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Abstract
In software-defined networking, the domain-specific lan-

guage P4 allows developers to program the behavior of net-

working devices at a comparatively high level of abstraction.

A P4 program defines a state machine to parse incoming

packets. The parsers are flexible and efficient but may be

sensitive to bugs and difficult to maintain. As a possible alter-

native, data-dependent grammars (DDGs) can describe both

packet structure and parser at a higher level of abstraction.

In this work, we investigate the use of DDGs in P4 pro-

grams. In particular, we demonstrate how DDGs can be used

to simultaneously define packets and parsers. We describe a

DDG to P4 compiler and evaluate our approach empirically.

Input to our evaluation is a collection of P4 programs with

for each: the original (handwritten) parser, the (handwrit-

ten) DDG alternative, and the compiler-generated parser.

The handwritten and generated parsers are compared for

equivalence and performance.

Our results show that the generated parsers are three times

slower for grammars that do not utilize features distinguish-

ing DDGs from context-free grammars. When parameterized

nonterminals are used, a key feature of DDGs, the generated

parsers are around six times slower.

CCSConcepts: • Software and its engineering→Parsers;
• Networks→ Programmable networks.

Keywords: P4, software-defined networking, domain-specific

languages, data-dependent grammars, parser generators,

compilers
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1 Introduction
Modern-day networks are no longer just plumbing, moving

data around. They have become complex and programmable

systems that run multiple services, or programs, that provide

the functionality needed to adhere to the different require-

ments of the networks, such as guarantees about perfor-

mance or isolation. Traditional networking makes adapting

to new requirements, such as a new protocol, difficult and

time and resource-intensive intensive as modifications to

hardware are often necessary. Software-Defined Networking

(SDN) is more flexible by making the data plane – in which

packets are parsed, possibly transformed, and forwarded –

programmable. By programming the data plane, a network

can be adapted to support new functionality without requir-

ing modifications to the hardware. Data plane programming

is achieved via a programmable interface that is generally

low-level and vendor-specific, making development error-

prone and not portable. Various domain-specific languages

(DSLs) have been introduced in the context of SDN to raise

the level of abstraction and increase portability [10]. In this

paper we focus on the Programming Protocol-independent

Packet Processors language P4 [4].

P4 programs encode several parts of a packet processing

pipeline, starting with the transformation of a sequence of

bytes (a packet ‘on the wire’) into a sequence of headers. A

header is effectively a structure in which each field has a

particular size (a number of bits). Parsers, defined in P4 as

state machines, structure the packet in accordance to header

specifications. At a relatively low level of abstraction, P4

parsers give the programmer flexibility and the ability to

write parsers with good performance characteristics. How-

ever, this flexibility increases the potential for various kinds

of bugs, which are not uncommon as a result [16]. Moreover,
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the way parsers are defined can complicate understanding

exactly which packets are accepted or rejected by a P4 parser.

Parsing, i.e., recognizing a specified structure in an un-

structured input format, is a common problem across do-

mains with a wide range of possible solutions. In some cases,

such as for programming languages and DSLs themselves,

the structure can be specified using a context-free grammar

from which parsers can be generated according to various

strategies. In the case of packets, however, parsing is context-
sensitive: the contents of the packet (earlier) may determine

the expected structure of the packet (later).

The data-dependent grammar (DDG) formalism extends

context-free grammars with exactly these kinds of depen-

dencies [12]. Specifically, grammar rules can be conditioned

using predicates expressed in terms of variables bound to

previously obtained parse results. In this sense, DDGs are

an ideal fit for specifying the structure of packets. Moreover,

DDGs admit the generation of (context-sensitive) parsers,

suggesting we can use a DDG to specify packet structure and

packet parser simultaneously, with parsers that are correct

by construction.

In this paper, we contribute to the efforts of raising the

level of abstraction in data plane programming by inves-

tigating the use of data-dependent grammars (DDGs) in

domain-specific languages for software-defined network-

ing. Specifically, we investigate whether DDGs are a viable

alternative to the current mechanisms of the P4 language for

specifying headers and implementing parsers. Concretely,

we make the following contributions:

• A variant of P4 extended with data-dependent gram-

mars, called P4DDG, and a compiler from P4DDG code

to P4 evaluated for correctness.

• An evaluation of data-dependent grammars as an alter-

native to handwritten P4 parsers in terms of runtime

performance.

In Section 2, we introduce the running example that is pro-

gressively converted from a DDG to a P4 parser throughout

the paper. In Section 3, we provide background information

on parsing, SDN, and P4, detail how parsers are defined in P4,

and provide the formal definitions that form the foundation

for this work. In Section 4 we present our compiler, discuss

the design decisions, and show how the compiler produces

P4 code for the running example. In Section 5 we empirically

evaluate our approach.

2 Running Example
Throughout this paper, we use a running example to demon-

strate our contributions and to aid understanding. Our run-

ning example is a basic tunnel program from the P4 tu-

torial. The tutorial scenario begins with a P4 program that

switches packets based solely on an optional IPv4 protocol

header. The program is extended to support packets that

can have a custom, optional MyTunnel header. The packet is

1 Hdr = hdr.ethernet Tunnel(hdr.ethernet.etherType)

2 Tunnel(bit<16> type) =

3 [type == TYPE_IPV4] hdr.ipv4

4 | [type == TYPE_TUNNEL] hdr.tunnel Tunnel(hdr.

tunnel.protoid)

5 | //empty

Figure 1. A DDG for the running example written in func-

tional style.

passed on through the network differently depending on the

presence/absence of MyTunnel.

The structure of the expected (top-level) headers can be

described as follows at the abstract level, where both the

MyTunnel and IPv4 headers are optional (indicated by the

question mark):

Hdr = Ethernet (MyTunnel?) (IPv4?)
The above describes four kinds of acceptable sequences of

abstract headers, i.e., where the MyTunnel is (or is not) in-

cluded and the IPv4 header is (or is not) included. How-

ever, the concrete contents of the Ethernet header determine

whether a MyTunnel header can/should be present and, like-

wise, the contents of the MyTunnel header (if present) de-

termine whether an IPv4 header can/should be present. As

such, certain sequences of headers are acceptable at the ab-

stract level, which are not acceptable at the concrete level. A

data-dependent grammar makes it possible to encode such

dependencies on concrete values in an otherwise still ab-

stract specification. A DDG for the running example that

captures this data-dependency is given in Figure 1. The non-

terminal Tunnel is called with the parameter tunnel set to
etherType, from the ethernet header, to determine which

header to parse next. If type is equal to the constant TYPE_-
IPV4, the ipv4 header is parsed. If instead it is equal to

TYPE_TUNNEL, the tunnel header is parsed, followed by a

recursive call to Tunnel using the protoid field from the

tunnel header. The empty alternative captures cases where

no further headers are to be parsed.

3 Background
In this section, we build upon data-dependent grammars and

focus on (parsers in) P4. In this section we detail the back-

ground knowledge needed to understand our contributions.

