
Bridging Incremental Programming and Complex
Software Development Environments

Max Boksem
max.boksem@student.uva.nl
University of Amsterdam
Amsterdam, Netherlands

L. Thomas van Binsbergen
ltvanbinsbergen@acm.org
University of Amsterdam
Amsterdam, Netherlands

Abstract
In modern software development, programmers typically
choose between two main types of coding environments:
Incremental Programming Environments (IPEs), such as the
Read-Eval-Print-Loop (REPL) interpreter IPython and the
Jupyter Computational Notebook, and Integrated (text-based)
Development Environments (IDEs), such as Visual Studio
Code. IPEs excel in providing immediate feedback for iter-
ative development, testing, and debugging, making them
ideal for fields like data science and AI. However, their typi-
cally linear and isolated interface struggles with managing
the complexity of larger software projects. Conversely, tra-
ditional IDEs support extensive project management and
debugging tools suited for complex applications but lack the
interactive and incremental nature of IPEs.
This paper reports on an ongoing investigation and de-

sign of a hybrid environment that combines benefits of IPEs
and IDEs and the programming styles they naturally sup-
port. Central to our design is a graph structure representing
code fragments as nodes and code structure as edges. By
considering various types of nodes and relationships (e.g.
for representing class membership, execution order, docu-
mentation, and dependencies) we can facilitate aspects of
both incremental programming (in IPEs) and complexity
management (in IDEs). We demonstrate our approach with
a prototype, called Incremental Graph Code (IGC), by pre-
senting its architecture and a showcase. We demonstrate
IGC’s functionality and discuss its potential advantages over
existing environments. Key features include advanced code
visualization, modular and incremental development, and
complexity management. IGC aims to provide a unified, ex-
tensible, and flexible development environment that bridges
the gap between different styles of programming.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PAINT ’24, October 22, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1212-8/24/10
https://doi.org/10.1145/3689488.3689991

CCS Concepts: • Software and its engineering→ Inte-
grated and visual development environments; Software
development techniques.

Keywords: incremental programming, exploratory program-
ming, read-eval-print loop, visual general-purpose language
development environment, software complexity manage-
ment
ACM Reference Format:
Max Boksem and L. Thomas van Binsbergen. 2024. Bridging Incre-
mental Programming and Complex Software Development Envi-
ronments. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Programming Abstractions and Interactive Notations,
Tools, and Environments (PAINT ’24), October 22, 2024, Pasadena, CA,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3689488.3689991

1 Introduction
There are many software development environments for pro-
grammers to choose from. Depending on the user’s use case,
they might want to choose an Incremental Programming
Environment (IPE) geared towards immediate feedback and
experimentation [27], or a robust Integrated Development
Environment (IDE) geared for full-blown software engineer-
ing projects of all scales. Each type of programming environ-
ment offers distinct advantages but also reveals limitations
when applied outside their ideal contexts.

IPEs, such as the Read-Eval-Print-Loop (REPL) interpreter
IPython and the Jupyter Computational Notebook, are ex-
cellent in providing immediate feedback, which is especially
helpful for iterative development, initial experimentation,
testing, and debugging. Computational Notebooks such as
those provided by Jupyter [16], Matlab1, and R-studio, also
admit forms of exploratory programming by allowing code
cells to be re-executed and re-ordered. Exploratory program-
ming is a more general form of incremental programming
in which the end goal is not known upfront and instead dis-
covered through the interaction with code [1, 23, 26]. Exper-
imentation and exploration have been found to be beneficial
to data science and computational science [13, 15]. How-
ever, Notebooks are also found to be limited with regards to
exploratory programming [7, 12, 14]. Moreover, the linear
and isolated interface of REPLs and Notebooks can become
a liability for larger projects. Code fragments are typically
1https://nl.mathworks.com/products/matlab/live-editor.html

https://orcid.org/0009-0002-0069-6020
https://orcid.org/0000-0001-8113-2221
https://doi.org/10.1145/3689488.3689991
https://doi.org/10.1145/3689488.3689991
https://doi.org/10.1145/3689488.3689991
https://nl.mathworks.com/products/matlab/live-editor.html


PAINT ’24, October 22, 2024, Pasadena, CA, USA Max Boksem and L. Thomas van Binsbergen

provided in isolated cells, without ways of structuring or
grouping fragments together (e.g., to form modules, classes
or packages), which can lead to difficulties in maintaining the
complexity of traditional software projects. This property
hinders the application of IPEs to complex software systems
where managing relationships and dependencies between
code fragments, i.e., the structure of the source code itself,
are essential.
Traditional text-based environments and IDEs, such as

Visual Studio Code (VSCode), are seen as the standard of
large-scale software development (as evidenced by Stackover-
flow developer survey of 20242). These environments usually
support extensive project management and debugging tools
designed for complex applications. Nevertheless, they lack
the interactive and incremental nature of IPEs, which are
especially beneficial in the initial phases of development.

Contribution. We demonstrate a new hybrid environ-
ment, in the form of a prototype named Incremental Graph
Code (IGC)3, reflecting the current state in an on-going inves-
tigation into novel programming environments that combine
benefits of both IPEs and IDEs. The goal of the investigation
is to explore the extent to which a unified programming
experience – suitable for many types of developers, develop-
ment tasks, and development stages – can be realized within
a single environment. Our investigation is centered around
a novel way to represent source code, inspired by PescaJ,
presented at PAINT last year [19], in which code fragments
are organized as nodes in a graph. The graph consists of
several types of nodes, e.g. with a node type for documenta-
tion in addition to a node type for code. Similarly, different
edge types are supported to represent different relationships
between nodes (and the code fragments they hold). For exam-
ple, one edge type links documentation to a code fragment,
a second links a method to a class, and a third represents
execution order (starting from a special initial state node).
The screenshot in Figure 1 shows a visualization of the graph
used by IGC and demonstrates some of the mentioned node
and edge types.
Our method of investigation involves the iterative exten-

sion of our IGC prototype with additional features comprised
of node types and edge types, along with their front end visu-
alisations and back end effects. The strength of the approach
is witnessed by the interactions that different features afford,
e.g. exploratory programming in a notebook can be realized
using the combination of code-nodes, documentation-nodes,
output visualization-nodes, and execution edges. In this pa-
per we showcase recreating a typical Jupyter Notebook envi-
ronment within IGC. In future work we will further evaluate

