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Abstract
High-level, declarative specification languages are typically
highly modular: specifications are comprised of fragments
that are themselves meaningful. As such, complex specifi-
cations are built from incrementally composed fragments.
In a cooperative specification, different fragments are con-
tributed by different agents, usually capturing requirements
on different facets of the system. For example, legal regu-
lators and system administrators cooperate to specify the
behaviour of a data exchange system. In practice, cooperative
specification is difficult, as different contributors’ require-
ments are difficult to elicit, express, and compose.

In this work, we characterise cooperative specification and
adopt an approach that leverages language features specifi-
cally introduced for controlling specification composition.
In our approach, specifications model the domain as usual,
but also specify how specifications may change. For exam-
ple, a legal regulator defines ‘consent to process data’ and
specifies which agents may consent, and which relaxations
of the requirement are permitted. We propose and demon-
strate generic language extensions that improve composition
control in three case study languages: Datalog, Alloy, and
eFLINT. We reflect on how these extensions improve com-
position control, and afford new data exchange scenarios.
Finally, we relate our contributions to existing works, and
to the greater vision of multi-agent data exchange to the
satisfaction of their shared, complex, dynamic requirements.

CCS Concepts: • Software and its engineering → Collab-
oration in software development; • Social and professional
topics → Computing / technology policy; • Theory of com-
putation→ Program specifications.

Keywords: Specification Languages, Program Composition,
Program Refinement, Data Exchange, Meta-Programming
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1 Introduction
Data exchange systems are large distributed systems, con-
cerned with the controlled exchange and processing of data
across organisational boundaries [26, 27, 38]. Each system is
driven by the participation of autonomous agents. These in-
clude organisations involved in the data exchange, or cyber-
physical entities driving system behaviour at runtime. When
these systems behave counter to agents’ requirements or ex-
pectations, agents may be harmed. For example, if the medi-
cal records of patient Bob are unintentionally broadcasted to
international data processors, (the privacy of) Bob is harmed.
It is imperative that these systems be carefully controlled to
minimise harm. At the very least, this is a fundamental legal
requirement in the European Union, for example, as per the
EU General Data Protection Regulation (GDPR) [11].
In this work, we take a typical approach to controlling

complex systems in general, and data exchange systems in
particular; (the desirable behaviour of) the system is specified
in some formal language, producing an artefact called a spec-
ification. This approach clarifies a way for agents to agree on
their requirements on the system. First, the agents agree on
the specification language. Then it suffices for them to agree
which specification captures each of their requirements. A
sufficiently precise and expressive language affords robust
and predictable reasoning about specifications. Finally, the
agents reason about the real system itself via its specifica-
tion, relying on the enforcement of the specification, which
maintains the compliance of the system to its specification,
for example, by automated enforcer agents.
The focus of this work is not enforcement, whose the-

ory and practice is explored in other works. For example,
in some cases, non-compliance is prevented (“ex-ante en-
forcement”), e.g., employing access control [15, 31], model
checking [7], or by generating implementations from specifi-
cations. In other cases, enforcement is instead continuously
or periodically monitored, detected, and corrected (“ex-post
enforcement”), e.g., employing usage control [19, 29, 30],
runtime verification [3], or process mining [39]. The focus of
this work is also not the ways specifications model physical
systems or conceptual domains of discourse. For example,
many specification languages differ in their fundamentals,

https://orcid.org/0000-0002-9124-9092
https://orcid.org/0000-0001-8113-2221
https://doi.org/10.1145/3687997.3695635
https://doi.org/10.1145/3687997.3695635
https://doi.org/10.1145/3687997.3695635


SLE ’24, October 20–21, 2024, Pasadena, CA, USA Christopher A. Esterhuyse and L. Thomas van Binsbergen

for example, providing different core ontologies from which
their specifications are built. For example, both eFLINT [37]
and Symboleo [32] propose an essentially relational world-
view, but only Symboleo builds specifications using Contract
as a primitive concept, while eFLINT instead provides Fact
and Event as primitives, which can be instantiated and com-
posed to model contracts. Moreover, multiple semantics may
be associated with the same syntax, each with different rea-
soning capabilities and computational complexities, as is the
case for the various profiles of OWL2 [41].
This work focuses on the features of specification lan-

guages supporting cooperative specification, a process by
which cooperating agents systematically develop a shared
specification that captures all their requirements. Precisely,
the specification is assembled incrementally as agents con-
tribute new parts. The challenges typical to developing spec-
ifications are exacerbated by the characteristics of data ex-
change systems in particular: these systems are subject to
complex and changing requirements, as a consequence of
the large number and variety in the agents, reflecting the
number of participating organisations, and the complexities
of their roles in the exchange of data. For example, legal
experts formalise institutional entities and their relation-
ships, process orchestrators coordinate the processing and
communication of automated workers, while data providers
negotiate, refine, and update the conditions on the use of
data. For these agents to develop a shared specification, at
some point, in some form, the agents must reason about,
communicate about, and control each others’ contributions
to the specification. How are conflicts between requirements
identified and resolved? How do agents determine which
properties of the specification may be changed?