3.1 SDN with OpenFlow
The SDN approach separates the network into two parts, a

control plane and a data plane. The control plane contains

the logic for the network functions, such as path finding,

firewalls, load balancing etc. Whereas the data plane han-

dles moving and modifying packets at line rate based on

a configuration provided by the control plane. In this ar-

chitecture, the network is programmable from the top (the
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control plane) down (to the data plane). Applications run

at the above the controller and communicate their network

requirements to the controller across the northbound API.

These requirements may rely on the network view provided

by the controller or on external inputs. The controller then

configures the data plane devices across the southbound API

in accordance with the requirements.

For many years, OpenFlow was a staple of SDN. In Open-

Flow, data plane devices are configured by match-action

rules. A match-action rule specifies that when some specified

part of a packet matches a given value, the action specified

by the rule must be taken. Examples of actions are: mod-

ifying fields of a packet, dropping a packet, or sending it

to a specific (output) port. Crucially, OpenFlow supports a

fixed set of networking protocols, pre-determining which

(type of) headers can be matched and which actions can be

taken in response. The P4 language addresses this limitation

by generalizing the match-action paradigm to user-defined

protocols and actions.

3.2 P4
P4 is a language for programming network devices such as

switches and NICs. Compared to OpenFlow, P4 enables a

fully programmable packet processing pipeline, including

for novel networking protocols. That is, P4 allows users to

define packet formats and arbitrary operations on packets,

providing flexibility in the choice of networking protocols.

The P4 language covers specifying packets and packet

transformations. To deal with the heterogeneity of network-

ing devices, P4 programs must include the architecture they

use. The architecture specifies a signature for every compo-

nent of the packet-processing pipeline and declares objects

and externs for device-specific functionality. The Simple

Switch architecture, used in this paper for evaluating gener-

ated parsers, is depicted in Figure 2. The packet processing

pipeline starts with a parser that maps bits to a header struct

and one or more variables that capture metadata, and ends

with a deparser, that maps the headers back to bits. Begin-

ning with a parser and ending with a deparser is common

to every architecture, although the signatures could differ

between architectures.

Between the parser and deparser, there can be multiple

control blocks. Control blocks contain the logic for transform-

ing the header struct, which is eventually deparsed to obtain

the modified packet. Control blocks follow the match+action

paradigm established by OpenFlow. In P4 this works as fol-

lows: the programmer specifies a collection of match+action

tables, and for each declares what parts of the header struct

are to be matched against the keys of the table and what

action can be taken when a match is found. At runtime, the

control plane is responsible for instantiating the tables with

pairs of values and actions.

Ingress match-
actionParser Deparser

Egress match-
action

...

bytes -> Headers Headers -> Headers Headers -> Headers Headers -> bytes

Figure 2. A diagram depicting the packet-processing

pipeline of the Simple Switch architecture

Specifying Headers. The header keyword is used to de-

clare a structure that represents a single header. To give an

idea of header definitions and packet structure definitions,

two headers and the global headers struct from our running

example are defined as follows, where we have omitted the

IPv4 header definition for brevity.

typedef bit<48> macAddr_t;

header ethernet_t {

macAddr_t dstAddr;

macAddr_t srcAddr;

bit<16> etherType;

}

header myTunnel_t {

bit<16> proto_id;

bit<16> dst_id;

}

struct headers {

ethernet_t ethernet;

myTunnel_t myTunnel;

ipv4_t ipv4;

}

Both headers contain several fields of varying sizes. Besides

bits of specific lengths, header fields can also be among others

of type int, boolean, or a struct. In P4, structs are similar

to headers but differ in the fact that for the former, every field

must be non-empty. While for the latter, any combination of

fields can be set.

Parsing Packets in P4. In P4, parsers are defined as state

machines comprised of a set of states and transitions between

states. A state in the parser consists of a body that can contain

imperative statements followed by one or more outgoing

transitions. For our running example, the parser starts with

the following state.

state start {

transition parse_ethernet;

}

The snippet above defines a state that does not perform

any operations and transitions to the state parse_ethernet,
shown below. In case of multiple outgoing transitions, the
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select construct can be used to select between alternative

transitions based on the value of an expression. In the snippet

below, the next transition is chosen based on the value of

hdr.ethernet.etherType.

state parse_ethernet {

packet.extract(hdr.ethernet);

transition select(hdr.ethernet.etherType) {

TYPE_MYTUNNEL: parse_myTunnel;

TYPE_IPV4: parse_ipv4;

default: accept;

}

}

The snippet above contains a single statement, invoking the

extract operation, extracting a number of bits from packet,
equal to the type of hdr.ethernet, and assigns these bits

to the ethernet field of the hdr struct.
The select(𝑥){ 𝑆0 : 𝑠0 ; . . . } construct defines a condi-

tional transition to the state 𝑠0 if 𝑥 is a member of the set 𝑆0.

In the example above, the TYPE_IPV4 evaluates to a singleton
containing the TYPE_IPV4 constant.

3.3 Languages, Grammars & Parsing
In the context of syntax analysis, a language is defined as

the set of all sentences generated by the grammar defining

the syntax of the language. A grammar [5] defines the set

of words that can be used in sentences of the language and

a number of derivation rules for generating sentences of

the right structure. A subset of the class of all grammars,

the context-free grammars, is generally used to specify the

(concrete) syntax of programming languages.

Definition 3.1. A context-free grammar (CFG) is a tuple

⟨Σ,Δ, 𝐴0, 𝑃⟩, where Σ is a finite set of terminals (the words

of the language); Δ is a finite set of nonterminals; 𝐴0 ∈ Δ
is the start nonterminal; and 𝑃 ⊆ Δ × (Σ ∪ Δ)∗ is the set of
derivation rules, with ∗ denoting the free monoid of a set.

The derivation rules of a context-free grammar, also re-

ferred to as production rules, are often denoted as 𝑋 → 𝛼 ,

where the left-hand side 𝑋 is a non-terminal symbol and the

right-hand side 𝛼 is a sequence of non-terminal and terminal

symbols. The set 𝑃 of a context-free grammar can thus be

seen to map each non-terminal to its right-hand sides. A

derivation rule is applied to an occurrence of a non-terminal

in a sequence of symbols by replacing the non-terminal with

one of the right-hand sides of the nonterminal. A derivation

is formed by repeatedly applying derivation rules to a se-

quence of symbols until only terminal symbols remain. The

set of sentences in a language is the set of terminal sequences

that can be obtained through repeatedly applying derivation

rules starting from the start symbol 𝐴0. Intuitively, by occur-

ring in the right-hand side of derivation rules, non-terminal

symbols thus give structure to the sentences of the language.

The derivation process is inherently non-deterministic as

a non-terminal can have multiple right-hand sides in which

case multiple derivation rules can be applied to the nonter-

minal. This non-determinism is the main problem tackled

by parsing algorithms, which are tasked with finding one

or more derivations of an input sentence if there are any. A

parser can look ahead one or more symbols into the input

sentence to help choosing between alternatives. However,

for every choice of amount of lookahead, example grammars

and inputs exist for which lookahead is not sufficient. With

insufficient lookahead, a parser can apply backtracking to

correct choosing a failing alternative. Backtracking is not

regularly used in practice because of the performance draw-

backs. For a more extensive take on grammars and parsing,

the reader is referred to [3, 11].

