state-internal because no an-
tecedent matches in(𝐹 ,𝑆) for any 𝐹 and 𝑆 .
• Rule in(x,S) :- in(y,S) ; f(y) is state-internal because

in(x,S) is identical to in(𝑌 ,s) where 𝑌 = x.
• Rule in'(x,S) :- in(y,S) is not state-internal because con-
stant in' is not identical to constant in.
• Rule in(x,1) :- in(y,S) is not state-internal because con-
stant 1 is not identical to variable S.

Example 3 (example Clingo rules defining a state trace).
When the following rules are input to the Clingo interpreter
along with the state-trace semantic rules (Figure 3), the out-
put is as visualised below: the states, transitions, and fluents
comprising a particular state trace. We colour each term red
or black iff it is the conclusion of an example or state-trace
semantic rule, respectively. The figure uses ctl(𝑋 ) as an abbre-
viation for the Clingo term controls(𝑋 ,"X-Rays").
in(add(controls(user("Amy"),dataset("X-Rays"))),1).
in(rem(controls(user("Amy"),dataset("X-Rays"))),2).
state(3). state(4).
in(dataset(D),S) :- in(controls(A,D),S).
in(other_control(D) ,S) :-

in(controls(A,D),S), not user("Admin") = A.

in(controls(user("Admin"),D),S) :-
in(dataset(D),S), not in(other_control(D),S).

rem(ctl("Amy"))
add(ctl("Amy")) add(ctl("Amy"))

1 1 2 2 3 3 4

ctl("Admin") ctl("Amy") ctl("Admin") ctl("Admin")
other_control("X-Rays")
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added (with add (𝐹 )) more recently than it was removed

(with rem(𝐹 )). Note that this holds even in cases where the

same 𝐹 is added and removed simultaneously, in which case

the removal suppresses addition (which results in simpler se-

mantic rules than the alternative). Truths in(add (𝑋 ), 𝑆) and
in(rem(𝑋 ), 𝑆) have no direct influence on in(𝑋, 𝑆), but rather
affect the truth of𝑋 in state 𝑆 +1 and onwards. It is helpful to
think of in(add (𝑋 ), 𝑆) and in(rem(𝑋 ), 𝑆) as attributes of the
transition indexed by 𝑆 , which goes from state 𝑆 to state 𝑆 +1.
The library defined in Figure 3 affords the definition of

state traces using add and rem in rules to control the pres-

ence/absence of fluents in states. The following definition

describes a syntactic property over rules that ensures truths

about the presence/absence of fluents in one state cannot be

used to conclude the presence/absence of fluents in another

state; only Rule (inertia) is allowed to do this.

Example 3 defines a state trace using only state-internal

rules atop the state-trace semantics. The example demon-

strates the behaviour of state traces in general, by modelling

a facet of the running example in particular (Example 1):

Amy sometimes controls the X-Rays dataset, and the ad-

ministrator controls datasets that have no other controller.

Owing to the stable model semantics, the natural language

description is captured precisely by these rules and the con-

ditions of the administrator’s control are clear: per state, the

administrator controls "X-Rays" if and only if Amy does not.

5 Core eFLINT
The library defined in this section can simultaneously be seen

as a Clingo-embedded domain-specific language (EDSL) and

as a core-language underneath eFLINT as one of possibly

many surface-languages. In Sections 6 and 7 the library is

used as a target language in a translation from eFLINT. As

a separately useful EDSL, the library can be used to model

dynamically evolving scenarios and reason with the general

notions of action- and duty-compliance as defined in [34].

Core eFLINT refines the prior state trace abstraction; as

before, fluents are related to states by the in relation. But now
each fluent 𝐹 is an attribute-instance pair (𝐴, 𝐼 ), i.e., each
in((𝐴, 𝐼 ), 𝑆) attributes 𝐴 to instance 𝐼 in state 𝑆 . Instances

are opaque in the semantics, i.e., they are always bound to

Clingo variables, but instances are further structured by the

users (e.g., by specifications in Section 6). Core eFLINT fixes

the attributes A in Table 1, and prescribes their semantics in

alignment with the corresponding semantics of eFLINT, as

it is described [33, 34] and with missing details drawn from

the Haskell code of the original interpreter.
2

Precisely, Figure 4 defines the semantics of Core eFLINT.

These rules relate the attributes of each instance. Note that

these rules are all state-internal (Definition 1); (only) the

2
We adapt the definitions of CAll, HoldsTrue, is_holds, is_enabled and so

on, from https://gitlab.com/eflint/haskell-implementation/-/blob/cfe73e9a
0ed594e384027ea29529da62dab1fe0f/src/Language/EFLINT/Eval.hs

above rules in Figure 4 use add and rem to relate the present

and future attributes of each instance. Intuitively, the ephe-

meral truth of transition-attributes (inA𝑡 ) (like create) affect
the persistent truth of state-attributes (in A𝑠 ) (like created)
and enabled. It is helpful to think of in((𝐴, 𝐼 ), 𝑁 ) as labelling
the 𝑁 th transition when 𝐴 is a transition attribute, i.e., la-
belling the transition from the 𝑁 th state to the 𝑁 + 1st state.
Rules in Figure 4 are clustered into {above, below, right},

formalising three conceptually distinct semantic facets of

the original eFLINT. We discuss each in turn.

(When added to Figure 3) the above rules in Figure 4 re-

late fluents with transition attributes create, terminate, and
obfuscate to the post-state. For example, in((create, 𝑋 ), 𝑆)
implies adding in((created, 𝑋 ), 𝑆 + 1). The obfuscation of in-

stances is not represented explicitly; it is implied by the

absence of created and terminated. Thus, Core eFLINT cap-

tures a form of three-value logic. The conditions on these

rules recreate eFLINT’s existing, static prioritisation of differ-

ent effects: termination is prioritised over obfuscation, and

creation over obfuscation and termination.