Motivating Example. Three agents cooperate to develop
a shared eFLINT specification of their data exchange system
that captures all their requirements. “Administrator” Amy
begins by formalising the notion of processing as an agent-
data relation. The relation has no elements, but Amy intends
for this to be changed by subsequent contributions:

Fact processing Identified by agent * data.

“Barrister” Bob contributes the notion of consent (to the pro-
cessing of data) as an agent-consent relation:

Fact consent Identified by agent * processing.

“Data-consumer” Dan contributes an assertion of the mem-
bership of particular processing and consent elements:

Extend Fact processing Derived from

processing("Dan", "Amy's XRays").

Extend Fact consent Derived from

consent("Amy", processing("Dan", "Amy's XRays")).

Both extensions of Dan’s contribution are treated similarly
by the semantics of the language. However, the latter ex-
tension violates Bob’s meta-level requirement that consent

somehow only originates at the agent in question; Dan must
not grant Amy’s consent! The specification fails to suffi-
ciently capture these kinds of meta-level requirements.
Our approach is to leverage specification languages for

(homogeneous)meta-specification: the specification captures
domain concepts as usual, but also, it captures agents’ re-
quirements of how the specification is permitted to change.
We are inspired, in part, by cooperative programming, where
it is commonplace for programs to constrain their extensions;
as a simple example, Java class members marked private
capture meta-level requirements and harden the program
against bugs. Prior contributors experience this as control
over the specification. Future contributors experience this as
insight into which contributions are considered permissible.
The homogeneity of this approach enables the robust formal-
isation of requirements inter-relating domain concepts (like
data) to meta-level concepts (like agents and specification-
contributor). Subsequently, we evaluate existing languages
through this lens, and propose language extensions that im-
prove their suitability to cooperative specification.

Precisely, in this article, we contribute the following:
1. a definition of composition control in a specification

language, affording reasoning about its suitability to
cooperative specification (Section 2),

2. the definition and evaluation of various composition
control mechanisms in the Datalog language, which is
chosen for its simplicity (Section 3), and

3. the evaluation of the suitability of realistic specifica-
tion languages Alloy and eFLINT to cooperative speci-
fication, before and after language extensions adapted
from those shown in Section 3 (Section 4).

Throughout the main sections, we interleave background
material and discussion of our findings where it is needed.
The remaining sections discuss the relation between our
contributions and existingworks like programming language
features and abstract argumentation frameworks (Section 5),
reflect on our findings of our contributions and lay out the
most immediately promising future works (Section 6), before
we conclude with a summary (Section 7).

2 Definitions up to Composition Control
This section introduces our fundamental concepts and termi-
nology concerning 1. specification languages, 2. the coopera-
tive specification process, and 3. composition control, which
makes a language useful for cooperative specification.

2.1 Language Schema
We introduce language schemas as abstractions over a wide
range of specification languages. In summary, specifications
are composable, have determined semantic meanings.
Let a language schema be a quintuple ⟨P,M, JK, ◦,✓⟩,

whose elements satisfy the following properties. We accom-
pany each with a description of the underlying intuition:
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• P are the programs, a formal language, i.e., a set de-
fined inductively by formal grammar rules. Agents
write and communicate programs.

• M are the models, another formal language. Agents
conceptualise their domain via models.

• JK : P → M maps programs to models. Conceptually,
this attributes each syntactic program its semantic
model. We style the application of JK to 𝑝 as J𝑝K.

• ◦ : P → P → P composes syntactic programs.
• ✓ : P → B recognises the subset of valid programs.
Intuitively, this characterises a crucial program prop-
erty like “sensible” or “internally consistent”.

In the sequel, we use model to refer specifically to the
function JK and its codomain, M. We use semantics to in-
clude any reasoning about programs. We distinguish static
from dynamic semantics: only dynamic semantics is defined
in terms of a program’s model. For example, type-checking
a program is a matter of static semantics, while testing the
model-equivalence of programs is a matter of dynamic se-
mantics. We use this distinction later to roughly categorise
language schemas. For example, Section 3.2.4 gives a static
definition of valid; hence, the validity of these programs can
be checked without the cost of computing their models.

Definition 2.1 captures the concept of refinement, central
to our approach (and we henceforth use ≜ for definitions):

Definition 2.1 (𝑝1 refined by 𝑝2). 𝑝1 ⊲ 𝑝2 ≜
✓(𝑝1) ∧ ✓(𝑝1 ◦ 𝑝2) ∧ J𝑝1K = J𝑝1 ◦ 𝑝2K

In the context of some language schema, 𝑝1 ⊲ 𝑝2 asserts
that program 𝑝1 is refined by 𝑝2 (conversely, 𝑝2 refines 𝑝1)
such that 𝑝1 can be replaced by the extended 𝑝1 ◦ 𝑝2 whilst
preserving the model and validity of 𝑝1. Refinements are of
interest when the extension 𝑝2 restricts future contributions,
i.e., serves as a mechanism to control composition.