In our work we adopt data-dependent grammars, a gen-

eralisation of context-free grammars that supports data-

dependent conditions in right-hand sides of nonterminals.

To avoid backtracking, we assume that the conditions asso-

ciated with right sides in the data-dependent grammars are

mutually exclusive (independent of lookahead).

3.4 Data-Dependent Grammars
Data-dependent grammars [12] provide a grammar formal-

ism that incorporates data-dependencies within the gram-

mar specification. Using these data-dependencies, disam-

biguation strategies can be specified [2] and some context-

sensitive parsing [15] can be performed.

Definition 3.2. A data-dependent grammar (DDG) is a tu-

ple ⟨Σ,Δ, 𝐴0,R⟩, where Σ,Δ, 𝐴0 are as defined in the CFG

definition and R ⊆ Δ × 𝑟 relates nonterminals to regular

right sides as defined below.

Definition 3.3. Regular right sides are inductively defined

by the following grammar.

𝑟 ::= 𝜖 (empty string)

| 𝑡 (terminal)

| 𝐴(𝑒) (nonterminal call with P4 expression)

| 𝑖1, . . . 𝑖𝑛 (P4 statements)

| (𝑟 .𝑟 ) (concatenation)

| (𝑟 | 𝑟 ) (alternation)

| (𝑟 ∗) (Kleene closure)

| [𝑒] (A P4 expression as a condition)

The definition above is an adaptation of the original from [12]

ignoring some unused operators, embedding P4 statements

and utilising P4 expressions as conditions.

Data-dependent grammars incorporate several key ele-

ments that distinguish them from conventional context-free

grammars. Parameterized nonterminals take a number of
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parameters to provide context to their right sides. In the

formalization, a single parameter is used without loss of

generality. We use the abstract param function to obtain

the parameter identifier of a non-terminal. A call 𝐴(𝑒) is
realized by evaluating the argument-expression 𝑒 to a value

and binding the parameter to the value. The parameter is

then available for use as a variable in conditions, which are

themselves P4 expressions. A condition [𝑒] serves as a guard
for right sides, where 𝑒 is a P4 expression. That is, a right side

can only yield a derivation (or successfully parse) if all its

conditions evaluate to true in the given context. Right-sides

are defined akin to regular expressions, with the Kleene-

closure operator and binary concatenation and alternation

operators. The definition is completed by empty right sides 𝜖 ,

terminal symbols 𝑡 , and P4 statements 𝑖1, . . . , 𝑖𝑛 . Compared

to the original definition, we do not use a separate binding

operator {𝑥 = 𝑒}. Instead, a P4 assignment statement can

be used wherever binding the value of an expression 𝑒 to a

variable 𝑥 is desired.

The following example, taken from the original DDG pa-

per [12], shows a DDG that captures fixed-width strings.

StringFW(n) = [n = 0] 𝜖

| [n > 0] char8 StringFW(n - 1)

This example highlights conditions and parameterized

non-terminals. Conditionals are recognized as expressions

enclosed by square brackets, and parameterized non-terminals

are recognized by the fact that the StringFW non-terminal

has a parameter (𝑛) as part of its definition. In this exam-

ple, char8 denotes a terminal, capturing an 8-bit character.

Throughout this paper, we use the convention that terminals

start with a lowercase character while non-terminals start

with an uppercase character.

The example uses a functional style, since it performs

multiple calls to a non-terminal with a modified argument,

simulating the idea of (recursive) functions. Alternatively,

the example can be encoded using a more procedural or

imperative style:

StringFW(n) = ([n > 0] char8 {n= n - 1})* [n = 0]

This style uses iteration with the Kleene closure operator

rather than recursion and uses a binding, n= n - 1, instead
of a recursive call with a modified argument. Both styles use

conditionals, but the procedural style uses conditionals at the

start and end of the rule, while the functional style only uses

conditionals at the start of rules. Conditionals at the end of a

rule function like post-conditions and, in this example, guide

the application of the Kleene closure, which now unfolds

until 𝑛 is equal to 0. Without the conditional at the end, this

rule would accept any string with a length within the bounds

[1, 𝑛]. In our implementation, iteration proceeds (greedily)

as long as the pre-condition of the iterated statement holds,

relying on the assumption that every iterated statement has

a pre-condition that eventually evaluates to false.

Data-dependent grammars generalize the class of context-

free grammars and can be implemented using generalized

parsing algorithms such as GLR [17] and GLL [2, 14]. In [12],

the generalized parsing algorithm by Earley [7] was adapted

for data-dependent grammars and combined with a scanner-

less approach. In [12], transducers are used as an intermedi-

ate abstraction to express and prove correct the semantics

of the presented parsing algorithm. In this paper we use

transducers as an intermediate representation for generating

the P4 parsers, taking advantage of the similarities between

transducers and P4 parsers.

DDG Transducers. Transducers are a type of automata

that include states that produce output.

Definition 3.4. A parsing transducer 𝑇 is a tuple

(Σ,Δ, 𝑄,𝐴0, 𝑞0,
𝑙−→, ↦→), where:

• Σ is a finite set of terminals;

• Δ is a finite set of nonterminals;

• 𝑄 is a finite set of states;

• 𝐴0 is the start nonterminal, 𝐴0 ∈ Δ;
• 𝑞0 is the initial state, 𝑞0 ∈ 𝑄 ;

• 𝑙−→ is the transition relation where label 𝑙 is either:

– 𝜖 or simply omitted,

– a terminal 𝑡 ,

– a guard 𝑒 , with 𝑒 a P4 expression (here and below),

– a sequence of P4 statements 𝑖1, ..., 𝑖𝑛 ,

– a call to a nonterminal 𝑐𝑎𝑙𝑙 (𝐴(𝑒)),
– or a return from a call 𝑟𝑒𝑡𝑢𝑟𝑛(𝐴(𝑒)).

• ↦→ ⊆ 𝑄 × Δ is the output relation.

The translation from DDGs to transducers is given by

an extended version of Thompson’s construction provided

by [12] and presented here in Figure 3. The first judgment 𝑆 ⊢
𝑟 ⇝ (𝑠, 𝐹 ,T) defines how a regular right side 𝑟 is translated

to a transducer graph T . 𝑆 is a mapping from nonterminals

to states, relating a nonterminal to the start state of the (sub-

)automata implementing that nonterminal. In accordance

with [12], the meta-variable T is overloaded to represent

both a transducer graph, a tuple of states and transitions, and

a transducer with a start state. The second judgment𝐺 ⇝ T
uses the first judgment to build a transducer graph for each

regular right side of a nonterminal in the data-dependent

grammar 𝐺 . The semicolon operator in T1;T2 indicates the
unions of the states and transitions of both transducers. The

transducer for our running example is visualized in Figure 4

Note that we do not utilize the output relation of transduc-

ers. This is because in the generated parser, a terminal 𝑡 gives

rise to an application of the extract operator making the

parsed data available through the packet header as a global

variable (under the field name 𝑡 ).
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𝑆 ⊢ 𝑟 ⇝ (𝑠, 𝐹 ,T)

T-Eps

𝑠, 𝐹 fresh

𝑆 ⊢ 𝜖 ⇝ (𝑠, 𝐹 , [𝑠 → 𝐹 ])