The below rules in Figure 4 attribute holds and enabled
to instances, based on whether the instances is created, ter-

minated, obfuscated, derived, or suppressed. The two rules

attributing ℎ𝑜𝑙𝑑𝑠 to instances show the distinct roles of cre-

ation and termination; in summary, instance 𝑋 holds if it is

either derived (and not terminated or suppressed) or created,

thus abstracting away the details on how the truth of 𝑋 was

established. The enabled instances hold while not suppressed.
Suppression lets eFLINT users express conditions that must

always be true for an instance to be enabled, regardless of its

other attributes. In practice, this lets (the creators of) eFLINT

specifications (which use suppress) constrain the enabled

actions, despite their lack of control over (the creators of)

eFLINT scenarios (which use create).
Finally, the right rules in Figure 4 define eFLINT’s dual

notions of normative violation. Duty violations arise in states

when instances are enabled while their violations conditions

are met. Action violations arise in transitions when action

instances are triggered despite being disabled. Note how

the enabled attribute occurs in both rules; intuitively, it lets

agents use the (finite) enabled instances in each state to

guide their search for extensions to the scenario that avoid

violations. For example, if a duty for Amy is enabled, Amy

A𝑡 create, terminate,obfuscate,actTrigger, actViol, trigger
A𝑠 created, terminated, holds, enabled, dutyViol,

derived, suppressed, violated, enum
Table 1. Definition of (instance) attributes 𝑎, 𝑎1, 𝑎′, ... : A ≜
A𝑡 ∪ A𝑠 , associated with states (A𝑠 ) and transitions (A𝑡 ).

Attributes are underlined and boldfacedwhen they occur in

antecedents or consequents of Core eFLINT semantic rules

in Figure 4; i.e., they are input and output of the library, resp.

https://gitlab.com/eflint/haskell-implementation/-/blob/cfe73e9a0ed594e384027ea29529da62dab1fe0f/src/Language/EFLINT/Eval.hs
https://gitlab.com/eflint/haskell-implementation/-/blob/cfe73e9a0ed594e384027ea29529da62dab1fe0f/src/Language/EFLINT/Eval.hs
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in(create(𝑋 ), 𝑆)
in(add (created (𝑋 )), 𝑆)

∧in(rem(terminated (𝑋 )), 𝑆)

in(terminate(𝑋 ), 𝑆)
∧¬in(create(𝑋 ), 𝑆)
in(rem(created (𝑋 )), 𝑆)

∧in(add (terminated (𝑋 )), 𝑆)

in(obfuscate(𝑋 ), 𝑆)
∧¬in(terminate(𝑋 ), 𝑆)
∧¬in(create(𝑋 ), 𝑆)
in(rem(created (𝑋 )), 𝑆)

∧in(rem(terminated (𝑋 )), 𝑆)

in(violated (𝑋 ), 𝑆)
∧in(enabled (𝑋 ), 𝑆)
in(dutyViol(X ), 𝑆)

in(created (𝑋 ), 𝑆)
in(holds(𝑋 ), 𝑆)

in(derived (𝑋 ), 𝑆)
∧¬in(suppressed (𝑋 ), 𝑆)
∧¬in(terminated (𝑋 ), 𝑆)

in(holds(𝑋 ), 𝑆)

in(holds(𝑋 ), 𝑆)
∧¬in(suppressed (𝑋 ), 𝑆)

in(enabled (𝑋 ), 𝑆)

in(actTrigger (𝑋 ), 𝑆)
∧¬in(enabled (𝑋 ), 𝑆)
in(actViol(X ), 𝑆)

Figure 4. Clingo rules defining the core eFLINT semantics, clustered to reflect three facets of the language. Above: the effects
of transition attributes in a transition from 𝑆 to 𝑆 + 1 via add and rem. Below: which instances hold and are enabled as a

function of other state-attributes. Right: the state- and transition-level attributes which witness normative violations.

should seek to terminate the duty before it is violated. If

an action for Amy is enabled, Amy can perform the action

(without violation) to achieve certain effects, e.g., terminating

a desired duty. In eFLINT today, the search for these desirable

actions is externalised, e.g., performed by human users of

the eFLINT interpreter. But in Section 7, we internalise this

kind of scenario-search problem via Clingo rules.

Example 4 demonstrates a hand-crafted Clingo rule set,

defined atop the Core eFLINT semantics, modelling the con-

crete eFLINT clause Derived from (Foreach dataset: ... ) in Exam-

ple 1. This demonstrates how Core eFLINT may be used in

its own right. In Section 6 to follow, we define a systematic

translation of eFLINT specifications to Clingo rules in this

manner, ultimately achieving a similar result.

Example 4 (Default Administrator Control as Clingo Rules).
in((derived ,non_admin_control(dataset(D))),S) :-

in((holds ,controls(U,dataset(D))),S),
not U = user("Admin").

in((derived ,controls(user("Admin"),dataset(D))) ,S) :-
in((holds , dataset(D)) ,S),

not in((holds ,non_admin_control(dataset(D)))),S).

6 Specification Translation to Core eFLINT
This section defines the eFLINT specification language: its

abstract syntax is a formal language S, and its dynamic

semantics is given by a translation from S to Clingo.