2https://survey.stackoverflow.co/2024/
3https://github.com/MaxMB15/MSc-SE-Master-Project/tree/main/
IncrGraph

our approach with additional case studies, e.g., by demon-
strating the capabilities of PescaJ for creating documentation-
oriented views.
In Section 2, we introduce background concepts that in-

spired the main features and requirements that motivated
specific design decisions. In Section 3 and 4 we present the
general architecture and design or implementation decisions
encountered. Section 5 performs the showcase, highlighting
many of the features discussed previously and demonstrating
the advantages IGC can offer.

2 Background
The following section introduces background knowledge
and describes related work from which we derive key re-
quirements for our design in Section 3.

2.1 REPLs and Computational Notebooks
Incremental programming is an approach to software de-
velopment where the process is segmented into small, man-
ageable programs that are built on top of one another. This
differs from normal development, which focuses on writing a
huge code feature and then testing everything afterward. De-
veloping incrementally can help alleviate bugs faster, there-
fore making development more efficient.

Incremental programming shines in environments such as
Read-Eval-Print Loops (REPLs) [20, 27]. Often seen in easily
accessible environments, such as in command-line interfaces,
REPLs are characterized by the iterative development style
they afford, gradually building up a software project piece by
piece, allowing for continuous testing, adaptation, and refine-
ment. The interpreters (typically) underlying REPL environ-
ments, can be further incorporated for use in computational
Notebooks, such as Jupyter Notebooks [16]. Computational
notebooks have become increasingly popular, especially in
the fields of data science. This is shown by the rapid growth
in the availability of Jupyter Notebooks on GitHub, soaring
from about 200,000 in 2015 to nearly 10 million4 by Octo-
ber 2020 [22]. The Jupyter extension for VSCode is also the
third most downloaded extension, with more than 74 million
downloads at the time of writing5.

REPLs have a lot of advantages for code development, such
as quick feedback when manipulating code fragments, quick
testing of code snippets (e.g. calls to library functions), and
modularity of code fragments. Notebooks bring additional
advantages through their mixture of code and documenta-
tion cells, enabling literal programming [17], and through
output-cells that can visualize the output of code execution,
sometimes even affording interaction (e.g. as slider).

4https://blog.jetbrains.com/datalore/2020/12/17/we-downloaded-10-000-
000-jupyter-notebooks-from-github-this-is-what-we-learned/
5https://marketplace.visualstudio.com/vscode

https://survey.stackoverflow.co/2024/
https://github.com/MaxMB15/MSc-SE-Master-Project/tree/main/IncrGraph
https://github.com/MaxMB15/MSc-SE-Master-Project/tree/main/IncrGraph
https://blog.jetbrains.com/datalore/2020/12/17/we-downloaded-10-000-000-jupyter-notebooks-from-github-this-is-what-we-learned/
https://blog.jetbrains.com/datalore/2020/12/17/we-downloaded-10-000-000-jupyter-notebooks-from-github-this-is-what-we-learned/
https://marketplace.visualstudio.com/vscode


Bridging Incremental Programming and Complex Software Development Environments PAINT ’24, October 22, 2024, Pasadena, CA, USA

Figure 1. General view of IGC showing the Graph and Code editor. Displayed in this image are four node types: Code Fragment
(blue), Documentation (pink), Class (green), and Method (red). There are six main relationships shown: Execution (blue),
Dependency (orange), Documentation (pink), Method (red), Inheritance (green), and Overrides (black).

IPEs are usually limited to relatively small applications,
such as the pipelines developed by data scientists and pro-
grams for educational purposes. A complex project can be
implemented entirely in a REPL or Notebook, but this is simi-
lar to having all code within a single file, which is impractical
to read and analyze. For all the benefits IPEs have to offer,
they cannot be utilized effectively in the context of software
development outside of smaller software projects.

2.2 Exploratory Programming
The style of exploratory programming involves experiment-
ing with different versions of the same code fragment and
responding to the observed effects (e.g. modifying and exe-
cuting a code cell in a notebook multiple times). Various ap-
proaches have been investigate to better support exploratory
programming in Notebooks [13] or programming environ-
ments in general [26]. One approach to supporting exploratory
programming is to allow developers to manipulate execu-
tion paths to explore and understand alternative branches
of program evolution. This approach enables developers to
test different scenarios by altering the sequence of code ex-
ecution. Instead of modifying and executing one specific
cell, a developer might also choose to execute an alternative
cell to observe how the two compare based on their outputs.
This flexibility facilitates deeper insights into how various

parts of the code interact. Ideally, outputs from these differ-
ent execution paths can be easily compared, providing clear
and immediate feedback on how changes impact the code’s
behavior [23]. In [9], a generic approach for supporting ex-
ploratory programming in programming environments is
suggested in which an execution graph keeps track of previ-
ously visited program states to which the programmer can
return, similar to the record-keeping required for omniscient
debugging [3].

2.3 Classical Text-based Software Development
Classical text-based development practices have been the
norm for creating large-scale software projects. A developer
opens an IDE or text editor, writes some code, and clicks
run, typically invoking a compiler to build and run an exe-
cutable (i.e., ‘edit-compile-run’ instead of ‘read-eval-print’).
This method is adaptable and offers flexibility to almost ev-
ery coding application. It does have its pitfalls, however. As
a software project’s complexity increases, readability tends
to decrease [24]. A large area of research is concerned with
how to convert classical development methods into more
readable forms such as Domain-Specific Languages (DSLs),
UML generators, and Model Driven Development (MDD).
Integrating incremental programming into this framework
could address some of these concerns by offering developers



PAINT ’24, October 22, 2024, Pasadena, CA, USA Max Boksem and L. Thomas van Binsbergen

the advantage of immediate code feedback and simplified
experimentation with code modifications.