T-Term

𝑠, 𝐹 fresh

𝑆 ⊢ 𝑡 ⇝ (𝑠, 𝐹 , [𝑠 𝑡−→ 𝐹 ])

T-Pred

𝑠, 𝐹 fresh

𝑆 ⊢ [𝑒] ⇝ (𝑠, 𝐹 , [𝑠 𝑒−→ 𝐹 ])

T-P4Stmts

𝑠, 𝐹 fresh

𝑆 ⊢ 𝑖𝑖 , . . . , 𝑖𝑛 ⇝ (𝑠, 𝐹 , [𝑠 𝑖𝑖 ,...,𝑖𝑛−−−−−→ 𝐹 ])

T-Call

𝑠, 𝐹 fresh 𝑙1 = 𝑟𝑒𝑡𝑢𝑟𝑛(𝐴(𝑒)) 𝑙2 = 𝑐𝑎𝑙𝑙 (𝐴(𝑒))

𝑆 ⊢ 𝐴(𝑒) ⇝ (𝑠, 𝐹 , [𝑠 𝑙1−→ 𝐹 ]; [𝑠 𝑙2−→ 𝑆 (𝐴)])

T-Seq

𝑠, 𝐹 fresh

𝑆 ⊢ 𝑟1 ⇝ (𝑠1, 𝐹1,T1) 𝑆 ⊢ 𝑟2 ⇝ (𝑠2, 𝐹2,T2)
T3 = [𝑠 → 𝑠1]; [𝐹1 → 𝑠2]; [𝐹2 → 𝐹 ]

𝑆 ⊢ 𝑟1.𝑟2 ⇝ (𝑠, 𝐹 ,T1;T2;T3)

T-Alt

𝑠, 𝐹 fresh

𝑆 ⊢ 𝑟1 ⇝ (𝑠1, 𝐹1,T1) 𝑆 ⊢ 𝑟2 ⇝ (𝑠2, 𝐹2,T2)
T3 = [𝑠 → 𝑠1]; [𝑠 → 𝑠2]; [𝐹1 → 𝐹 ]; [𝐹2 → 𝐹 ]

𝑆 ⊢ 𝑟1 | 𝑟2 ⇝ (𝑠, 𝐹 ,T1;T2;T3)

T-*

𝑠, 𝐹 fresh

𝑆 ⊢ 𝑟 ⇝ (𝑠1, 𝐹1,T1)
T2 = [𝑠 → 𝑠1]; [𝐹1 → 𝐹 ]; [𝑠 → 𝐹 ]; [𝐹1 → 𝑠1]

𝑆 ⊢ 𝑟 ∗ ⇝ (𝑠, 𝐹 ,T1;T2)

𝐺 ⇝ T

T-G

R = [𝐴0 = 𝑟𝐴0
, . . . , 𝐴𝑘 = 𝑟𝐴𝑘

]
𝑄 = {𝑠𝐴0

, . . . , 𝑠𝐴𝑘
} fresh

𝑆 = [𝐴0 = 𝑠𝐴0
, . . . , 𝐴𝑘 = 𝑠𝐴𝑘

]
𝑆 ⊢ 𝑟𝐴𝑖

⇝ (𝑠𝑖 , 𝐹𝑖 ,T𝑖 ) (for 𝑖 = 0, . . . 𝑘)
Tinit = [𝑠𝐴0

→ 𝑠0]; . . . ; [𝑠𝐴𝑘
→ 𝑠𝑘 ]

Tfinal = [𝐹0 → 𝐴0]; . . . ; [𝐹𝑘 → 𝐴𝑘 ]
T = T0; . . . ;T𝑘 ;Tinit;Tfinal

⟨Σ,Δ, 𝐴0,R⟩ ⇝ (Σ,Δ, 𝑄,𝐴0, 𝑠𝐴0
,T)

Figure 3. Adapted translation from data-dependent gram-

mars to transducers.

4 P4DDG
In this section we introduce P4DDG, a compiler from DDGs

to P4 parsers. A visual view of the pipeline of our compiler

and the integration of the generated parser with the final

P4 program is displayed in Figure 5. P4DDG consists of two

0

6

hdr.ethernet

1

10 Output: "Tunnel"

e

14

[type == TYPE_IPV4]

24

[type == TYPE_TUNNEL]

4 Output: "Hdr"

Tunnel(hdr.ethernet.etherType) return: Tunnel("hdr.ethernet.etherType")

hdr.ipv4

18

e

26

hdr.tunnel

Tunnel(hdr.tunnel.protoid)

return: Tunnel("hdr.tunnel.protoid")

Figure 4. The transducer generated from the DDG of the

running example from Figure 1.

P4DDG

DDG

P4 program
without a parser

P4 parser P4 program

Manually
combined

Transducer(a) (b)

Figure 5. The translation and utilization pipeline of P4DDG.

steps. Step (a) transforms a DDG into a transducer, and step

(b) transforms this transducer into a P4 program.

The first step of P4DDG was formalized in Section 3 as an

adaptation of the approach in the original DDG paper [12].

Compared to the original, we directly include P4 code (state-

ments and expressions) in the right sides of DDGs. Moreover,

terminals are not characters but instead refer to header struct

fields that are expressed in a P4 program (using extract).
Furthermore, we do not support grammars that require some

form of backtracking to parse.

In this section we formalize step (b) of the pipeline. This

translation occurs in two steps. In Section 4.1, a transducer

is translated to P4-IR, an intermediate representation of a P4

parser simplifying code generation. In Section 4.2, a straight-

forward translation from P4-IR gives the actual P4 code.

4.1 Translating from Transducers to P4-IR
In this subsection, we describe how we generate P4-IR code

from a transducer. The general idea behind the translation

is that most labels on the edges of the transducer become

imperative statements in the body of a P4 state definition.

The abstract syntax of P4-IR is given in Figure 6. Here, 𝑡 is

a placeholder for a P4 field name (instantiating a terminal),
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𝑠𝑡𝑚𝑡 ::= extract(𝑡)
| assign(𝑥, 𝑒)
| push(𝑙)
| 𝑝4𝑠 (𝑖∗)

𝑡𝑟𝑎𝑛𝑠 ::= if(𝑒, 𝑠)
| goto(𝑠)

Figure 6. Abstract syntax for P4-IR.

⟦⟧abs : (𝑄 × 𝑙 ×𝑄) ↦→ (𝑠𝑡𝑚𝑡 ∪ 𝑡𝑟𝑎𝑛𝑠)∗

⟦𝑠1
𝜖−→ 𝑠2⟧𝑎𝑏𝑠 � goto(𝑠2)

⟦𝑠1
{𝑖1,...,𝑖𝑛 }−−−−−−−→ 𝑠2⟧𝑎𝑏𝑠 � p4s(𝑖1, . . . , 𝑖2), goto(𝑠2)

⟦𝑠1
[𝑒 ]
−−→ 𝑠2⟧𝑎𝑏𝑠 � if(𝑒, 𝑠2)

⟦𝑠1
𝑡−→ 𝑠2⟧𝑎𝑏𝑠 � extract(𝑡), goto(𝑠2)

⟦𝑠1
call 𝐴(𝑥 )
−−−−−−−→ 𝑠2⟧𝑎𝑏𝑠 � assign(𝑝, 𝑥)

, push(𝜓 (𝑠1, 𝐴, 𝑥))
, goto(𝑠2)
where 𝑝 = params(𝐴)

Figure 7. Translation from transducers to P4-IR. The𝜓 func-

tion generates a continuation that identifies the return to

some state 𝑠3 for the transition 𝑠1
return 𝐴(𝑥 )
−−−−−−−−−→ 𝑠3.