Demonstration. We demonstrate the use of the language
schema with a simple, synthetic example definition of SN ≜
⟨P,M, JK, ◦,✓⟩. Let the programs (P) be the powerset of
natural numbers (2N), i.e., each “program” 𝑝 ∈ P is some set
of numbers 𝑝 ⊆ N. Let the models (M) be natural numbers,
and let J𝑝K give the maximum in 𝑝 if it exists, or 0 otherwise.
Let program composition (◦) be set-union (∪). And finally,
let each ✓(𝑝) check that no number in 𝑝 is divisible by
another in 𝑝 . Although artificial, SN demonstrates how we
define and reason about language schemas. For example, in
the case of {5, 6}◦𝑝 , validity is preserved by 𝑝 ≜ {7}, but not
by 𝑝 ≜ {3}. Furthermore, we can observe that {5, 6} ⊲ {4}.

2.2 Cooperative Specification
We introduce cooperative specification: a sequence of agents
⟨𝑎1, 𝑎2, 𝑎3, ..., 𝑎𝑛⟩ take turns to develop a shared specification.
First, the agents agree on the specification language, which

we represent as language schema ⟨P,M, JK, ◦,✓⟩. Next, they
define program (((𝑝1 ◦ 𝑝2) ◦ 𝑝3) ◦ ...) ◦ 𝑝𝑛 , where each 𝑝𝑖 is

contributed by 𝑎𝑖 . Note that agents may contribute repeat-
edly, i.e., no 𝑎𝑖 and 𝑎 𝑗 are necessarily distinct. Often, but not
necessarily, each 𝑎𝑖 has knowledge of (((𝑝1◦𝑝2)◦𝑝3)◦ ...)◦𝑝𝑖
at the time 𝑝𝑖 is contributed. Equivalently, in turns, agents
replace program 𝑝 with some 𝑝 ◦ 𝑝′. In either case, the pro-
cess is constrained by the a priori agreement between agents
that composition must always preserve program validity.
This can be understood as internalising a minimal valuation
of programs, capturing a fundamental Deontic modality: a
given contribution is permitted iff it preserves validity.

Demonstration. Amy and Bob agree to cooperate in the
definition of a shared specification. They agree to use SN as
their specification language. Amy contributes program {5, 6},
then Bob contributes {13}, and finally, Amy contributes {11}.
Consequently, Bob and Amy agree on the shared program
𝑝 = {5, 6, 11, 13}, its semantic meaning J𝑝K = 13, and that
they cooperated successfully, i.e., that ✓(𝑝) holds.

2.3 Composition Control
We characterise the composition control of a given language
schema ⟨P,M, JK, ◦,✓⟩ by reasoning about its control triples,
which we define as the set containing each ⟨𝑝1, 𝑝2, 𝑝3⟩ where
(𝑝1 ⊲ 𝑝2) ∧ ✓(𝑝1 ◦ 𝑝3) ∧ ¬✓(𝑝1 ◦ 𝑝2 ◦ 𝑝3). In other words,
replacing 𝑝1 with 𝑝1 ◦ 𝑝2 preserves its model and validity,
but removes the validity of the composition with 𝑝3.

Intuitively, each control triple ⟨𝑝1, 𝑝2, 𝑝3⟩ identifies an op-
portunity for the agent contributing 𝑝1 to intervene in its
composition with 𝑝3, by instead contributing 𝑝1 ◦ 𝑝2. This
formulation separates the concerns of 𝑝1 and 𝑝2: only 𝑝1 di-
rectly concerns the semantic model, and only 𝑝2 constrains
the validity of the composition with 𝑝3.

Demonstration. The prior language schema SN exhibits
non-trivial composition control, i.e., it has some control
triples. For example, Amy’s first contribution exploits con-
trol triple ⟨{6}, {5}, {10}⟩: Amy’s inclusion of 5 did not alter
the model (6) but it did constrain Bob’s subsequent contri-
bution. (Perhaps the number 10 is somehow undesirable?)
Thus, Amy and Bob cooperatively modelled the semantic
concept (6) and characterised permitted changes specifica-
tion, and so, an undesirable change was avoided (∪{10}).

3 Composition Control Features in Datalog
This section presents a set of generic, composition control
language features. Throughout this section, we use Datalog
as the cooperative specification language. We select Datalog
in particular, as it strikes a desirable compromise between
complexity (affording varied and meaningful specifications)
and simplicity (affording succinct definitions and examples).

Grammar Notation. In the remainder of this article, we
define several formal languages inductively via grammar
rules. Syntactic categories are defined by non-terminal sym-
bols, denoted in italics (like rule). We omit the definitions
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of common and trivial syntactic categories and grey their
symbols (like letter). Concrete, terminal tokens are mono-
spaced and brightly coloured (like statement and :-). Each
B defines a grammar rule, rewriting from left to right, with
alternatives separated by |. We use 𝑥? to denote an optional
𝑥 element and 𝜖 to mark the absence of tokens. We use 𝑥∗
to denote 𝑥-lists (i.e., let 𝑥∗ ≜ 𝜖 | 𝑥 𝑥∗). Finally, 𝑥𝑦+ and
𝑥𝑦∗ denote lists with at least 1 and 0 elements, respectively
(i.e., let 𝑥𝑦+ ≜ 𝑥 (𝑦 𝑥)∗ and 𝑥𝑦∗ ≜ 𝑥𝑦+?). For example, given
(𝐷 B- ? digit+), 𝐷 denotes signed integers like −23.