3 Design
This section outlines the requirements and design goals for
our prototype IGC. The requirements are derived from liter-
ature and existing programming environments as described
in the previous section.

3.1 Requirements
Several high-level requirements must be met to create a hy-
brid programming environment that leverages the benefits
of incremental programming and traditional text-based de-
velopment. This environment should provide the interactive
and iterative features of REPLs, allowing developers to test
and refine their code in small, manageable increments.
Simultaneously, it should offer the structural support and
comprehensive project management features found in
classical text-based environments, making it suitable for
large-scale software projects.
The environment should include features that help man-

age dependencies, track changes, and organize code effec-
tively to handle the complexity of large software projects.
By representing code and its relationships in a graph-
like format, we can categorize and organize different sec-
tions of a project more effectively. This graph structure en-
hances readability and manageability as it can be designed to
look like popular system design structures, such as UML.
IGC should support different architectural views to visualize
the structure and relationships of the code in various forms.

Each node within the graph should be capable of indepen-
dent execution, adhering to the principles of incremental
programming and modular development. This capabil-
ity ensures that developers can run, edit, test, and analyze
nodes in isolation. Additionally, the environment must in-
clude version control integration to facilitate collaborative
work and ensure that changes are tracked efficiently.

File management is important for maintaining the struc-
ture of the programming environment and supporting ver-
sion control. The environment should also support cross-
compatibility between different development environments,
allowing for the transformation of projects into traditional
text-based formats or REPL environments. This flexibility
ensures that developers can switch between different tools
as needed without losing progress.
Finally, the environment should offer extensibility and

customization, enabling users to tailor their workspace and
extend functionality as needed.

3.2 Features
Based on the aforementioned requirements, we derive the
following features and prioritization for the design of IGC.

Incremental andExploratory Programming. Incremen-
tal programming features, such as individual node execution,
are core to IGC. The evolution of a program (and program)
state is to be achieved using (small) code fragments. This
feature will allow developers to test and refine code in man-
ageable increments resulting in an efficient development pro-
cess. To enable exploration, and inspired by the exploratory
programming protocol of [9, 26], we add the ability to revisit
a previously encountered program state and execute an al-
ternative next code fragment. The various execution paths
should remain available and made visual to the programmer.
A graph of reached program states is gradually built, allow-
ing the programmer to compare and contrast the effects of
executions.

Complexity Management. This feature ensures that IGC
can handle large, complex projects while maintaining scala-
bility and readability. It directly stems from the advantages
of text-based environments. It includes managing dependen-
cies, tracking changes, and organizing code effectively to
handle the complexity of large-scale software projects.

Code Architectural Visualization. Utilizing a graph
structure to manage and visualize code relationships, enhanc-
ing project readability and maintainability. This requirement
supports different architectural views, enabling developers to
visualize code structures and relationships in various forms.

File Management. Efficiently storing and organizing the
programming environment’s structure within files, support-
ing other requirements like version control. This feature is
crucial for maintaining a logical structure for projects and
leveraging the full capabilities of version control systems.

The next section dives into our prototype IGC, describing
how a subset of the above features and requirements are met
by the current prototype.

4 Prototype
This section details the system architecture and some im-
plementation choices of our IGC prototype, implemented
as a web application. We describe both the front end and
back end components. For our initial exploration we support
Python as an object language because of its natural support
for incremental programming (through its interpreter(s)) and
extensive use in real-world projects. However, our goal is to
support a wider range of programming languages and the
architecture of Figure 2 has been designed with this aspect
in mind.

4.1 React Web Application (Front End)
The front end of IGC is written in React with Typescript [8].
The front end consists of three main components: the file
navigator, the graph editor, and the code editor.

The file navigator, located on the left side of the application
(the left half of Figure 4), is responsible for file management.



Bridging Incremental Programming and Complex Software Development Environments PAINT ’24, October 22, 2024, Pasadena, CA, USA

Figure 2. Application Diagram of IGC depicting the interac-
tions between components of both the front and back end.

Users can select a file to display in both the graph editor
and/or the code editor. At the bottom section of the file nav-
igator, the session manager allows users to create, manage,
and view sessions. A session tracks code execution, enabling
users to switch between different sessions easily and export
them for others to use.

In the middle of the application, the graph editor (the main
left component in Figure 1) visualizes and edits the graph
structure of an IGC file. The graph structure is managed by
the ReactFlow6 library, chosen for its performance, scala-
bility, and customizability. The graph consists of nodes and
directed edges called relationships.
There are currently seven types of nodes: Base, Class,

Abstract Class, Interface, Method, Code Fragment, and Docu-
mentation. Each node type has unique properties and mean-
ings, but all share the basic building blocks of code repre-
sentation and analysis. For instance, a method node seeks a
connected class node to attach to. Each node category offers
different templates for user convenience, though users can
also write their own code. The Code Fragment node serves

6https://reactflow.dev/

general coding purposes, while the Documentation node
stores and compiles markdown for display by other nodes.
A special, automatically generated Start node represents the
initial null execution state and begins all execution paths.

Figure 3. IGC Code Editor showing what would happen
if you clicked a code fragment node. Any documentation
would appear first, then the code, then general settings asso-
ciated with the node. If the node has been executed, runtime
information would also appear.