𝑥 for a P4 variable name, 𝑒 for a P4 expression, 𝑖 for a P4

statement, 𝑙 is an integer identifying a continuation used

to implement the call and return labels, and 𝑠 is an integer

identifying a state.

The translation of a single transition in the transducer to

P4-IR is given in Figure 7. In this figure, the first equation

translates an epsilon transition to a single goto to the tar-

get state. The second equation translates a sequence of P4

statements into its intermediate representation, followed by

a goto to the target state. The third equation translates a

conditional transition guarded by an expression 𝑒 to target

state 𝑠 using if . The fourth equation translates a transition

matching a terminal 𝑡 into an extract(t) followed by a

goto to the target state. The fifth equation generates instruc-

tions to bind the argument of a call to the parameter of the

nonterminal 𝑓 being called and to store a continuation on the

stack to handle the eventual return from the call, followed

by a goto to the target state.

Using these rules, a full transducer𝑇 translates as follows:

P IR (𝑇 ) = {(𝑠, {⟦𝑠 𝑎−→ 𝑠′⟧abs | (𝑠, 𝑎, 𝑠′) ∈ 𝑙−→}) | 𝑠 ∈ 𝑄} (1)

⇓: 𝑡𝑟𝑎𝑛𝑠∗ ↦→ 𝑠𝑡𝑟𝑖𝑛𝑔

𝑏⊤ : 𝑒 ↦→ 𝑠𝑡𝑟𝑖𝑛𝑔 𝑏⊥ : 𝑒 ↦→ 𝑠𝑡𝑟𝑖𝑛𝑔

goto(𝑠0)
⇓

transition state_𝑠0 ;

if(𝑒1, 𝑠1), . . . , if(𝑒𝑛, 𝑠𝑛), (goto(𝑠0))?
⇓

transition select(e_1, . . . , e_n) {

(𝑏⊤ (𝑒1), 𝑏⊥ (𝑒2), . . . , 𝑏⊥ (𝑒𝑛)) : state_𝑠1;

(𝑏⊥ (𝑒1), 𝑏⊤ (𝑒2), . . . , 𝑏⊥ (𝑒𝑛)) : state_𝑠2;

...

(𝑏⊥ (𝑒1), 𝑏⊥ (𝑒2), . . . , 𝑏⊤ (𝑒𝑛)) : state_𝑠𝑛;

(default : state_𝑠0;)?
}

𝑏⊤ (!𝑒) = false

𝑏⊤ (𝑒) = true

𝑏⊥ (!𝑒) = true

𝑏⊥ (𝑒) = false

Figure 8. The translation from a sequence of transitions

(𝑡𝑟𝑎𝑛𝑠), from P4-IR, to concrete P4 syntax. Expression !𝑒 is

the application of the logical negation operator ! of P4.

⇒𝑠𝑡𝑚𝑡 : 𝑠𝑡𝑚𝑡 ↦→ 𝑠𝑡𝑟𝑖𝑛𝑔

extract(𝑡) ⇒𝑠𝑡𝑚𝑡

packet.extract(𝑡);
push(𝑐) ⇒𝑠𝑡𝑚𝑡

return_stack_index = return_stack_index + 1;

return_stack[return_stack_index].val = 𝑐;

assign(𝑝, 𝑥) ⇒𝑠𝑡𝑚𝑡

𝑝 = 𝑥 ;

p4s(𝑖∗) ⇒𝑠𝑡𝑚𝑡 𝑖
∗

Figure 9. The translation of a P4-IR 𝑠𝑡𝑚𝑡 to concrete P4.

The translation to P4-IR thus gives a mapping, for every state

in the transducer, to a set of sequences, each prefixed by a

(possibly empty) sequence of P4-IR statements and ending

with a P4-IR transition, i.e., every sequence in the set is of
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state_26:
type = hdr.tunnel.protoid;
push(2);

state_1:

goto

state_24:
extract(hdr.tunnel);

goto

state_18:

state_10:

goto

state_14:
extract(hdr.ipv4);

goto

state_continue

goto

state_6:
type = hdr.ethernet.etherType;
push(1);

goto

state_4:

goto

if type == TYPE_TUNNEL if type == TYPE_IPV4

goto

state_0:
extract(hdr.ethernet);

goto

goto goto

Figure 10. A visualization of the control flow of the run-

ning example expressed in P4-IR produced by translating

the transducer of Figure 4

the form 𝑠𝑡𝑚𝑡∗ 𝑡𝑟𝑎𝑛𝑠 . Note that because of our assumptions

on the input DDG, there can be at most one such sequence

for which it holds that stmt∗ is non-empty. And because of

the same assumption, only one such sequence ends with a

goto transition.

4.2 P4 Code Generation from P4-IR
This subsection describes the production of P4 code as a con-

crete syntax string via a final translation step. The generated

code includes a configurable preamble described towards the

end of this subsection.

In Figures 8 and 9 we give separate translations for a

sequence of transitions and individual statements respec-

tively. The full translation for a tuple (𝑠, 𝑃) ∈ P IR (𝑇 ) gen-
erates the code that declares a P4 state for 𝑠 with a body

consisting of a sequence of statements followed by a (se-

lection between) transition(s). The statements are produced

by applying ⇒𝑠𝑡𝑚𝑡 to all statements in the only sequence

𝑠𝑡𝑚𝑡∗ 𝑡𝑟𝑎𝑛𝑠 ∈ 𝑃 with non-empty 𝑠𝑡𝑚𝑡∗ (in the order re-

specting the order of the sequence). The (selection between)

transition(s) is produced by applying ⇓ to all the transitions

of 𝑃 together, ordered as a sequence 𝑡𝑟𝑎𝑛𝑠∗ such that the

goto transition is last in the sequence (if it exists).

The first equation in Figure 8 defines P4 code for the sim-

plest sequence of 𝑡𝑟𝑎𝑛𝑠 , a single goto. The second translates
a sequence of 𝑛 − 1 if(𝑒𝑖 , 𝑠𝑖 ) transitions, optionally followed

by a single goto. The generated code contains a select
statement with an n-tuple with 𝑛 P4 expressions 𝑒 . Every

case in the select contains an n-tuple of booleans, with one

position set to true, for each possible branch. If a goto(s) is

present, then a default case is added that transitions to s.
The translation of individual statements in Figure 9 is

straightforward for most P4-IR constructors. In the case of

push(c), P4 code is generated that adds the continuation

(identifier) 𝑐 to a global array utilized as a stack. The code for

handling returns by popping continuation identifiers from

the stack is part of the preamble code explained next.

Every generated P4 parser opens with a preamble con-

taining the instructions to allocate the continuation array,

a global index into this array, and the P4 instructions that

declare all the parameters of all the nonterminals, which is

necessary because P4 transitions do not accept arguments.