6.1 Abstract Syntax
Notation 2 (Common Types and Type-Combinators).
• Z ≜ {...,−2,−1, 0, 1, 2, ...} is the integer type.
• S is the type of string literals like "Well,␣howdy␣do?".
• 𝐴→ 𝐵 is the type of functions from 𝐴 to 𝐵.
• 𝐴 × 𝐵 ≜ {⟨𝑎, 𝑏⟩ | ∀𝑎 :𝐴,𝑏 :𝐵} is the product of 𝐴 and 𝐵.
• We use set, map, and list as the usual types of arbitrarily
large but finite collections. For example, [𝑥,𝑦] is a 2-list.
We coerce map(𝐴, 𝐵) to 𝐴 → 𝐵 ∪ {★}, where ★ ∉ 𝐵

marks each missing mapping, and to or from list (𝐴×𝐵),
and we style these pairs ⟨𝑎, 𝑏⟩ suggestively as 𝑎 ↦→ 𝑏.
We coerce set (𝐴) to and from list (𝐴).

𝑡, 𝑡 ′, ... : T ≜ {Z, S, ...(more identifiers)} (type ID)

𝑣, 𝑣 ′, ... :V ≜ T × S (variable)

𝑔,𝑔′, ... : G ≜ sum | count | min | max (aggregator)

𝑒, 𝑒′, ... : E := struct (𝑡, 𝑥 : list (E))
| proj(𝑒, 𝑣) | agg(𝑔, 𝑙) | var (𝑣)
| int (𝑥 : Z) | str (𝑥 : S) (inst. expr.)

𝑝, 𝑝′, ... : P ⊆ E (just struct, int, str, var) (inst. patt.)

𝑖, 𝑖′, ... : I ⊆ P (just struct, int, str) (instance)

𝑙, 𝑙 ′, ... : L := for (𝑝, 𝑎, 𝑙) | let (𝑝, 𝑒, 𝑙)
| where(𝑙, 𝑏) | 𝑒 (inst. list)

𝑏,𝑏′, ... : B := true | 𝑏1 ∧ 𝑏2 | 𝑏1 ∨ 𝑏2 | ¬𝑏
| 𝑒1 < 𝑒2 | 𝑒1 = 𝑒2 | check(𝑎, 𝑒) (bool expr.)

𝑐, 𝑐′, ... : C := derive(𝑙) | affect (𝑥 : A𝑡 , 𝑙)
| filter (𝑎, 𝑏) | actType
| infinite | finite(𝑥 : list (I)) (clause)

𝑠, 𝑠′, ... : S ≜ map(T , list (V) × set (C)) (spec.)

– – – – – – – – – – – – – – – – – – – – – – – –
exists(𝑝,𝑏) ≜ int (0)<agg(count,for (enum,𝑝,where(𝑝,𝑏)))
forall(𝑝,𝑏) ≜ ¬exists(𝑝,¬𝑏)
– – – – – – – – – – – – – – – – – – – – – – – –
fieldPatt (𝑡, 𝑠) ≜ struct (𝑡, fields) where ⟨fields, 𝑥⟩ ≜ 𝑠 (𝑡)

Figure 5. Abstract syntax of eFLINT specifications S,
where the attributes 𝑎 : A,A𝑡 are defined in Table 1.

type(agg(𝑔, 𝑙)) | type(int (𝑥)) ≜ Z

type(str (𝑥)) ≜ S

type(⟨𝑡, 𝑥⟩ : V) | type(struct (𝑡, 𝑥)) ≜ 𝑡

type(where(𝑙, 𝑏)) | type(for (𝑝, 𝑎, 𝑙)) ≜ type(𝑙)
type(proj(𝑒, 𝑣)) ≜ type(𝑣)

Figure 6. The type of instance (list) expressions.
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Figure 5 defines an abstract syntax for eFLINT specifica-

tions as its own formal language. It adheres closely to that

which was first defined in [34] and then generalised in [33].

Each eFLINT specification 𝑠 : S consists of mappings from

user-defined (record) types 𝑡 : T to type definitions of the
form ⟨𝑉 ,𝐶⟩: respectively, the fields and clauses of 𝑡 . This def-
inition enables the construction of 𝑡-type instances, whose

structure is fixed by𝑉 = [𝑣1, 𝑣2, ..., 𝑣𝑛]; 𝑡 acts as a constructor
for 𝑡-type instances from smaller instances.

Ultimately, Section 6.4 defines the dynamic semantics of

each specification in terms of its clauses. Intuitively, each

clause of each type 𝑡 is evaluated in the context of a cur-
rent state 𝑆 to give 𝑡-type instances new attributes in 𝑆 . The

clauses themselves fix the attributes, but the instances arise

from the evaluation of instance expressions in E. As a simple

example, derive(struct (instant, [int (9)])) gives instant(9) the

attribute derived. The for construct generalises these expres-
sions to lists of instances, by quantifying over instances with
a given attribute, and binding these to variables in a new

local scope. The where construct filters these lists. For ex-
ample, for (enabled, 𝑝,where(𝑝, check(dutyViol, 𝑝))) enumer-

ates the current duty violation instances with the type of in-

stance pattern 𝑝 . Variables are the simplest patterns, binding

quantified instances in their entirety. Other patterns quan-

tify instances and bind their sub-instances to many vari-

ables. For example, if for (struct (controls, [var (⟨agent, "X"⟩,
⟨dataset, "Y"⟩)]), enabled, 𝑙) quantifies enabled controls-type

instances, but binds its controller and dataset to variables

named X and Y, respectively. Like for , let binds instances to
variables via patterns, but without any quantification.