The graph has seven types of relationships: Base, Inheri-
tance, Override, Method, Dependency, Execution, and Docu-
mentation. Each relationship type serves a specific purpose,
either connected manually by the user, automatically based
on code analysis, or through external interactions such as ex-
ecution. Users drag from the dark grey bottom of the source
node to the target node to create an edge. Custom path cal-
culations prevent different edges from overlapping.
On the right side is the code editor (Figure 3), which dis-

plays the file’s raw data selected in the file navigator. The
primary code editor used is the Monaco React Editor7, main-
tained by the team behind the VSCode editor. If an IGC file
is selected, additional components may appear depending
on the situation. A filtered version of the ReactFlow data
appears in the editor by default. When a node is selected,
7https://microsoft.github.io/monaco-editor/

https://reactflow.dev/
https://microsoft.github.io/monaco-editor/


PAINT ’24, October 22, 2024, Pasadena, CA, USA Max Boksem and L. Thomas van Binsbergen

its associated code and any connected documentation nodes
above the code are displayed. A selection pane at the bottom
allows users to change the node type and name or, if an
edge is selected, to change the relationship type. When a
node is executed, additional options specific to the execution
are shown, including stdout and stderr terminals to display
output values, a configurations data pane showing the cur-
rent configuration after execution, and a metrics pane with
information such as execution time.

4.2 Node.js API (Back End)
The back end of our web application is built on a Node.js
server, coded in TypeScript. Node.js was chosen for the back
end server due to its seamless integration capabilities with
a VSCode extension. However, a web application was pre-
ferred over a VSCode extension to allow greater control over
various functionalities, which might be more challenging
to achieve within the constraints of an extension environ-
ment. The back end server comprises two main routes: "file-
explorer" and "code-handler."

The file-explorer route handles all file operations, includ-
ing reading file trees, accessing specific file data, and saving
specific file data. This route ensures efficient and organized
file management, enabling users to navigate and manipulate
their files with ease.

The code-handler route is responsible for code execution
and analysis. The code execution API accepts raw code, the
programming language (currently only Python is supported),
and the current session. The process begins with code analy-
sis to identify all newly defined variables, functions, modules,
etc. If a state file exists from the session, it is loaded next. The
actual code is then executed, and the resulting state is saved
and compressed into a pickle file using Dill. All execution
data is subsequently passed back to the front end.

Code analysis is managed by the AST Python library. The
raw code is parsed to construct an AST, and nodes are visited
to identify any dependencies required for code execution and
any newly defined variables, functions, modules, etc., from
the output of the raw code. This comprehensive analysis
ensures that the back end can accurately track and manage
the state of the code throughout its execution.

5 Showcase
The following showcase will demonstrate the functionality
of IGC and compares IGC to the popular Jupyter Notebook
environment. For the showcase, we create a program that
helps track daily tasks, summarizes time spent, and provides
simple suggestions for better task management.

Project setup. To get started, we first need to create a new
project. This can be done by going to File (on the navigation
bar) -> New Project. We are then left with a brand-new
project environment. Let us create a new IGC file named
“task_tracker.igc.” The file is automatically populated with

a node representing the default state of program execution.
In other words, the node represents the initial state of any
execution path.

Code and Documentation. To start development, we
create a new node by clicking the “add node” button. There
should be a new node on the graph. We change the type
of the node to “Code Fragment,” as we just plan to run the
code as it is. The plan is to represent each node as it would
be in a cell usually seen in a Jupyter Notebook. First, we
would like to import some libraries needed for the rest of the
script, so we change the node’s name to “Import Libraries”
and add the raw import statements to the node. Next, we add
some documentation for the node in the form of markdown
(as seen in many Notebooks) by double-clicking above the
code cell next to the “+” symbol. This action creates a new
Documentation cell attached to the code cell created earlier.
We insert the markdown click on the original cell to place
focus at that node. The markdown is subsequently compiled
and shown. We repeat these steps to create a number of code
cells, resulting in a structure resembling a Notebook written
in the literal programming style (see Figure 4).

Figure 4. All code fragment nodes created visualization
from the showcase. As the first (top) code fragment node
is selected, a documentation node is present to show the
corresponding documentation.



Bridging Incremental Programming and Complex Software Development Environments PAINT ’24, October 22, 2024, Pasadena, CA, USA

Building a session. Now that we have all the nodes cre-
ated, let us try executing them. In theory, we could have
executed each node after creation (and this would be more
in line with the incremental programming philosophy). We
decided to show the execution functionality afterward as
we wanted to show a distinction between the creation of
the cells and execution for demonstration purposes. First,
we create a new session by clicking the “Start new session”
button in the Session Configuration pane. To execute a node,
we press the play button at the top of the code editor when
a node is selected, or right-click the node and press run. We
should now see an edge representing an execution relation-
ship from the start node to the cell we executed. We also see
a terminal with four tabs above it: "Output," representing the
stdout; "Error," representing stderr; "Configuration," repre-
senting the newly defined state from this specific execution;
and "Metrics," which shows metrics over the execution such
as execution time. We should also see that the session config-
uration data has changed to the current state of the session
execution. If we execute the next node, we see that we are
creating the execution path leading from the previously ex-
ecuted node to the current node. With each execution, the
session configuration changes to represent the current state
of the execution. By clicking a previous node on the exe-
cution path we can inspect program state by clicking the
‘configuration’ tab of the node (see Figure 5).

Session Exploration. To experiment with modified input
data, we create a new session by clicking the “Start new ses-
sion” button. The execution edges from the previous session
are no longer visible, and we can start defining a new execu-
tion path going into the new input data node. If we quickly
want to compare the sessions, we can go to the session selec-
tor, and we see both sessions exactly in the state where we
left them (Figure 6). Our showcase demonstrates how IGC
has separated the concerns of establishing a narrative with
code (and its documentation) – which is achieved through
visual layout – and the alternative narrative of the execu-
tion of the code – which is achieved through maintaining
multiple execution sessions. In this way, IGC addresses a
key limitation in Jupyter Notebooks as described by [12, 14]
from the perspective of exploratory programming.

6 Discussion
The following expands on the insights of the showcase of
the previous section and discusses their implications.