The size of the continuation array is user-defined. In the

case of our running example, the preamble looks as follows.

The return_stack is the continuations array, which is rep-

resented, in this program, as an array of size 16 containing

8-bit values. The last line declares the parameter for the

MyTunnel nonterminal.

header return_stack_type { bit<8> val;}

return_stack_type[16] return_stack;

bit<8> return_stack_index = 0;

bit<16> type;

Next, a single P4 state is generated that handles returns

modeled via continuations. This state has a single select

statement with a case for every continuation. The case that

matches the last element of the continuation array results

in a transition to the state identified by the continuation. If

there are no continuations, the packet is accepted, since an

empty continuation array corresponds to a successful return

from the top-level nonterminal.

For the running example, the return handling state is:

state handle_continuations {

bit<8> tmp_return;

if (return_stack_index == 0) {

tmp_return = 0;

} else {

tmp_return = return_stack[return_stack_index].

val;

return_stack_index = return_stack_index - 1;

}

transition select (tmp_return) {

1 : state_4;

2 : state_18;

0 : accept;

}

}
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The behavior of this state is similar for every generated

parser. We introduce a local variable (tmp_return) in which

we store the continuation with which to continue. When

the continuation stack is empty, we continue with contin-

uation 0, which corresponds to a transition to the accept
state, indicating acceptance of the packet. Otherwise, we

pop the stack and use the popped value as the next contin-

uation. To determine which state a continuation refers to,

the state ends with a transition select on the popped

continuation value. This transition select is essentially a
lookup table, associating continuations with concrete states.

After this transition select, the parser transitions to the

state identified by the current continuation. For our running

example, we have two possible continuations, correspond-

ing to state 4 and state 18 in Figure 10, and the accepting

continuation when the continuation stack is empty.

4.3 Additional Syntax
Finally, we propose a specific extension to the syntax for

DDGs in P4 that makes it easier to express common pat-

terns observed in P4 parsers. In contrast to conventional

P4 parsers, the proposed syntax allows control flow to be

denoted using the if-then-else construct and switch con-

struct instead of state transitions. An example of a con-

crete DDG that shows this difference is shown in Figure 11.

The abstract syntax of P4DDG contains the additional con-

structs if(𝑒, 𝑠𝑡𝑚𝑡∗, 𝑠𝑡𝑚𝑡∗?) and case(𝑒, (⟨𝑒, 𝑠𝑡𝑚𝑡∗⟩)∗). These
constructs are desugared using the following rewriting rules:

if(𝑒, 𝑠𝑡𝑚𝑡∗
1
, 𝑠𝑡𝑚𝑡∗

2
?) =

[𝑒] 𝑠𝑡𝑚𝑡∗
1
( | [(!𝑒)] 𝑠𝑡𝑚𝑡∗

2
)?

case(𝑒0, ⟨𝑒1, 𝑠𝑡𝑚𝑡∗
1
⟩, . . . , ⟨𝑒𝑛, 𝑠𝑡𝑚𝑡∗𝑛⟩) =

[𝑒0 == 𝑒1] 𝑠𝑡𝑚𝑡∗
1
| . . . | [𝑒0 == 𝑒𝑛] 𝑠𝑡𝑚𝑡∗𝑛

5 Evaluation
In this section, we evaluate the use of DDGs in P4. The soft-

ware and programs used for our experiments are available

as a Zenodo publication.

5.1 Experimental Setup
Program Collection. The experiments are run using P4

programs collected from various online repositories (e.g.,

those supplementing paper or thesis publications). For each

collected programwewrite a DDG definition that can replace

the header specification and parser of the program without

modifying the functional behavior of the program. From the

DDG definition we generate a parser for comparison with

the original parser. The original parser and generated parser

are compared for functional equivalence to establish the cor-

rectness of the generated parser. Moreover, the original and

generated parsers are compared for runtime performance.

Processing Pipeline. An overview of our experimental

setup is given in Figure 12. The original P4 program and the

program with the generated parser are run on a BMv2 [6]

virtual switch to process packets. We use BMv2 which, as

a target for P4, aims to be feature-rich and easy to use but

explicitly does not prioritize performance. Therefore we do

not intend to draw conclusions from the presented experi-

ments about the real-world performance on (any specific)

hardware targets. To compare functional behavior and per-

formance of the two programs, packets are generated using

P4testgen [13]. P4testgen is given the original P4 program

as input and uses the parser contained in the program to

generate packets of a meaningful variety. This is achieved by

traversing the (possibly many) paths that can be traversed by

following the transitions between parser states. The resulting

set of packets is used as input in the runs for both programs.

Only the first stage of packet processing, the parsing stage,

is relevant to the experiments.

Correctness. To determine that the parsers generated

from DDGs behave identically their hand-written counter-

parts, we use the logs produced by BMv2 to determine the

sequence of parsed headers and check these for equality.

Note that we do not test if the modifications to the meta-

data or other variables global to the parser are the same. We

chose not to include these assignments in the correctness

check as differentiating between variables originating form

the program and those introduced by the P4 compilation

process proved costly due to the lacking integration with

the reference P4 compiler. Furthermore we observed that

programs that relied on assignments to metadata passed our

correctness check.

All pairs of programs that we have experimented with are

included in the supplementary material accompanying this

paper. In all cases the check for equality holds, suggesting

indeed that the parser generator of P4DDG is correct.

5.2 Runtime Performance
In this section we discuss the results of comparing the run-

ning times of the parsers of the two programs. The timings

are measured by collecting timestamps from the logs gen-

erated by the switch. The timestamps of interest are those

produced at the beginning and end of the parsing stage.

The running time for the different parsers can be seen in

Figure 13. For the firewall, cache, and fastreact programs,

the difference in delay compared to the original parser is

the lowest. The reason for this is that the DDGs for these

programs do not use parameterized nonterminals and thus,

avoid the runtime overhead from the continuation array. For

the other three programs, the delay is about seven times as

large. The main reason for this is the overhead from allocat-

ing and modifying the continuation array.
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state parse_gtpu {

packet.extract(hdr.gtpu);

transition select(hdr.gtpu.ex_flag, hdr.gtpu.seq_flag, hdr.gtpu.

npdu_flag) {

(0, 0, 0): parse_inner_ipv4;

default: parse_gtpu_options;

}

}

state parse_gtpu_options {

packet.extract(hdr.gtpu_options);

bit<8> gtpu_ext_len = packet.lookahead<bit<8>>();

transition select(hdr.gtpu_options.next_ext, gtpu_ext_len) {

(0x85, 8w1): parse_gtpu_ext_psc;

default: accept;

}

}

state parse_gtpu_ext_psc {

packet.extract(hdr.gtpu_ext_psc);

fabric_metadata.spgw.qfi = hdr.gtpu_ext_psc.qfi;

transition select(hdr.gtpu_ext_psc.next_ext) {

0x0: parse_inner_ipv4;

default: accept;

}

}

GTPU =

hdr.gtpu

if hdr.gtpu.ex_flag, hdr.gtpu.seq_flag, hdr.gtpu.npdu_flag == (0, 0,

0) then

InnerIpv4()

else

hdr.gtpu_options

{bit<8> gtpu_ext_len = packet.lookahead<bit<8>>();}

if hdr.gtpu_options.next_ext, gtpu_ext_len == (0x85, 8w1) then

hdr.gtpu_ext_psc

{fabric_metadata.spgw.qfi = hdr.gtpu_ext_psc.qfi;}

if hdr.gtpu_ext_psc.next_ext == 0x0 then InnerIpv4 () else

()

else ()

Figure 11. Concrete syntax example for P4-specific DDGs. On the left is the original P4 parser taken from onos-spgw-int. On

the right is the P4DDG alternative in the proposed concrete syntax using the if-construct.