6.2 Instance Types and Static Semantics
Only when type 𝑡 has defined fields 𝐹 : list (𝑉 ) can any

instance 𝑖 : I of type 𝑡 be constructed. The fields 𝐹 determine

the structure of 𝑡-type instances. Instances are constructed

with struct and de-constructed (projected to a given field)

with proj, and only when the instances are (de)constructed

with the specified fields; e.g., struct (𝑡, []) is well-typed iff 𝑡

has fields []. We require each types’ fields to be distinctly

identified (i.e., fields are map-like) such that each projection

is unambiguous. Figure 6 defines the (static) typing function,

such that evaluating each instance expression 𝑒 : E yields

an instance 𝑖 : I such that type(𝑒) = type(𝑖). Example 5

demonstrates by defining all fields in the running example.

The primitive types integers (Z) and strings (S), whose
instances cannot be (de)constructed, are implicitly defined.

Instead, int and str introduce their instances as literals in the

program text. New integers can also emerge dynamically,

from inbuilt operators {+,−,×,÷,%}. These operators are

treated as ordinary constants in the abstract syntax, but

their special status is reflected by their infix notation in the

concrete syntax, and by their reduction under evaluation. For

example, users expresss struct (+, int (2), int (3)) concretely
as 2 + 3, which is then reduced to int (5) under evaluation.

The static semantics of eFLINT recognises specifications

which only use types and variables as one might expect:

1. variables are bound to instances with matching types,

2. per struct (𝑡, 𝑥), 𝑥 binds (exactly) the fields defined for 𝑡 ,

3. projections refer only to existing fields of the given in-

stance (not a literal), and 4. accessed variables occur exactly

once in patterns of an enclosing let- or for-expression.

6.3 Restricted Normal Form
In addition to a specification (and scenario) being well-typed,

our translation requires that a specification is in a particular

normal form of a restricted 𝑆 ′ ⊂ 𝑆 . The normal form is

characterised by the following properties.

(𝑃1) Boolean expressions are in conjunctive normal
form. In other words, there is no {¬,∨,∧} inside any ¬𝑒 ,
and no {∨,∧} inside any 𝑒1 ∨ 𝑒2. This works around a syn-

tactic limitation of Clingo: antecedents can express 𝑒1 ∨ 𝑒2
as 𝑒1: not 𝑒2, but such terms cannot be nested.

(𝑃2) In each for (𝑒, 𝑎, 𝑙) and check(𝑎, 𝑒), 𝑒 is a struct (...).
Ultimately, this ensures that eFLINT’s instance types are pre-

served in Clingo: each term matching in((A,𝑒),S) necessarily

quantifies instances of type(𝑒). Where type(𝑒) is primitive,

the expression is trivial, as primitive instances have no at-

tributes. In the more difficult case, where 𝑒 is some var (𝑣),
we can statically de-structure the variable by replacing it with
fieldPatt (type(𝑣), 𝑠) as defined in Figure 5 (and renaming the

new variables to avoid name collisions, if necessary).

(𝑃3) There are no projection expressions (with proj).
Because Clingo has no analogue for projection, we rewrite

any given proj(𝑒, 𝑣). If it is well-typed, type(𝑒) is not primi-

tive, so 𝑒 is either a variable or a structure. In the first case, we

first replace it with fieldPatt (type(𝑣), 𝑠), renaming variables

as needed. In both caseswe get proj(struct (𝑡, [𝑒1, 𝑒2, 𝑒3, ...]), 𝑣),
which we rewrite to 𝑒𝑘 , where 𝑣 is the 𝑘 th field of 𝑡 .

(𝑃4) In each agg(𝑔, 𝑙), term 𝑙 contains no {agg,∨}. Fortu-
nately, Clingo and eFLINT have corresponding syntax and se-

mantics for aggregators. But unfortunately, only eFLINT per-

mits aggregators to be arbitrarily nested. A nested agg(𝑔, 𝑙)
can be removed via reification: it is replaced by the term

struct (𝑡, ⟨var (𝑣)⟩), where 𝑣 is a fresh variable of the fresh

type 𝑡 defined with fields [Z]; intuitively, 𝑡 collects the ele-
ments to be aggregated. In Example 4, non_admin_control reifies

the nested eFLINT expression (Exists user: ...) in Example 1.

(𝑃5)Each agg is in the 𝑥 or𝑏 of a let (𝑝, 𝑒, 𝑙) orwhere(𝑙, 𝑏).
This works around Clingo’s limitations on aggregations

in consequents. For example, f(X) :- X = #count{g(Y)} is valid

Clingo, but f(#count{g(Y)}) is not. It suffices to replace agg(𝑔, 𝑙)
with let (var (𝑣), agg(𝑔, 𝑙), var (𝑣)) for a fresh 𝑣 , which achieves
a similar result; the aggregation becomes an antecedent.

6.4 Dynamic Semantics of eFLINT Specifications
The dynamic semantics of a specification 𝑠 is defined as a

translation to state-internal Clingo rules from the clauses𝐶 ⊆
C associated with each type definition 𝑡 ↦→ ⟨𝑉 ,𝐶⟩ in 𝑠 . The
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Example 5 (specifying fields (not clauses) of Example 1).
For legibility, we use 𝑥 to abbreviate each variable ⟨𝑥, "x"⟩.
[ instant ↦→ ⟨[Z], []⟩, user ↦→ ⟨[S], []⟩,

dataset ↦→ ⟨[S], []⟩, elapsed ↦→ ⟨[instant], []⟩,
controls ↦→ ⟨[⟨user, "controller"⟩, dataset], []⟩,
access ↦→ ⟨[user, dataset, instant], []⟩,

must-notify ↦→ ⟨[user, ⟨user, "controller"⟩,
access, ⟨instant, "deadline"⟩], []⟩,

notify ↦→ ⟨[user, ⟨user, "controller"⟩,
must-notify], []⟩, ]

J𝑠, 𝑡, derive(𝑙)K ≜ [𝑙, derived]L .