Modular and Incremental Development. IGC retains
the interactive and iterative nature of incremental program-
ming while offering a 2-dimensional visualization. By break-
ing down code into distinct nodes, each representing a spe-
cific functionality or code fragment, IGC allows for modu-
lar development. Developers can isolate and test individual
nodes in an isolated session before integrating them into a

larger session. Developers can also create markdown text for
explanations and tutorials. IGC can execute nodes indepen-
dently and observe their outputs in isolation, which covers
all the basic functionality of Jupyter’s cell-based execution.
The main limitation compared to Notebooks is that IGC

cannot yet create visual renderings of output. Another limi-
tation is that code of a node is only displayed if the node is
selected. In a Notebook all code cells are displayed simulta-
neously (although in sizeable Notebooks cell contents will
span multiple screens). A feature currently in development is
code projection to allow users to select one node and reveal
all connected logic existing in other code fragments based
on their dependencies.

Session Management. When a user (the reader) opens a
Jupyter Notebook written by another user (the author), they
are presented with a linear view of cells (the code narrative).
The convention, promoting reproducibility, is to execute the
cells in the order they are laid out. That is, if both the au-
thor and the reader follow this convention, then both users
should8 get the same results. However, this convention is not
automatically upheld and is not always followed. Perhaps
the author was only satisfied with the result after some ex-
perimentation, during which they executed cells in an order
diverging from the code narrative. But the execution order is
not reflected in the data format in which a Jupyter Notebook
is exported. On the contract, in IGC, the user imports ses-
sions alongside the code. Importing a project directly shows
the order in which execution was performed by the author.
Although this may be costly in terms of memory, users are
also able to export and import sessions such that even con-
figuration and output data can be shared (not just execution
edges). Most importantly, multiple sessions can be developed
and explored in IGC in parallel and the user is able to jump
back-and-forth between sessions and program states.
IGC is highly flexible in terms of the supported interac-

tions with node executions. Figure 7 is meant to demonstrate
an outlandish execution path that IGC can handle without
problem. This figure also reveals a difficulty with regards to
the visual layout of edges. To avoid overlap between edges,
a custom pathing algorithm was developed. However, realiz-
ing this goal in general is an NP-hard problem [6], and, for
some graphs, is even undecidable [18].

Code Visualization. The graph editor in IGC serves as a
tool for visualizing the structure of the code of a software
project. By representing code components as nodes and their
relationships as edges, developers gain a clear understanding
of the project’s structure. This visualization aids in identify-
ing dependencies and understanding the overall flow of the
application. The ability to see different types of nodes and
relationships, such as class structures, executions, and depen-
dencies, provides a complete view of the project, which can

8Although the Jupyter and Kernel versions possibly affect the outcome.



PAINT ’24, October 22, 2024, Pasadena, CA, USA Max Boksem and L. Thomas van Binsbergen

Figure 5. All code fragment nodes are executed visualization from the showcase. We also show the file navigator pane to
display the updated session configuration resulting from the execution. After each execution, the execution label of the
execution relationship increments. On the right side, the code editor displays the runtime data from the selected node (in this
case, the last (bottom) node).

help to manage complexity. A potential point of future work
is to integrate UML(-like) nodes and relations for building
architectural designs from which code can be automatically
generated, akin to development in a ‘low-code’ platform.

Scalability. A goal for IGC is to be able to handle large
software projects, so scalability is a key consideration for
its development. React was chosen as its virtual DOM and
re-renders only updated components, ensuring smooth per-
formance as the graph scales. ReactFlow can take advantage
of React to optimize rendering.

ReactFlow provides an infinite, pannable workspace to cre-
ate the graphs. This allows the user to create any size project,
as the workspace can always be extended. A limitation is
that to capture the entirety of a large project, the user must
zoom out, which will eventually make text hard to read and
elements difficult to see or distinguish. A possible solution
currently in development is to consolidate subgraphs into a
node by introducing a node type that can represent a (sub-
)graph. This feature would allow users to simplify graphs by
effectively introducing layers of abstraction. The sub-graph
can be defined in a separate file, corresponding to the com-
mon development practice in which files often represent an
individual component of a larger software project.

Zustand is used to record program state as it is lightweight,
minimizes overhead and maintains consistency. Node.js is

used for the back-end and is seen as highly scalable [25]
owing to its non-blocking, event-driven architecture.

7 Future Work
This paper marks a point in an on-going investigation into
both the user-facing UI elements and the underlying fea-
tures that can potentially unite the benefits of incremental
and exploratory programming with the needs of large-scale
software development. The showcase given in this paper
demonstrates the potential of our research, but thorough
empirical evaluation is required. The following paragraph
describes future research we intend to pursue. Later para-
graphs describe technical extensions we envision for IGC
to further achieve our goal, especially related to complexity
management, and general usability improvements.

Empirical Validation. Future research will be focused
on two main methods for empirical validation: evaluating
usability with user studies and executing case studies to
demonstrate the genericity and extensibility of the concep-
tual model underneath IGC. The goal of the usability study
is to discover the extent to which our prototype succeeds
in combining the benefits of incremental and exploratory
programming with managing the complexity of large-scale
software. In this study, a representative set of potential users
will interact with the prototype and share their experiences



Bridging Incremental Programming and Complex Software Development Environments PAINT ’24, October 22, 2024, Pasadena, CA, USA

Figure 6. An alternate execution path is created in a new session. This demonstrates the effects of a new input code fragment
node. The user can compare sessions by selecting different sessions in the session configuration pane located at the bottom of
the navigation pane.

through interviews or surveys in a combination of quantita-
tive and qualitative evaluation.

Another goal of our research has been to develop a concep-
tual model around a graph structure for storing and visualiz-
ing code that is extensible through the addition of new node
types and edge types. In this conceptual design, new node-
and edge-types are packaged with new views and controller
functions on top of the graph, instantiating the Model-View-
Controller (MVC) architectural pattern. To demonstrate the
extensibility and generality of our conceptual model, we
intend to describe a number of extensions in a modular fash-
ion and demonstrate their ability to (collectively) realize
features encountered in other novel programming environ-
ments or (Jupyter) Notebook extensions. Particular targets
for case studies are (UML-)diagrams of low-code platforms,
managing complexity with architectural patterns such as
MVC, data science pipelines in Link by MakinaRocks9, and
documentation management in PescaJ [19].