P4 program

p4testgen packets

switch

Parser

P4 program with
generated parser

Ingres ...

Figure 12. Experimental setup to compare the performance

of hand-written P4 parsers with those generated from DDGs.

Analyzing the Impact of Continuations. As we saw
in the previous experiment, using the continuation array

causes a significant increase in the time it takes to parse a

packet. For the second experiment, we attempt to measure

the precise impact of the continuation array on the parsing

time. The continuation array is used to handle return from,

for example, the recursive call in the running example from

Figure 1.

For this experiment, we use the following grammar. A

packet starts with a number that indicates how many 128-bit

headers are present. The size of 128 bits is irrelevant to the

experiment; all we are concerned with is the number that

specifies how many headers will follow, as this number will

determine the number of times we make a recursive call and,

thus the usage of the continuation array.

Hdr = hdr.num P(hdr.num.val)

P(bit<16> n) =

[n == 0] //empty

| [n !=0 ] hdr.header_stack.next P(n-1)

The DDG below accepts the same packets but avoids the

need for a parameterized nonterminal and, thus, a continua-

tion by using the Kleene star operator.

Hdr = hdr.num {n = hdr.num.val;}

([n != 0] hdr.header_stack.next {n = n - 1;})*

[n == 0]

In Figure 14 the average parsing delay is compared for the

two DDGs given above against the delay for a hand-written

parser. The results show that usage of the stack comes with

a large increase in the parsing delay. For the DDG that uses

recursion, the difference between the other two results can

be explained by the following two sources of delay. First,

the delay from setting up the continuation array. This is

incurred no matter the path taken by the packet. Second, the

delay from the operations that modify the continuation stack,

that is, looking up the last continuation and transitioning to

the correct next state. Furthermore, we see that using the
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Figure 13. The average parsing time of a DDG-derived parser compared to the original parser for a collection of P4 programs.

imperative style over the functional style results in a parser

that is closer in performance to the hand-written parser.
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Figure 14. A comparison of the parsing delay for two differ-

ent styles of specifying iterations in a DDG. The first uses

a recursive call, in orange. The second uses the Kleene star

operator, indicated in green. The advantage of the Kleene

star is that no continuation array is required. Third, a hand-

written parser is used as a control.

6 Discussion
From the results, we can see that using an array that holds

continuations for returning from parameterized nontermi-

nals comes with a significant increase in parsing time. The

delay can be split into two parts. There is a constant delay

incurred for every packet from the allocation of the array.

Furthermore, significant overhead is incurred for every re-

turn that is handled, as can be seen in the second experiment.

From the same experiment, we can see that for parameter-

ized nonterminals with a single callee, the continuations can

be avoided for better performance. In the experiment, we

avoid generating continuations by using the Kleene star op-

erator. But this same performance benefit could be achieved

by not using continuations for parameterized nonterminals

with a single callee. Note, in case continuations are used for

other nonterminals, then avoiding continuations for some

nonterminals will only result in the total overhead from re-

turns being lower, while the overhead from allocating the

continuation array would remain.

Limitations. Due to the early-stage nature of this work,

there are a few limitations that we find important to dis-

cuss. First, there is the low number of programs used in

the evaluation section. We encountered multiple challenges

collecting programs, with the main one being the fact that

there is a limited number of novel protocols that have a P4

definition. Nevertheless, we feel that the included programs

contain sufficient non-trivial protocols to show a benefit of

our approach, despite the incurred slowdown.

The second limitation is the incurred slowdown for the

DDG-generated parser compared to hand-written ones.While

the parsing stage generally does not take up a significant

amount of time in full P4 programs, the slowdown may still

limit the real-world applicability of this work. However, we

consider this acceptable for preliminary work. Our research
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has shown that DDGs can be a suitable alternative to the cur-

rent state machines in P4, thus motivating further research

into a code generation approach that eliminates the current

performance gap.

Finally, we spent some time on optimizations on the P4-IR,

of which we implemented one that combines states when

possible. This optimization aimed to decrease the number

of states in the generated P4 code as much as possible, as

we hypothesized that this could be important for the Tofino

hardware target. In the end, we did not expand our evaluation

to Tofino and found the optimization to result in only a minor

decrease in the number of states.

An Alternative Code Generation Strategy. Instead of

using a continuation stack, we could specialize nonterminal

calls. That is, instead of having one nonterminal being called

in two places, we have two copies of the nonterminal such

that they both have a single callee, thus removing the need

to store a continuation for the two nonterminal calls. Spe-

cializing the nonterminal calls, while avoiding the increase

in delay from allocating the continuation array, results in

a parser with more states, as the complete body of every

nonterminal is repeated as many times as the nonterminal

is called with different arguments.

7 Related Work
Π4 [8] is a dependently-typed version of P4. With Π4, the
type system is used to determine correctness of P4 programs,

including the written parsers. This way, certain bugs in

parsers are caught by the type system since those programs

do not type check. The way in which parsers are written is

similar to the way they are written in P4, except Π4 does not
support the transition command, instead parsers are written

using if-else chains. Compared to our work, the contributions

of Π4 are more focused on the verification aspects, while our

work is more focused on expressiveness and maintainability.

Nevertheless, it would be interesting for future work to use

our DDGs to verify certain properties of the grammars, or

to add Π4 as a new compilation target to our compiler.

In the context of data-dependent grammars, previous work

introduced Iguana [1, 2], a framework for data-dependent

parsing. As part of this framework, they make several ex-

tensions to the data-dependent grammar formalism, and

introduce several forms of syntactic sugar for common dis-

ambiguation actions. One of the extensions is support for

global variables that are reachable to all the rules in the gram-

mar. This aligns with our handling of terminals except more

general. In future work, it would be interesting to explore

how suitable the other extensions proposed in the framework

are within the context of P4DDG.

An alternative approach to writing a grammar is specify-

ing the structure of the data and generating parsers from that

description [9]. A common idiom with these frameworks is

the use of unions to represent alternatives. This is not di-

rectly possible with P4, since P4 does not support unions

inside structs. It does support unions for headers. Instead of

defining a new language, an interesting alternative is to use

the P4 header and struct definitions directly and generate

parsers from those definitions. However, it is still unclear

how to model the data dependencies between these head-

ers in the definition. Nevertheless, it could be an interesting

avenue to explore in future work.