3.1 The Datalog Language
Datalog has been discussed in the literature for decades, in-
cluding a rich exploration of various language extensions
such as weak negation and composite objects; [6] overviews
the Datalog language variants, but the original Datalog lan-
guage is sufficient for our purposes. We expect many readers
to be familiar with Datalog to some extent, but we give our
own semi-formal account to be clear. Firstly, the following
grammar gives the syntax of Datalog programs:

program B rule.∗ rule B head (:- body)?
head B atom atom B predicate (( arg,∗ ))?
body B atom,∗ arg B variable | constant

predicate B constant variable B uppercase letter∗

constant B lowercase letter∗

For example, the following is a 3-rule program:
bad(A) :- no-access(A, D), access(A, D).

no-access(amy, data1). access(amy, data1).

Datalog affords a straightforward operational semantics:
rules populate an initially-empty set of truths ⊆ atom from
existing truths to a fixed point. Desirably, Datalog programs
also afford a straightforward logical interpretations: rules are
implications, bodies are conjunctions of atoms, and atoms
are first-order, atomic, Boolean logical variables. For exam-
ple, the example program above has the model with truths
{ no-access(amy, data1) , access(amy, data1) , bad(amy) }.
Eachmodel determines the outcomes of all conceivable queries
by containing all but only those atoms identified as true by
the model. For example, bad(amy) is true, while bad(bob) and
eats(bob, baked, potatoes, 500) are each false.
Despite its simplicity, Datalog has seen significant appli-

cation in practice, as it enables complex reasoning.

3.2 Composition Control in Datalog Variants
3.2.1 Datalog with Trivial Validity. We define language
schema S𝐷 ≜ ⟨P,M, JK, ◦,✓⟩ to capture Datalog as straight-
forwardly as possible, as follows:

• P ≜ program, the syntactic category of Datalog pro-
grams, i.e., rule sequences.

• M is the powerset of Datalog atoms, i.e., atom sets.
• JK captures the typical Datalog semantics.

• ◦ is given by the usual, syntactic program concatena-
tion, such that the composite program 𝑝1 ◦ 𝑝2 has the
rules of the union of the rules in programs 𝑝1 and 𝑝2.

• ✓ is a trivial, constant function: each program is valid.
A hallmark of the semantics of many Datalog variants

in the literature, is that the semantics disregards the order
of program rules. Thus, in S𝐷 , ◦ associates and commutes
over JK. This eases the burden on agents cooperating to define
composite 𝑝1 ◦ 𝑝2, as the semantics imposes no ordering
on their contributions. However, S𝐷 affords no meaningful
composition control, as all programs are valid.

Demonstration. Agents Amy and Bob cooperate to define
composite 𝑝1 ◦ 𝑝2. By defining 𝑝1, Amy constrains J𝑝1 ◦ 𝑝2K,
but not 𝑝2. For example, if 𝑝1 ≜ no-access(amy, data1),
Amy asserts that no-access(amy, data1) ∈ J𝑝1 ◦ 𝑝2K. How-
ever, Amy cannot control, and Bob cannot infer, which def-
initions of 𝑝2 Amy considers permissible. Did Amy omit
no-access(bob, data1) intentionally? Is Amy leaving this
addition to Bob, or does Amy not permit its truth? Gener-
ally, S𝐷 programs do not specify how they may be changed.
Amy experiences this as a lack of control over Bob. Bob
experiences this as a lack of insight into what Amy permits.

3.2.2 Simple Dynamic Validity. We define S′
𝐷
identi-

cally to the prior S𝐷 , except defining validity as follows:
✓(𝑝) ≜ error ∉ J𝑝K. This attributes special significance to
the atom error, which is otherwise entirely ordinary.
S′
𝐷
has many control triples. Consider ⟨𝑝1, 𝑝2, 𝑝3⟩, where:

𝑝1 ≜ knows(amy, bob). 𝑝2 ≜ error() :- knows(X, dan).

𝑝3 ≜ knows(amy, dan).

Replacing 𝑝1 with 𝑝1 ◦𝑝2 preserves its validity and its model:
{knows(amy, bob)}. However, compositions including both
𝑝2 and 𝑝3 are invalid. Intuitively, 𝑝2 translates the presence of
the undesirable truth no-access(amy, data1) to invalidity.

Extrapolating from this example, S′
𝐷
affords a straightfor-

ward means of composition control: agents internalise imper-
missibility of the truth of 𝑎 as a rule invalidating the program
on the condition that 𝑎 is true. We call this a dynamic form of
composition control, as a program’s (in)validity is entangled
with its model. Thus, S′

𝐷
treats Datalog as a (simple) ho-

mogeneous meta-programming language: Datalog constructs
specify the use of Datalog constructs. On the one hand, this
approach comes at the cost of complexity; if computing a pro-
gram’s model is costly, determining its validity is costly also.
On the other hand, this approach unifies reasoning about
domain concepts and specification concepts, ergonomically
affording significant expressive power.

The readermay recognise (error :-...) rules asmimicking
the constraint rules common to various logic programming
languages and essential in answer-set programming.