Importing Different IGC Files. The ability to import
different IGC files into a project or application is currently
under development. This feature will allow users to consoli-
date groups of code into components, enhancing modularity
and reusability. By enabling the integration of multiple IGC
files, developers can build more complex applications effi-
ciently, leveraging previously created components.
9https://link.makinarocks.ai/

Code Projection. There is currently an observability limi-
tation with having a graph structure. Only the node that is
selected will be displayed in the code editor. Code projection
is another feature under development that will allow users
to quickly see all connected code fragments to the one they
select. This connection could represent several views, such as
class-centric views, relationship views, etc. Currently, only
documentation projections are incorporated in IGC. This
means that selecting a code node will automatically display
the corresponding documentation (if it exists).

Source Control. Implementing source control in IGC is
a high priority. Integrating a versioning approach similar
to Variolite [13] would align well with the exploratory pro-
gramming philosophy of IGC, allowing for seamless tracking
and management of different code versions. Traditional text-
based diffing methods like the Myers Algorithm can be used
for node contents, with graph-diffing algorithms, such as
NodeGit [2], for the overarching graph structure.

Export and Import Functionality. To facilitate a smoother
transition for users, it is essential to implement functional-
ity that allows for exporting projects to REPL or text-based
environments and vice versa. This capability would enable
developers to move their work between different environ-
ments easily, helping them get accustomed to IGC without
disrupting their existing workflows.

https://link.makinarocks.ai/


PAINT ’24, October 22, 2024, Pasadena, CA, USA Max Boksem and L. Thomas van Binsbergen

Figure 7. A demonstration of a complex execution path. The
execution is switching between various code nodes.

Extensibility. A significant goal for IGC is to foster a
community-driven ecosystem where users can create and
share extensions and features. To achieve this, IGC should
support the development of custom nodes and relationships,
allowing users to represent various programming concepts
flexibly. Implementing an add-on system would empower
users to extend the environment’s functionality, making IGC
a versatile and adaptable tool for diverse programming needs.

Exploratory Programming Enhancements. Exploratory
programming is a major consideration in IGC. The sessions
functionality has enabled users to experiment with different
execution paths, however, this can be enhanced by giving a
better overview of all sessions. Expanding on sessions, they
are currently limited to starting from the initial execution
state every time a new session is created. An upcoming fea-
ture will be to create a new execution branch directly off
of a pre-existing session at any point of time. This will al-
low users to more easily manipulate and experiment with
different code fragments.

8 Related Work
This section compares IGC with related work.

Terminal-Based REPLs. Terminal-based REPLs offer a
linear, command-line interface where users input code line
by line, receive immediate feedback, and manage state se-
quentially. In contrast, IGC provides a graphical interface
with a visual node-based editor, allowing users to interact
with code more intuitively, manage multiple sessions, and
visualize complex code structures and relationships.

Model-Driven Development. The more abstraction that
can be done to resemble design patterns, the more this ap-
proach seems to imitate the goals of Model-Driven Devel-
opment (MDD). MDD is a software development approach
that focuses on creating and utilizing abstract models. MDD
prioritizes the design aspect of the software, using models as
simplified representations to guide code generation and other
development processes [21]. However, the consequences of
a model-first approach in MDD include challenges like re-
dundancy in managing multiple model representations, dif-
ficulties in formalizing a standard modeling language, and
increased complexity in managing model relationships [10].
IGC differentiates itself from MDD by offering a classical
coding-first approach through REPLs that can later be ab-
stracted to design patterns instead of the other way around.

Visual Programming Languages. Visual Programming
Languages (VPLs), like MDD, have many overlaps with the
aspirations of IGC. VPLs are about transforming visual rep-
resentations into program logic. One of the most relevant
subsets of VPLs is called Node Graph Architecture (NGA),
which is about representing code statements into nodes of a
graph. This architecture is at the extreme end of the visual-
ization and abstraction of what IGC is trying to accomplish.
IGC differs as it is meant to be a hybrid environment between
classical text development. However, one can not understate
the relevance of VPLs.

PescaJ. PescaJ [19], presented at PAINT in 2023, is a pro-
jectional editor designed for Java that addresses the challenge
of scattered code and documentation through aggregated
views. PescaJ offers a departure from conventional text-based
editing by allowing developers to create customizable, over-
lapping views that consolidate both code and documentation
fragments, which are often dispersed across different files
and classes in traditional IDEs. Once a code fragment or
documentation is selected, related code or documentation
is displayed next to it. Currently, IGC tries to incorporate
code projections by displaying corresponding documenta-
tion nodes. Currently, a goal is to expand this feature to pro-
vide similar visuals, specifically regarding code fragments
throughout the graph.

Alternative Code Structures. Other works have investi-
gated alternative ways of structuring and visualizing code
rather than relying on a file-system (in an IDE) or a linear
sequence of code cells (in a Notebook). Code Bubbles affords
the visual organization of code fragments (as ‘code bubbles’)



Bridging Incremental Programming and Complex Software Development Environments PAINT ’24, October 22, 2024, Pasadena, CA, USA

across the working pane and enables grouping bubbles in var-
ious (visual) ways. The evaluation shows that the approach
has the potential to help users with a wide range of develop-
ment tasks, including reading, editing, and navigating source
code, as well as supporting multitasking and breakpoint de-
bugging [4]. In particular, users have been shown to spend
significantly less time navigating when performing tasks
related to understanding code [5].
The Link environment by MakinaRocks10 adds a visual

display to Jupyter Notebooks showing a graph representa-
tion of the notebook’s code cells. The code cells are shown
as pipeline components (nodes) and are connected via de-
pendencies (edges). Users can click on a node to request
execution of the code cell and the code cells it depends on (in
the order respecting the dependencies). The visual pipeline
helps users track and manage the evolution of their code,
but alternative execution paths cannot be simultaneously
explored.

Harden et al. provide an investigation into the design and
evaluation of the potential of Notebooks with a 2D cell lay-
out [11]. The 2D layout affords non-linear code narratives
and admits a form of branching not supported by conven-
tional Notebooks. Their user studies reveal that users in-
deed take advantage of the 2D structure and that the layout
promotes exploratory programming. This demonstrates the
ability to branch analyses and to easily compare results.