J𝑠, 𝑡, affect (𝑙, 𝑎)K ≜ [for (𝑝, trigger, 𝑙), 𝑎]L .

J𝑠, 𝑡, filter (𝑏, 𝑎)K ≜ [for (𝑝, enum,where(𝑝, 𝑏)), 𝑎]L .

J𝑠, 𝑡, actTypeK ≜ [for (𝑝, trigger, 𝑝), actTrigger] .
J𝑠, 𝑡, infiniteK ≜ [for (𝑝, holds, 𝑝), enum] .

J𝑠, 𝑡, finite( [𝑖1, 𝑖2, ...])K ≜ [𝑖1, enum]L . [𝑖2, enum]L . ...

where 𝑝 ≜ fieldPatt (𝑡, 𝑠)
– – – – – – – – – – – – – – – – – – – – – – – –
[for (𝑝, 𝑎′, 𝑙), 𝑎]L ≜ [where(𝑙, check(𝑎′, 𝑝)), 𝑎]L

[where(𝑙, 𝑏), 𝑎]L ≜ [𝑙, 𝑎]L ; [𝑏]B

[let (𝑝, 𝑒, 𝑙), 𝑎]L ≜ [𝑙, 𝑎]L ; [𝑝]E = [𝑒]E

[𝑒, 𝑎]L ≜ in(( [𝑎]A , [𝑒]E ),S) :- state(S)

[true]B ≜ #true

[check(𝑎, 𝑒)]B ≜ in(( [𝑎]A , [𝑒]E ),S)

[𝑏1 ∧ 𝑏2]B ≜ [𝑏1]B ; [𝑏2]B

[𝑏1 ∨ 𝑏2]B ≜ [𝑏1]B :

[
𝑏 if ∃𝑏,¬¬𝑏 = ¬𝑏2
¬𝑏2 otherwise

]B
[¬𝑏]B ≜ not [𝑏]B

[𝑒1 < 𝑒2]B ≜ [𝑒1]E < [𝑒2]E

[𝑒1 = 𝑒2]B ≜ [𝑒1]E = [𝑒2]E

[struct (𝑡,[𝑒1, 𝑒2, 𝑒3, ..., 𝑒𝑛])]E

≜ 𝑡( [𝑒1]E , [𝑒2]E , [𝑒3]E , ... [𝑒𝑛]E )

[agg(𝑔, 𝑙)]E ≜ [𝑔]G { 𝑟 ( [𝑙, enum]L) }
where 𝑟 replaces each ; with , and :- with :

[r (𝑥)]E ≜ 𝑥 for 𝑟 ∈ {var, int, str}
[]G : G → S ≜ {count ↦→ #count, sum ↦→ #sum, ...}
[]A : A → S ≜ {trigger ↦→ trigger, create ↦→ create, ...}

Figure 7. J𝑠, 𝑡, 𝑐K is the translation to Clingo of the clause

𝑐 in the definition of type 𝑡 in (restricted) specification 𝑠 .

translation for a clause 𝑐 ∈ 𝐶 associated with 𝑡 in 𝑠 is defined

by the function J𝑠, 𝑡, 𝑐K given in Figure 7. A complete trans-

lation applies this function to all clauses in a specification

(in any order). The result is well-formed if the specifica-

tion is of the restricted normal form, i.e., satisfies proper-
ties 𝑃1, . . . , 𝑃5, described previously. The translation benefits

from the declarative nature of Clingo: re-ordering rules or

adding white space does not change their meaning.

The first lines of Figure 7 translate the six kinds of clauses;

each ultimately gives new attributes to (new) instances. The

cases of the JK function definition show how the specialised

semantics of these clauses are reconciled. For example, the

translation makes explicit the instances which are implicitly

quantified by affect clauses; each effect arises from some

triggered instance. Ultimately, the translation proceeds by

inductively unfolding syntactic sub-structures; e.g., []L sep-

arates rule-consequents from -antecedents, and []G maps

eFLINT’s aggregator syntax to the corresponding Clingo.

Much of the complexity of the translation represents a

reconciliation of the semantics of eFLINT and Clingo. For

example, in eFLINT the current state is implicit because it

remains arbitrary, but we make it explicit in our encoding

as the Clingo variable S. Some complexities arise from id-

iosyncrasies of eFLINT and Clingo. For example, Clingo’s

concrete syntax differs inside and outside of aggregator ex-

pressions such as #sum { ... }, e.g., rules separate antecedents
from consequents with :- outside, but with : inside.

Example 6 demonstrates our translation of a simple clause

from the running example Example 1, which was chosen

because it was already in the restricted normal form (see

Section 6.3). As with the Clingo rules in Example 4, these

rules are state-internal, applying to each state S individually,

relying on underlying Core eFLINT and state trace semantics

to relate fluents within and between (resp.) successive states.

Our Generalisations. Our version of the eFLINT specifi-

cation language generalises the original in three ways. Firstly,

our let binders are new. Secondly, we generalise binders in for
(and let) from variables to patterns. Thirdly, our for quantifies
over instances with any attribute and not just the enumer-
ables (with enum). In principle, these generalisations enable

new usages, but we only use them within the translation for

the clause-transformations described in Section 6.3, so our

experiments use none of these generalisations. But Section 9

discusses our interest in exploring eFLINT variants.