Demonstration. Once again, Amy and Bob cooperate to
define 𝑝1 ◦ 𝑝2. Amy defines 𝑝1 ≜ no-access(amy, data1).
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error :- no-access(bob, data1), and leaves 𝑝2 for Bob to
define. By their shared goal of preserving validity, Bob’s def-
inition of 𝑝2 is constrained. Amy experiences this as control
over Bob. Bob experiences this as insight into what Amy
permits. This time, Amy’s contribution makes explicit that
atom no-access(bob, data1) is intentionally false. However,
the power imbalances between agents remain external to the
specification. For example, 𝑝2 prohibits the contribution of
rule no-access(bob, data1) by anyone, and not just Bob.

3.2.3 Dynamic Validity Reflecting Contributors. We
define S′′

𝐷
as a variant of the prior S′

𝐷
by introducing a static

restriction on the contributions each agent can make to the
program. Specifically, we force each contribution to reflect
the identity of its contributor. Thus, for example, Amy can
constrain Bob’s contributions by constraining truths that
reflect Bob’s identity. This conflates two notions of “agent”
that are usually separated: agents are meta-level entities
contributing and using specifications, but agents are also
represented in specifications as domain-level concepts.
Precisely, for each rule 𝑟 in each program 𝑝 whose head

has atom 𝑎 as the first parameter, the contributor of 𝑝 is iden-
tified by 𝑎, which is variable-free. For example, only Amy
can contribute program no-access(amy, data1), while the
contributor of program error() :- no-access(bob, data1)

is unconstrained, because error has no first parameter. This
partitions rules with parameterised heads over agents; each
such rule identifies the agent able to contribute it. However,
note that it presents no real loss of expressiveness. For exam-
ple, with rule access(amy, bob, data1), Amy can still assert
that Bob accesses data1, but crucially, not without identifying
Amy as the contributor. Finally, observe that some programs
are necessarily composed from the contributions of several
agents. For example, Amy and Dan must cooperate to create
program welcome(amy, bob). welcome(dan, amy).

Demonstration. Amy and Bob cooperate in developing a
specification. Amy contributes no-access(amy, amy, data1).

error() :- no-access(X, X, data1). This prevents only Bob
from restricting Bob’s access to data1. This demonstrates a
powerful pattern: programs meaningfully internalise agents
(like Amy and Bob), their relationships to each other, and
their relationships to domain concepts (like data1).

3.2.4 Static Validity via Type-Sealing. Finally, we define
S′′′
𝐷

as a variant ofS′′
𝐷
which has a static definition of validity,

by introducing a minimal syntactic extension to Datalog.
Precisely, let P ≜ program′, defined as follows:

program′ B phrase.∗ agent B constant

phrase B rule rule | seal predicate except by agent,+

We call 𝑞 and 𝑐 the type and contributor, respectively, of
each rule matching (𝑞(𝑐, ...)...). As in S′′

𝐷
, we require that

rules always reflect the identities of the contributors to the
shared specification. Validity is defined statically; program 𝑝

is invalid iff it contains seal 𝑞 except by 𝑐1, 𝑐2, ..., 𝑐𝑛 and a
rule of type𝑞with contributor 𝑐 ∉ {𝑐1, 𝑐2, ..., 𝑐𝑛}. For example,
no-access(amy,bob,data1). seal no-access except by amy.

no-access(bob,dan,data1) is invalid, as witnessed by the
last rule breaking the seal on no-access. Note that the first
rule does not break (“preserves”) the seal, as its contributor
is Amy, who is excepted from the seal on no-access.
For each control triple ⟨𝑝1, 𝑝2, 𝑝3⟩ of S′′′

𝐷
, a seal in 𝑝2 is

broken by a rule in 𝑝3, or vice-versa. agents can use seals to
reason about valid programs in terms of their parts. For ex-
ample, given 𝑝1 ≜ (no-access(bob,bob,X) :- private(X).

seal no-access except by bob), for any 𝑝2, it is certain that
✓(𝑝1 ◦ 𝑝2) → no-access(amy, data1) ∉ J𝑝1 ◦ 𝑝2K. In this
fashion, agents reason about (models of) programs despite
their incomplete knowledge of (models of) programs.

4 Realistic Cooperative Specification
This section adapts the approaches to improving composition
control from Section 3 to realistic specification languages
Alloy (Section 4.2) and eFLINT (Section 4.3).

For each language, we first give an account of the language,
simplified for our purposes (as we detail in a dedicated para-
graph), and we remark on its current use for (data exchange)
system specification. Then, we demonstrate and evaluate its
use for cooperative specification. Finally, we define a minor
language extension, and then demonstrate and evaluate the
improvements to its composition control.

4.1 Running Example Usage Scenario
Here, we present a particular cooperative specification sce-
nario to be used throughout this section. This makes the
demonstrations more predictable to the reader, and affords
some comparison between the findings of Alloy and eFLINT.

The following three agents cooperate in the development
of a shared specification. Each agent is concerned with their
own facet of the system and their own requirements:

• “Administrator” Amy is concerned with controlling
the distributed infrastructure, for example, by defining
processing events, and specifying liveness properties.

• “Barrister” Bob is a legal expert, and is concerned
with enforcing an interpretation of a core part of the
GDPR [11]: the lawfulness of data-processing requires
the consent of the subject of the processed data (§6.1).

• “Data-processor” Dan is a user of the infrastructure,
and is concerned with personally processing data.