8 Conclusion
We explored the use of data-dependent grammars (DDGs)

in the context of P4, a programming language for network-

ing devices. We introduced P4DDG, a P4-specific variant

of DDGs, as a means to specify both packet structures and

parsers at a higher level of abstraction. We presented a com-

piler from P4DDG to P4 parsers. By empirically evaluating

the equivalence and performance of existing parsers and

generated parsers, we demonstrated that P4DDGs offer an

alternative to P4 parsers, albeit with some performance trade-

offs. Future work will focus on shrinking the performance

gap by exploring alternative code generation strategies and

refining the current generation approach.

Acknowledgments
This research was funded by the Dutch 6G flagship project

“Future Network Services”.

References
[1] Ali Afroozeh and Anastasia Izmaylova. 2015. One Parser to Rule

Them All. In 2015 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, Onward!
2015, Pittsburgh, PA, USA, October 25-30, 2015, Gail C. Murphy and Guy

L. Steele Jr. (Eds.). ACM, 151–170. https://doi.org/10.1145/2814228.
2814242

[2] Ali Afroozeh and Anastasia Izmaylova. 2016. Iguana: A Practical Data-

Dependent Parsing Framework. In Proceedings of the 25th International
Conference on Compiler Construction, CC 2016, Barcelona, Spain, March
12-18, 2016, Ayal Zaks and Manuel V. Hermenegildo (Eds.). ACM, 267–

268. https://doi.org/10.1145/2892208.2892234
[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers:

Principles, Techniques, and Tools. Addison-Wesley. I–X, 1–796 pages.

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,

Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George

Varghese, and David Walker. 2014. P4: Programming Protocol-

Independent Packet Processors. Comput. Commun. Rev. 44, 3 (2014),
87–95. https://doi.org/10.1145/2656877.2656890

[5] N. Chomsky and M.P. Schützenberger. 1963. The Algebraic Theory

of Context-Free Languages*. In Computer Programming and Formal
Systems, P. Braffort and D. Hirschberg (Eds.). Studies in Logic and

the Foundations of Mathematics, Vol. 35. Elsevier, 118–161. https:
//doi.org/10.1016/S0049-237X(08)72023-8

[6] The P4 Language Consortium. 2025. BMv2: reference P4 software

switch. https://github.com/p4lang/behavioral-model.
[7] Jay Earley. 1970. An Efficient Context-free Parsing Algorithm. Com-

mun. ACM 13, 2 (1970), 94–102. https://doi.org/10.1145/362007.362035
[8] Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster,

and Mira Mezini. 2022. Dependently-Typed Data Plane Programming.

65

https://doi.org/10.1145/2814228.2814242
https://doi.org/10.1145/2814228.2814242
https://doi.org/10.1145/2892208.2892234
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1016/S0049-237X(08)72023-8
https://doi.org/10.1016/S0049-237X(08)72023-8
https://github.com/p4lang/behavioral-model
https://doi.org/10.1145/362007.362035


P4DDG: Data-Dependent Grammars for Packet Specification and Parsing in P4 GPCE ’25, July 3–4, 2025, Bergen, Norway

Proc. ACM Program. Lang. 6, POPL, Article 40 (Jan. 2022), 28 pages.

https://doi.org/10.1145/3498701
[9] Kathleen Fisher and Robert Gruber. 2005. PADS: A Domain-Specific

Language for Processing Ad Hoc Data. In Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design and Imple-
mentation, Chicago, IL, USA, June 12-15, 2005, Vivek Sarkar andMaryW.

Hall (Eds.). ACM, 295–304. https://doi.org/10.1145/1065010.1065046
[10] Nate Foster, Arjun Guha, Mark Reitblatt, Alec Story, Michael J. Freed-

man, Naga Praveen Katta, Christopher Monsanto, Joshua Reich, Jen-

nifer Rexford, Cole Schlesinger, David Walker, and Rob Harrison. 2013.

Languages for software-defined networks. IEEE Commun. Mag. 51, 2
(2013), 128–134. https://doi.org/10.1109/MCOM.2013.6461197

[11] Dick Grune. 2010. Parsing Techniques: A Practical Guide (2nd ed.).

Springer Publishing Company, Incorporated. https://doi.org/10.1007/
978-0-387-68954-8

[12] Trevor Jim, Yitzhak Mandelbaum, and David Walker. 2010. Semantics

and Algorithms for Data-dependent Grammars. SIGPLAN Not. 45, 1
(Jan. 2010), 417–430. https://doi.org/10.1145/1707801.1706347

[13] Fabian Ruffy, Jed Liu, Prathima Kotikalapudi, Vojtech Havel, Han-

neli Tavante, Rob Sherwood, Vladyslav Dubina, Volodymyr Pescha-

nenko, Anirudh Sivaraman, and Nate Foster. 2023. P4Testgen: An

Extensible Test Oracle For P4. In Proceedings of the ACM SIGCOMM

2023 Conference (New York, NY, USA) (ACM SIGCOMM ’23). Asso-
ciation for Computing Machinery, New York, NY, USA, 136–151.

https://doi.org/10.1145/3603269.3604834
[14] Elizabeth Scott and Adrian Johnstone. 2010. GLL Parsing. Electronic

Notes in Theoretical Computer Science 253, 7 (2010), 177–189. https:
//doi.org/10.1016/j.entcs.2010.08.041

[15] Bostjan Slivnik. 2022. Context-sensitive parsing for programming

languages. J. Comput. Lang. 73 (2022), 101172. https://doi.org/10.1016/
J.COLA.2022.101172

[16] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negre-

anu, and Costin Raiciu. 2018. Debugging P4 programs with Vera. In

Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM 2018, Budapest, Hungary, August
20-25, 2018, Sergey Gorinsky and János Tapolcai (Eds.). ACM, 518–532.

https://doi.org/10.1145/3230543.3230548
[17] Masaru Tomita. 2012. Generalized LR Parsing. Springer Science &

Business Media. https://doi.org/10.1007/978-1-4615-4034-2

Received 2025-04-10; accepted 2025-05-19

66

https://doi.org/10.1145/3498701
https://doi.org/10.1145/1065010.1065046
https://doi.org/10.1109/MCOM.2013.6461197
https://doi.org/10.1007/978-0-387-68954-8
https://doi.org/10.1007/978-0-387-68954-8
https://doi.org/10.1145/1707801.1706347
https://doi.org/10.1145/3603269.3604834
https://doi.org/10.1016/j.entcs.2010.08.041
https://doi.org/10.1016/j.entcs.2010.08.041
https://doi.org/10.1016/J.COLA.2022.101172
https://doi.org/10.1016/J.COLA.2022.101172
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1007/978-1-4615-4034-2

	Abstract
	1 Introduction
	2 Running Example
	3 Background
	3.1 SDN with OpenFlow
	3.2 P4
	Specifying Headers
	Parsing Packets in P4


	3.3 Languages, Grammars & Parsing
	3.4 Data-Dependent Grammars
	DDG Transducers


	4 P4DDG
	4.1 Translating from Transducers to P4-IR
	4.2 P4 Code Generation from P4-IR
	4.3 Additional Syntax

	5 Evaluation
	5.1 Experimental Setup
	Program Collection
	Processing Pipeline
	Correctness


	5.2 Runtime Performance
	Analyzing the Impact of Continuations


	6 Discussion
	Limitations
	An Alternative Code Generation Strategy


	7 Related Work
	8 Conclusion
	References