7 Scenario Translation to Core eFLINT.
This section completes the translation by defining the sce-

nario language and translating it to Clingo. We distinguish

the two scenario representations, reflecting the two use cases

of our new eFLINT interpreter. In either case, we assume we

are given an eFLINT specification, which has already been

translated into Clingo rules, as presented in Section 6.
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Example 6. (translating Violated when Holds(elapsed(deadline))).
J𝑠,must_notify, filter (𝑏, violated)K

where 𝑏 ≜ holds(struct (elapsed, [⟨instant, "deadline"⟩]))
=⇒ [for (𝑝, enum,where(𝑝,𝑏)), violated]L

where 𝑝 ≜ fieldPatt (must_notify, 𝑠)
=⇒ [where(where(𝑝,𝑏), check(enum, 𝑝)), violated]L

=⇒ [where(𝑝,𝑏)), violated]L ; [check(enum, 𝑝)]B

=⇒ [𝑝, violated]L ; in(holds([𝑏]B),S) ; in(enum([𝑝]E),S)

=⇒ [𝑝, violated]
L ; in(holds(elapsed(D)),S) ;

in(enum(must_notify(U,C,A,D)),S)

=⇒
in(violated([𝑝]E),S) :- state(S) ;

in(holds(elapsed(D)),S) ;

in(enum(must_notify(U,C,A,D)),S)

=⇒
in(violated(must_notify(U,C,A,D)),S) :- state(S) ;

in(holds(elapsed(D)),S) ;

in(enum(must_notify(U,C,A,D)),S)

Example 7 (scenario translated from eFLINT to Clingo).
Abstract eFLINT Clingo term
⟨create, dataset ("X-Rays") ⟩ in(create(dataset("X-Rays")),1)

⟨create, controls (user ("Amy"),
dataset ("X-Rays") ) ⟩

in(create(controls(user("Amy"),

dataset("X-Rays"))),2)

⟨create, user ("Bob") ⟩ in(create(user("Bob")),3)

⟨create, instant (9) ⟩ in(create(instant(9)),4)

⟨trigger, access (user ("Bob"),
dataset ("X-Rays"), 9) ⟩

in(trigger(access(user("Bob"),

dataset("X-Rays"),9)),5)

7.1 Use Case: Check if a Scenario is Compliant
The first use case is scenario-compliance (demonstrated in

Example 1) in which the interpreter checks the compliance

of a given scenario. Precisely, each scenario is in list (A𝑡 × I ).
Intuitively, each scenario labels each 13

th
transition with an

effect: assigning a transition-attribute to a given instance.

Example 7 shows the running example scenario before and

after translation. Note that the translation is straightforward,

and the resulting rules are state-internal.

In the dynamic semantics of a scenario, a concrete ‘cur-

rent state’ is modified to its successor state in between the

elements of a scenario. Recall that the dynamic semantics

of a specification (Section 6) refers to an abstract current

state S and assigns attributes to instances in S. The rules gen-

erated from an eFLINT specification, alongside the rules of

Core eFLINT (Section 5) and state traces (Section 4), thus

produces attribute-assignments for all concrete states gen-

erated by the scenario according to the clauses of the speci-

fication. It is precisely these attribute-assignments that are

interesting output to the eFLINT user. For example, the out-

put (e.g., of Example 1) contains created or terminated facts,

triggered actions/events (possibly as the result of a triggered

action/event), and violations of actions and duties.

7.2 Use Case: Search for Satisfactory Scenarios
In this novel usage, the user encodes a scenario-search prob-

lem: Clingo rules which define 1. the search space of possible

scenario actions, e.g., via Clingo’s disjuctive-head rules, and

2. the satisfaction criterion, e.g., via Clingo’s constraint rules.
The search problems expressible via these rules enjoy the

same freedoms and limitations as expressing search problems

with Clingo in general. For example, the search space and

search criterion do not need to be state-internal.

Example 8 shows the Clingo encoding of a search-problem

that is of particular interest to eFLINT users and the norma-

tive domain in general. Precisely, Example 8 model-checks
the specification against the proposition ‘taking only enabled

actions violates no duties’, captured by the final rule in the

negative, such that stable models encode counterexamples.

Each solution details the offending counterexample scenario.

Example 8 (Find Act-Compliant, Non-Compliant Scenarios).
1 = { choose(I,S) : triggerable(I,S) } :- state(S).
in((trigger ,I),S) :- choose(I,S).
:- 0 = { in((dutyViol ,I),S) }.

– – – – – – – – the case-specific part – – – – – – – –
{ state(S) } :- S = 1..1000.

triggerable(X,S) :- in((enabled ,X),S) ; state(S + 1) ;
X = ( access(U,D,I) ; notify(U,C,M) ).

in((create ,controls(user("Amy"),dataset("X-Rays"))),1).
in((create ,controls(user("Bob"),dataset("Biopsy"))),1).
in((create ,controls(user("Dan"),dataset("Weight"))),1).

The case-specifics define the search space: its depth is

limited to 1000 states, and its breadth is defined by the trig-

gerable (access- or notify action type) instances, which result

from the initially created control-instances. This input yields

no stablemodel; the property holds! But the scenario is not in-

teresting because no (triggerable) actions advance the elapsed

time. Adding rule in((create,elapsed(S)),S) :- state(S) conflates

the passage of states with the passage of time; consequently,

counter-examples arise, e.g., where Dan accesses the X-Rays,

but violates the duty to inform Amy at instant 11.

8 Correctness Evaluation
We characterise the correctness of our new eFLINT semantics

as matching input/output behaviours of the two implemen-

tations, where expected. Our artefact includes our source

code, experimental data, experimental scripts, and a utility

tool for comparing output behaviours (e.g., see Figure 8).

Evaluation Scope. We focus on the existing use case of

checking given scenarios (see Section 7.1), because our search
for scenarios is incomparable to in the existing interpreter.