4.2 Improving Cooperative Alloy Specification
4.2.1 An Account of Alloy. Alloy has seen significant re-
search and application to the modelling and model-checking
of software systems [16]. Reflecting its basis on UML and
OML [14], Alloy specifications represent data via named
relations and constraints over relations expressed in a first-
order logic based on Tarski’s calculus of relations [35]. Alloy
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has seen application to DSL engineering [25] and for the
static analysis of complex systems [17]. The Alloy website1
provides release versions of Alloy tools, tutorials, Alloy ref-
erence examples, and a language specification.
The meaning of each Alloy specification 𝑝 is a set of sat-

isfying instances. Each instance prescribes particular mem-
bers to named 𝑁 -ary relations. Each instance formalises a
satisfactory system configuration, such that Alloy specifica-
tions predicate satisfactory configurations. The names and
types of the relations are determined by each signature in 𝑝 ,
which defines an atomic relation 𝑟 , and several fields over 𝑟
and other atomic relations. Here, Alloy affords ease of use
by leveraging the expected familiarity of its users with the
object-oriented paradigm: each signature corresponds to a
record data type. Facts explicitly constrain themodel in terms
of predicates, first-order logical formulae over the relations.
The AlloyAnalyzer tool reports the satisfying instances.

The following defines our simplified Alloy syntax:

program B para∗ para B macro | factDef | sigDef
id B letter+ factDef B fact id?{ pred }

macro B let id = (pred | rel)
sigDef B one? sig id,+ (in rel)?{ fieldDef ,∗ }

fieldDef B id : (one | set)? rel
rel B id | none | ( rel ) | * rel | rel (. | & |-> | + ) rel

pred B id | true | ( pred ) | not pred | pred and pred

| all id : rel{ pred } | some rel | rel (= | in) rel
Given program 𝑝 , the AlloyAnalyzer computes the model

of a given specification: a set of instances, defined by:

instanceSet B instance,∗ instance B{ atom | field }

field B id ( atom,∗ ) atom B id digit+

Demonstration. Consider the following program:
sig Agent, Data {} let Processor = Agent

sig State { step: set State ,

process: Data->Processor ,

consent: Agent->Data->Processor }

fact allReachableStep { all s:State {s.*step=State}}

fact processingImpliesConsent { all s:State {

s.process in Agent.(s.consent) }}

The first paragraph (in para) introduces atomic relations
Agent and Data. The second paragraph defines Processor as
an alias of Agent; this affords more suggestive human inter-
pretation of the field-relations over agents playing multiple
roles. The third paragraph introduces the final atomic rela-
tion, State, along with three field relations. Note that each
field-relation implicitly includes the signature-type itself as
the first parameter. For example, each process member is an
state-data-agent triple. The final paragraphs define facts that
explicitly constrain the satisfying instances. For example,
1https://alloytools.org/

allReachableStep asserts that each state can reach any other
through a transitively-closed step.

The AlloyAnalyzer reports that this specification has sev-
eral satisfying instances. The following shows one example:
{ State1, step(State1, State1), Agent1, Agent2,

Data1, consent(Agent1, Data1, Agent1) }

Simplifications. Our simplified Alloy language is a sub-
language of the real Alloy, so it is executable using the real
AlloyAnalyzer. We make two sorts of simplifying omission.
Firstly, we omit many expression combinators for predicates
(like iff) and relations (like :>). Secondly, we simplify the
(user control over) the practical limitations on instance enu-
meration by omitting paragraphs enabling fine control over
the AlloyAnalyzer’s search for satisfying instances; in real
Alloy, it is common practice to interleave facts with run and
check commands, which guide the search for instances. More-
over, the AlloyAnalyzer always only enumerates instances
up to a finite scope, which limits the cardinality of atomic
relations, such that the enumeration is tractable. Finally, we
omit the language generalisations of Alloy version 6, which
include temporal operators, and a generalisation of Alloy
instances (in a backward-compatible manner) to linear traces.
As reflected by the official Alloy tutorials, these novelties
can be approximated by modelling traced states as Alloy
relations; we take this approach in our Alloy examples.

4.2.2 CooperativeAlloy Specification. We encode Alloy
as straightforwardly as possible in language schema S𝐴, and
reason about the resulting composition control features:

• P is the set of syntactically-correct Alloy specifica-
tions, i.e., P ≜ program.

• M is the powerset of instances, i.e.,M ≜ instanceSet.
• JK captures the dynamic semantics of Alloy, mapping
each program to its satisfying instances.

• ◦ concatenates Alloy programs.
• ✓ recognises Alloy programs which 1. satisfy the static
semantics of Alloy: identifiers are bound by quantifiers
or resolve to either identifier- or predicate-definitions,
and expressions are well-typed, and 2. the model has
some satisfying instances.

S𝐴 affords cooperative specification if J𝑝K is interpreted
as the potential, concrete system behaviours. S𝐴 faithfully
captures the characteristic declarativeness of Alloy speci-
fications; notably, paragraphs in 𝑝 interact only indirectly,
via the instances J𝑝K. Precisely, adding signatures multiplies
the elements of J𝑝K, and enables the subsequent addition
of new signatures and facts. Adding facts to 𝑝 removes el-
ements from J𝑝K. The specification is invalidated once the
last satisfying instance is removed.