Observable. The Observable Notebook is an IPE compu-
tational Notebook for creating and sharing live, reactive data
visualizations and analyses. Unlike traditional Notebooks,
Observable uses a reactive programming model, meaning
that each cell in the Notebook automatically updates when-
ever its dependencies change. This real-time reactivity is
achieved through a system where cells can refer to each
other by name, and any updates in one cell propagate in-
stantly to others that depend on it. Although an interesting
feature, IGC does not incorporate this reactive model as
the main extension of IPEs that IGC hopes to accomplish
is complexity management. While the reactive model could
be beneficial to prevent micromanaging of sessions, it intro-
duces many considerations that must be addressed such as
cyclic execution.

9 Conclusion
This paper has described a novel approach for building pro-
gramming environments based on an internal graph struc-
ture to represent code fragments and various types of re-
lations between code fragments (e.g., structural relations,
execution order, and dependencies). The IGC prototype pre-
sented in this paper is part of a larger research effort inves-
tigating programming environments that attempt to bring
together the distinctive features of REPLs, Computational

10https://link.makinarocks.ai/

Notebooks, and Integrated Development Environments such
as incremental programming, exploratory programming and
managing complex source code. This way, different program-
ming styles and projects can be supported within the same
programming environment.

IGC improves complexity management through its visual-
ization of code fragments and their relationships. The visual
organization of code not only improves readability but also
allows for effective handling of dependencies and project
scalability, which is often a challenge in REPLs and Jupyter
Notebooks. The modular nature of IGC supports incremen-
tal development, enabling developers to isolate, test, and
integrate code fragments with little effort.
In a showcase, we demonstrated that IGC can support

Notebook-style programming with additional features for
exploratory programming. Developers can manipulate ex-
ecution paths to explore different scenarios and compare
outputs easily. Immediate feedback is provided which is key
to understanding code behavior and causality at develop-
ment time. The added flexibility improves experimentation
compared to conventional Jupyter Notebooks.

Although the initial experiments with IGC are promising,
demonstrating the full strength of the suggested approach
requires adding new features and the execution of a number
of case studies as future work. In particular, we aim to add a
node type for representing sub-graphs, further enhancing
the ability to manage complex projects. We aim to execute
a case study involving a large software project that imple-
ments a Model-View-Controller (MVC) architecture in which
the source code is visually organized in our environment
according to the MVC distinction.

References
[1] Mary Beth Kery and Brad A. Myers. 2017. Exploring exploratory pro-

gramming. In 2017 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). 25–29. https://doi.org/10.1109/VLHCC.
2017.8103446 ISSN: 1943-6106.

[2] Marcel Borowski, Johannes Zagermann, Clemens N. Klokmose, Harald
Reiterer, and Roman Rädle. 2020. Exploring the Benefits and Barriers
of Using Computational Notebooks for Collaborative Programming
Assignments. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education (SIGCSE ’20). Association for Computing
Machinery, New York, NY, USA, 468–474. https://doi.org/10.1145/
3328778.3366887

[3] Erwan Bousse, Dorian Leroy, Benoit Combemale, Manuel Wimmer,
and Benoit Baudry. 2018. Omniscient debugging for executable DSLs.
Journal of Systems and Software 137 (March 2018), 261–288. https:
//doi.org/10.1016/j.jss.2017.11.025

[4] Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri,
WilliamCheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,
and Joseph J. LaViola. 2010. Code bubbles: rethinking the user interface
paradigm of integrated development environments. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering -
Volume 1 (ICSE ’10). Association for Computing Machinery, New York,
NY, USA, 455–464. https://doi.org/10.1145/1806799.1806866

[5] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri,
William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adepu-
tra, and Joseph J. LaViola. 2010. Code bubbles: a working set-based

https://link.makinarocks.ai/
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1145/3328778.3366887
https://doi.org/10.1145/3328778.3366887
https://doi.org/10.1016/j.jss.2017.11.025
https://doi.org/10.1016/j.jss.2017.11.025
https://doi.org/10.1145/1806799.1806866


PAINT ’24, October 22, 2024, Pasadena, CA, USA Max Boksem and L. Thomas van Binsbergen

interface for code understanding and maintenance. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’10). Association for Computing Machinery, New York, NY, USA,
2503–2512. https://doi.org/10.1145/1753326.1753706

[6] Sergio Cabello and Bojan Mohar. 2013. Adding One Edge to Planar
Graphs Makes Crossing Number and 1-Planarity Hard. SIAM J. Com-
put. 42, 5 (2013), 1803–1829. https://doi.org/10.1137/120872310

[7] Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma,
and Titus Barik. 2020. What’s Wrong with Computational Notebooks?
Pain Points, Needs, and Design Opportunities. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems (CHI
’20). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3313831.3376729

[8] Boris Cherny. 2019. Programming TypeScript: Making Your JavaScript
Applications Scale. "O’Reilly Media, Inc.". ISBN: 978-1-4920-3762-0.

[9] Damian Frolich and L. Thomas van Binsbergen. 2021. A Generic Back-
End for Exploratory Programming. In Trends in Functional Program-
ming, Viktória Zsók and John Hughes (Eds.). Springer International
Publishing, Cham, 24–43. https://doi.org/10.1007/978-3-030-83978-
9_2

[10] B. Hailpern and P. Tarr. 2006. Model-driven development: The good,
the bad, and the ugly. IBM Systems Journal 45, 3 (2006), 451–461.
https://doi.org/10.1147/sj.453.0451 Conference Name: IBM Systems
Journal.

[11] Jesse Harden, Elizabeth Christman, Nurit Kirshenbaum, John Wen-
skovitch, Jason Leigh, and Chris North. 2022. Exploring Organization
of Computational Notebook Cells in 2D Space. In 2022 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). 1–6.
https://doi.org/10.1109/VL/HCC53370.2022.9833128 ISSN: 1943-6106.