For the sake of space, we do not discuss the performance eval-

uation included in our artefact. Section 9 discusses planned

future evaluations, e.g., by comparing our scenario-search

to other languages’ model-checkers.

Test Suite. Our tests are a suite of specification-scenario
pairs chosen to tease out the possible interactions between

instances, states, and attributes. Our tests were chosen based
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on our understanding of eFLINT, but also, inspired by the

exhaustive unit tests in the existing eFLINT interpreter’s

repository. For example, one test simultaneously creates and

terminates an instance, while another spreads these over

successive states. The suite also includes the running ex-

ample, and the Algemene Afsprakenstelsel 3, a formalisation

on the data sharing agreement of the Dutch Metropolitan

Innovations Ecosystem consortium, which is (to our knowl-

edge) the most complex and realistic eFLINT specification

at time of writing. All tests, on 108 pairs of scenarios and

(43) specifications, are reproducible via our artefact [19]. To

follow, we explain the results via a few illustrative test cases.

Evaluation Results. The old and new implementations

disagree only in cases of reasoning by default, where con-
clusions are conditioned on the implicit or explicit absence
of fluents, namely, the evaluation of where(𝑙, check(...)) and
agg(...), change when fluents are removed. The Not(Exists...)

expression in Example 1 is such a case. From the user per-

spective, the existing interpreter can ‘overlook’ conditions of

this form. This emerges from the reasoning algorithm it im-

plements; in summary, it interleavedly evaluates expressions

and adds to the collection of fluents, but it does not keep

track of which absent fluents were checked; later additions
can overturn prior checks, so the order of clause-evaluation

(which is sensitive to type and variable naming) matters.

Example 9 demonstrates with small specifications.

Example 9 (Where the Two eFLINT Semantics Disagree).
For the following two specifications, both versions of the eFLINT
interpreter agree that only y("") holds. Indeed, these specifica-
tions have the same stable model, constructed by applying the
second derivation clause, after which the first clause is not
applicable. Here, we omit Identified by String for each type.
Fact x Derived from x("") Where Not(Holds(y("")))
Fact y Derived from y("")

– – – – – – – – – – – – – – – – – – – – – – – – –
Fact z Derived from z("") Where Not(Exists y: True)

Fact y Derived from y("")

Our new interpreter reaches the same result given the follow-
ing, third version of the specification. But the order in which
the existing interpreter evaluates the clauses is unexpectedly
disturbed, changing its result. It lets x("") hold, ‘forgets’ the
prior condition on y(""), and finally lets y("") also hold.
Fact x Derived from x("") Where Not(Exists y: True)

Fact y Derived from y("")

For the same reason, the interpreters’ behaviours diverge

then the input has no unique stable model. Examples 10

and 11 demonstrate. In either case, users of our new inter-

preter are better informed. In Example 10, its output makes

the unsatisfiability of the specification explicit, rather than

3
The document is available at https://dmi-ecosysteem.nl/wp-content/uplo
ads/bb_documents/2023/10/2023.06.01-DMI-Afsprakenstelsel-v1.pdf, our
formalisation process is documented at https://definities.dmi-ecosysteem.nl,
and both are alongside our eFLINT formalisation in our artefact [19].

silently violating the logical formula encoded in the deriva-

tion clause. In Example 11, its output recognises logical ‘non-

determinism’, enumerating the consistent interpretations of

the specification, rather than arbitrarily picking one.

Example 10 (No Stable Model). Given the following input,
our interpreter gives no stable model, which is distinct from
one empty stable model. The existing interpreter lets p("") hold.
Fact p Identified by String

Derived from p("") Where Not(Holds(p("")))

Example 11 (Several Stable Models). Given the following
input, our interpreter gives two stable models: in one, f(0) holds
but f(1) does not, and vice versa in the other. The existing
interpreter agrees with just the second stable model.
Fact f Identified by Int

Derived from f(0) Where Not(Holds(f(1)))
Derived from f(1) Where Not(Holds(f(0)))

Ultimately, we observe that the two interpreters produce

equivalent results, except where they differ as expected,

where only the new interpreter reasons by default. We con-

clude that we have correctly redefined and reimplemented

eFLINT, but we continue to expand our test suite.

9 Related & Future Work
Further Testing and Benchmarking. Work continues

to expand our test suite. We intend to cover the entirely of

the original eFLINT examples, and to benchmark the new

interpreter’s performance to that of the old interpreter. Much

of this performance evaluation has already been done and

can be found in the artefact [19], but we have left it out

of scope. So far, we find that the new interpreter dramati-

cally outperforms the original in most cases (reaching 25×
speedup in one long and complex scenario), but their per-

formance is comparable in trivial cases, or in cases when

Clingo’s optimisations fail, e.g., in guessing prime numbers.

Different Ways to Define eFLINT. The impetus for our

work was the observation that, in abstracto, eFLINT spec-

ifications resemble logic programs. Thus, we give eFLINT

a semantics via a translation to logic programs. But we ac-

knowledge that other approaches are available also. For ex-

ample, [1] formalises another language which is also nor-

mative and used for case analysis and model-checking. But

their formalism is based on first-order linear temporal logic.

Consequently, their work is more self-contained; e.g., readers
of [1] are not burdened with the idiosyncrasies of Clingo.

But our approach has the benefit of leveraging the exist-

ing Clingo interpreter. If the trade-off changes in the future,

newer semantics can always be defined and related to this

one, e.g., as was done extensively for the Reo language [14].

eFLINT Simplifications & Variants. Our translation
faithfully captures semantic facets of eFLINT in attributes.