S𝐴 has control triples of the form ⟨𝑝1, 𝑝2, 𝑝3⟩ such that
J𝑝1 ◦ 𝑝2K and J𝑝1 ◦ 𝑝3K are non-empty, but J𝑝1 ◦ 𝑝2 ◦ 𝑝3K is
empty. Generally, facts constrain the satisfying instances
independently. For example, if 𝑝2 and 𝑝3 contain only facts,

https://alloytools.org/
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then J𝑝1 ◦ 𝑝2 ◦ 𝑝3K = J𝑝1 ◦ 𝑝2K ∩ J𝑝1 ◦ 𝑝3K. Thus, S𝐴 has
some limited use in cooperative specification. Facts afford
composition control, but as invalidity is witnessed by no
instances, the cause of invalidity is difficult to diagnose.

Demonstration. Agents Amy, Bob, and Dan cooperate to
develop a shared specification. Amy contributes first, cap-
turing the fundamental dynamics of data-processing as a
state-step transition system, capturing processing and con-
sent as changing relations over agents and data:

sig Agent, Data {} let Processor = Agent

sig State { step: set State ,

process: Data->Processor ,

consent: Agent->Data->Processor }

Next, Bob captures a legal requirement: each data has
exactly one subject. Moreover, Bob formalises the role of
consent: only a data subject can consent to its processing. To
add new relations over existing Data, Bob uses a trick: D is
introduced with novel fields, and then D is unified with Data:

sig D in Data { subject: one Agent } fact { D=Data }

fact onlySubjectsConsent {

Agent.(State.consent) in subject }

Next, Amy specifies a reasonable liveness property: any
conceivable consent is reachable from any state.

fact anyConsentAlwaysReachable { all s: State {

s.*step.consent = Processor->Data->Agent }}

Finally, Dan considers a reasonable contribution: Dan and
Amy are distinct Agents, and Dan processes some data:

one sig Amy, Dan in Agent {} fact {Amy != Dan}

fact danProcesses { some State.process.Dan }

To Dan’s surprise, this modest contribution invalidates
the specification. Unfortunately, the cause is not apparent
in the output of the AlloyAnalyzer: no instances are given
from which to begin a diagnosis. Moreover, the cause is
not intuitive, because it emerges from subtle interactions
between several facts. The only recourse is for Dan to anal-
yse the constraints with some external tool, or to consider
instances one by one to search for patterns. Here, the un-
derlying cause is not Dan at all, but a subtle conflict be-
tween the roles Amy and Bob impose on consent as captured
in anyConsentAlwaysReachable and onlySubjectsConsent, re-
spectively. Together, these facts imply that either State is
empty, or Agent is a singleton. Amy and Bob cooperated in-
effectively, but this was not captured by the specification.
Moreover, the language does not enable Bob (as the legal
expert) to overrule Amy in matters concerning consent.

4.2.3 CooperativeAlloy Specificationwith Static Com-
position Control. We define S′

𝐴
as a variant of S𝐴 that

adds the mechanism for static composition control via type-
sealing that is presented in Section 3.2.4. Intuitively, Alloy

is extended with a new kind of paragraph that expresses
constraints on contributions instead of instances.

We define P ≜ programExt to introduce seals, a new kind
of (extended) paragraph, and to annotate all existing para-
graphs to reflect the identities of their contributors:

programExt B paraExt∗ agent B id

paraExt B agent : para | seal id except by agent

S′
𝐴
adopts the definition ofM fromS𝐴 entirely unchanged,

and JK is adapted: seals are discarded before the model is
computed from un-annotated paragraphs as before. We say
paragraph 𝑥 breaks the seal on 𝑖 in program 𝑝 if 𝑝 contains an
extended paragraph (seal 𝑖 except by 𝑎1,𝑎2,...,𝑎𝑛) and para-
graph (𝑎 : 𝑥 ) where 𝑎 ∉ {𝑎1, 𝑎2, ..., 𝑎𝑛}. For example, program
(dan: fact {some Agent} seal Agent except by bob) is in-
valid, because Dan’s fact breaks the seal on Agent. S′

𝐴
refines

the definition of validity from S𝐴 such that programs with
broken seals are invalid. As before, programs with empty
models are invalid. Thus, the invalidity of S′

𝐴
programs has

both a static component (in seals) and dynamic component
(in models), which can be evaluated separately.

S′
𝐴
includes the control triples of S𝐴. Moreover, S′

𝐴
has

new control triples matching ⟨𝑝1, 𝑝2, 𝑝3⟩ in which a seal in
𝑝2 is broken in 𝑝3 or vice-versa. Broken seals are discovered
without the need to compute models, and their breakage can
be explained to users in straightforward, syntactic terms.

Demonstration. We adapt the prior cooperation between
Amy, Bob, and Dan. The contents of contributions are largely
unchanged, but each rule is prefixed by (𝑎 :) to reflect the
identity of its contributor. Also, Bob’s contribution includes
a new extended statement: seal consent except by bob, to
prevent other contributions from making inappropriate use
of the consent relation (intentionally or otherwise).