[12] Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and
Robert DeLine. 2019. Managing Messes in Computational Notebooks.
In Proceedings of the 2019 CHI Conference on Human Factors in Com-
puting Systems (CHI ’19). Association for Computing Machinery, New
York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300500

[13] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Sup-
porting Exploratory Programming by Data Scientists. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems
(CHI ’17). Association for Computing Machinery, New York, NY, USA,
1265–1276. https://doi.org/10.1145/3025453.3025626

[14] Mary Beth Kery and Brad A. Myers. 2018. Interactions for Untangling
Messy History in a Computational Notebook. In 2018 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). 147–
155. https://doi.org/10.1109/VLHCC.2018.8506576 ISSN: 1943-6106.

[15] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John,
and Brad A. Myers. 2018. The Story in the Notebook: Exploratory
Data Science using a Literate Programming Tool. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems (CHI
’18). Association for Computing Machinery, New York, NY, USA, 1–11.
https://doi.org/10.1145/3173574.3173748

[16] Thomas Kluyver, Benjamin Ragan-Kelley, P&#233, Fernando Rez, Brian
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jes-
sica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Dami&#225

Avila, n, Safia Abdalla, Carol Willing, and Jupyter Development Team.
2016. Jupyter Notebooks – a publishing format for reproducible
computational workflows. In Positioning and Power in Academic
Publishing: Players, Agents and Agendas. IOS Press, 87–90. https:
//doi.org/10.3233/978-1-61499-649-1-87

[17] D. E. Knuth. 1984. Literate Programming. Comput. J. 27, 2 (Jan. 1984),
97–111. https://doi.org/10.1093/comjnl/27.2.97

[18] O. Levin. 2018. Discrete Mathematics: An Open Introduction. Ama-
zon Digital Services LLC - Kdp. https://books.google.nl/books?id=
YTAWwQEACAAJ ISBN: 978-1-79290-169-0.

[19] José Lopes and André Santos. 2023. PescaJ: A Projectional Editor
for Java Featuring Scattered Code Aggregation. In Proceedings of the
2nd ACM SIGPLAN International Workshop on Programming Abstrac-
tions and Interactive Notations, Tools, and Environments (PAINT 2023).
Association for Computing Machinery, New York, NY, USA, 44–50.
https://doi.org/10.1145/3623504.3623571

[20] Kurt Nørmark. 2009. Systematic Unit Testing in a Read-eval-print
Loop. (Oct. 2009). https://doi.org/10.3217/jucs-016-02-0296

[21] Oscar Pastor, Sergio España, José Ignacio Panach, and Nathalie Aquino.
2008. Model-Driven Development. Informatik-Spektrum 31, 5 (Oct.
2008), 394–407. https://doi.org/10.1007/s00287-008-0275-8

[22] Jeffrey M. Perkel. 2018. Why Jupyter is data scientists’ computational
notebook of choice. Nature 563, 7729 (Oct. 2018), 145–146. https:
//doi.org/10.1038/d41586-018-07196-1

[23] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias
Pape. 2018. Exploratory and Live, Programming and Coding. The Art,
Science, and Engineering of Programming 3, 1 (July 2018), 1:1–1:33.
https://doi.org/10.22152/programming-journal.org/2019/3/1 Publisher:
AOSA, Inc..

[24] Yahya Tashtoush, Noor Abu-El-Rub, Omar Darwish, Shorouq Al-Eidi,
Dirar Darweesh, and Ola Karajeh. 2023. A Notional Understanding of
the Relationship between Code Readability and Software Complexity.
Information 14, 2 (Feb. 2023), 81. https://doi.org/10.3390/info14020081
Number: 2 Publisher: Multidisciplinary Digital Publishing Institute.

[25] Pedro Teixeira. 2012. Professional Node. js: Building Javascript based
scalable software. John Wiley & Sons. ISBN: 978-1118185469.

[26] L. Thomas van Binsbergen, Damian Frölich, Mauricio Verano Merino,
Joey Lai, Pierre Jeanjean, Tijs van der Storm, Benoit Combemale, and
Olivier Barais. 2022. A Language-Parametric Approach to Exploratory
Programming Environments. In Proceedings of the 15th ACM SIGPLAN
International Conference on Software Language Engineering (SLE 2022).
Association for Computing Machinery, New York, NY, USA, 175–188.
https://doi.org/10.1145/3567512.3567527

[27] L. Thomas van Binsbergen, Mauricio Verano Merino, Pierre Jeanjean,
Tijs van der Storm, Benoit Combemale, and Olivier Barais. 2020. A
principled approach to REPL interpreters. In Proceedings of the 2020
ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward! 2020). As-
sociation for Computing Machinery, New York, NY, USA, 84–100.
https://doi.org/10.1145/3426428.3426917

https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1137/120872310
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1007/978-3-030-83978-9_2
https://doi.org/10.1007/978-3-030-83978-9_2
https://doi.org/10.1147/sj.453.0451
https://doi.org/10.1109/VL/HCC53370.2022.9833128
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1109/VLHCC.2018.8506576
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1093/comjnl/27.2.97
https://books.google.nl/books?id=YTAWwQEACAAJ
https://books.google.nl/books?id=YTAWwQEACAAJ
https://doi.org/10.1145/3623504.3623571
https://doi.org/10.3217/jucs-016-02-0296
https://doi.org/10.1007/s00287-008-0275-8
https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.3390/info14020081
https://doi.org/10.1145/3567512.3567527
https://doi.org/10.1145/3426428.3426917

	Abstract
	1 Introduction
	2 Background
	2.1 REPLs and Computational Notebooks
	2.2 Exploratory Programming
	2.3 Classical Text-based Software Development

	3 Design
	3.1 Requirements
	3.2 Features

	4 Prototype
	4.1 React Web Application (Front End)
	4.2 Node.js API (Back End)

	5 Showcase
	6 Discussion
	7 Future Work
	8 Related Work
	9 Conclusion
	References