However, some facets could be captured in user-defined in-

stances and types instead. For example, if termination is

https://dmi-ecosysteem.nl/wp-content/uploads/bb_documents/2023/10/2023.06.01-DMI-Afsprakenstelsel-v1.pdf
https://dmi-ecosysteem.nl/wp-content/uploads/bb_documents/2023/10/2023.06.01-DMI-Afsprakenstelsel-v1.pdf
https://definities.dmi-ecosysteem.nl
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removed, users can model the termination of 𝑖 by creating

𝑖′ if 𝑖′ suppresses 𝑖 . And if each finite( [i1, i2, ..., in]) clause is
approximated by 𝑛 by derive clauses, emit can be removed,

because its instances coincidewith those that hold. Thus, sim-

pler specifications become easier to model and reason about.

We also intend to experiment with Core eFLINT. Which se-

mantic changes are desirable? Can we create a common core

for eFLINT and related languages such as DPCL [31]?

Circumstantial Substitutes for Clingo. In this work,

we prioritised the cohesion in our semantics accross the

two use-cases of eFLINT. But in the simpler use case of

scenario-checking, we make little use of Clingo’s more pow-

erful features. In the future, we are interested in specialising

the translation pipeline to target languages more suited to

this specialised task. For example, we consider instead target-

ing the Datalog-based Soufflé language [15]. Unlike Clingo,
Soufflé has eFLINT-like record types and type checking. Can

we translate between these notions of type? Does this result

in more efficient reasoning and more explainable output?

Logical Theories of Dynamic Systems. Like the origi-
nal eFLINT article [34], in Section 4, our semantics draws

from work on the event-, situation-, and fluent-calculi. Other

works (e.g., [27]) thoroughly overview and compare these

formalisms. Here, it suffices to acknowledge that our notions

of state and action were originally inspired by the event

calculus [29], but in our simple case of linear traces, many

features of the other calculi emerge also. Like situations, our
scenarios list actions in the order they happen [17, 18].

Many-Valued Logics. Prior works have generalised the

usual Boolean value domain of logical variables [3, 21, 22].

For example, [21] distinguishes essential from accidental
truth, and distinguishes their semantics under combination

with ∧, ¬, and so on, to capture ‘natural language reason-

ing’. Regardless, the system can be reasoned about; e.g., [20]
axiomatises a first-order fragment of the system, and proves

its completeness. Similarly, we distinguish attributes of the
same instances to encode many truth values, and our se-

mantic rules define how they interact. Also similarly, we

prescribe distinct (modal) interpretations of different values;

e.g., actViol truths are undesirable, because they represent

actions taken without permission. We also model a three-

valued logic in Core eFLINT in (interactions between) create,
terminate, and obfuscate, to encode priority.

Constraint- vs. Logic Programming. An experimental

eFLINT model-checking backend was developed in 2022 [7],

inspired by the approach of Symboleo: targeting the nuXmv

SMT solver to model-check scenarios. This work inspired

our own, but we opted to target Clingo instead of nuXmv,

because its stable model semantics aligns more closely with

what was originally described for eFLINT. It concerns the

distinction between logic- and constraint-programming: only

the former requires that truths be supported by concrete

inference steps, i.e., each truth in the model is the root of a

proof tree. In practice, truth is more explainable; e.g., nuXmv

but not Clingo lets x be true in the trivial specification; Clingo

cannot support this truth, as it is the consequence of no rule.

Evaluating Scenario Search. We have left the evalua-

tion of our interpreter’s scenario-searching out of scope. In

future, we want to more precisely characterise what expres-

sive power this brings to users, and how it compares to tools

for other languages such as Symboleo [25] and Fievel [36].

10 Conclusion
In this work, we re-defined the eFLINT normative specifica-

tion language via a translation to Clingo answer-set solving.

We defined a new eFLINT semantics and interpreter.

Our semantics is desirable for its rigour. Notably, we have

formalised a notion expressed in the original article [34]:

eFLINT clauses express logical inference rules. In the process,

we have identified and corrected a flaw in the existing eFLINT

interpreter concerning inference about conditions by default,
which is well-studied in the logic programming community.

Our interpreter reasons by default correctly.

In fact, our interpreter consists almost entirely of the

Clingo solver; by translating eFLINT to Clingo, we let Clingo

perform our normative case analysis. This approach min-

imises the gap between the semantics and the interpreter.

Moreover, it afforded the generalisation of eFLINT’s typical

scenario case analysis to scenario search. Via Clingo, our

tool can recommend scenarios and model-check scenarios

against properties in general, and specification-compliance

in particular. These use cases were supported in languages

related to eFLINT, but not yet in eFLINT itself.

In the future, we want to continue improving and eval-

uating our new interpreter, for example, by drawing from

ruleset preprocessing from the answer-set solving commu-

nity. We are also interested in investigating the intermediate

languages we have identified between eFLINT and Clingo.

Our Core eFLINT language is promising: its embedding in

Clingo makes it inter-operable with any Clingo rules, and it

includes much of the eFLINT semantics, but it more abstract

and simple. In the future, we want to investigate these kinds

of minimal normative languages as new translation targets

for various purposes, and for their suitability – in their own

right – to the use cases of eFLINT: normative specification,

automated case analysis, and normative model-checking.

Data Availability Statement. Our artefact [19] includes
the source code of our implementation, and the data and

scripts necessary to (re)produce our evaluation in Section 8.
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Figure 8. A screenshot of our prototype command-line vi-

sualiser tool, comparing the outputs of our new eFLINT im-

plementation (right) against the original (left), for the same

specification-scenario input pair. This shows the result of

some test input (available in the artefact) where three fluents

are inferred by only the original interpreter. This test passes

because the difference is expected in this case.
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