Consequently, Amyfinds that anyConsentAlwaysReachable
cannot be contributed as Amy intended, as doing so would
break Bob’s seal on consent. Bob experiences this as control
over Amy. Amy experiences this as insight into which contri-
butions are (not) permitted by Bob. In general, S′

𝐴
programs

are still subject to (unintentional) invalidity that is difficult
to diagnose and correct. However, in cases contributors do
anticipate undesirable contributions, these can be explicitly
internalised in the specification via seals. In these cases, seals
explicitly capture and communicate these constraints in a
form that is easy to understand and diagnose.

4.3 Improving Cooperative eFLINT Specification
4.3.1 AnAccount of eFLINT. eFLINT is a domain-specific
specification language suited to formalising a variety of
sources of norms [37]. It sees active development and appli-
cation to the regulation of cyber-physical systems for which
compliance to regulatory norms is important, e.g., medical
data processing systems. As such, the design of eFLINT re-
flects an emphasis onmodelling via abstractions that connect
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normative concepts (like actions and norm-violations) with
discrete computational concepts (like state transitions). The
language emphasises the extensibility of specifications to
reflect the dynamism of norms in practice, for example, to
mirror amendments to external legal regulations [36].

An eFLINT specification is a sequence of statementswhose
meaning is 1. the knowledge base it denotes, a relational
model of the present institutional reality, and 2. the vio-
lations, marking a subset of knowledge base elements as
normatively undesirable. Appending new statements to a
specification incrementally (re)constructs the relations to
capture a mix of refinements or amendments to the model.
Precisely, each knowledge base is represented as a set of
data-typed tuples: the union of all relation members. eFLINT
distinguishes between various sorts of data-type to maintain
the correspondence to legal notions. Notably, both fact- and
duty-types define 𝑁 -ary relations over institutional entities,
but only duties predicate the conditions under which duties
are violated as a function of the knowledge base.

The following defines our simplified eFLINT syntax:

program B stmt.∗ stmt B fDef | dDef | alias
fDef B (Fact type fSig | Extend Fact type) clause∗

fSig B Identified by var*+

dDef B (Duty type dSig | Extend Duty type) dClause∗

dSig B Holder var Claimant var (Related to var*+)?
dClause B Violated when boolExpr | clause
clause B Derived from instExpr,∗

| Conditioned by boolExpr

instExpr B string | var | ( Foreach var : instExpr )

| instExpr Where boolExpr
| type ( instExpr,∗ ) | instExpr . var

boolExpr B True | Not boolExpr | Holds instExpr
| instExpr (!= | ==) instExpr

alias B Placeholder type For type

type B lowercase (- | letter)∗ var B type digit*

The meaning of a program is its model: relational knowl-
edge bases ⟨𝑘ℎ, 𝑘𝑣⟩, each of whose members are called in-
stances. Primitive instances are strings, and complex instances
are type-tagged tuples of larger instances. Each 𝑡-type in-
stance 𝑖 holds (written 𝑖 ∈ 𝑘ℎ) iff it is constructed by some
𝑡-type derivation rule clause (Derived from) and satisfying
all 𝑡-type condition clauses (Conditioned by). Furthermore,
𝑖 is violating (written 𝑖 ∈ 𝑘𝑣) iff 𝑖 holds and 𝑘ℎ satisfies any
violation condition of 𝑖 . We call fSig and dSig statements
extensions iff they contain Extends, and otherwise they are
“new” type-definitionswhich suppress all previous extensions
or definitions of the same type. Suppressed statements are
ignored, effectively “overwritten”. Models, knowledge bases

(kBase) and instances (inst) are defined as follows:

model B hold: kBase violate: kBase

kBase B{ inst,∗ } inst B string | type ( inst,∗ )

Demonstration. Consider the following program:

Fact agent Identified by string.

Fact data Identified by string

Derived from data("CatScans"), data("CTScans").

Extend Fact data Derived from data("XRays").

Placeholder subject For agent.

Placeholder processor For agent.

Fact process Identified by processor * data.

Fact data Identified by subject * string

Derived from data(subject("Amy"), "XRays").

Extend Fact data

Conditioned by subject != subject("Amy").

The first two statements introduce agent and data as unary
relations over the inbuilt string-type. The latter also includes
a clause deriving two data-instances via simple instance ex-
pressions. The third statement adds another clause to data,
deriving another instance. Next, the placeholder expressions
introduce aliases for agent which help to suggest the inter-
pretations of relations defined in the remaining statements.
Next, process is defined as a binary relation over processors
(i.e., agents) and data. Then, data is re-defined, suppressing
the previously data-statements; effectively, this replaces all
the prior data-type instances with a single new one. Note
that the previous process definition refers to data, but is not
suppressed. Finally, a (derivation) condition clause is added
to data, understood to filter data-instances from the model.
Here, this effectively removes the only data instance.

Simplifications. Our simplified eFLINT language is a sub-
language of the real eFLINT, so it is executable with the real
eFLINT interpreter. We make three sorts of simplifying omis-
sion. Firstly, we omit eFLINT’s postulation statements, which
add or remove individual instances, overwriting previous,
conflicting postulations. Secondly, we omit events, actions,
invariants, and Booleans which complement duties and facts
in affording the definition of data types which are subtly spe-
cialised in syntax to mirror more legal concepts, and seman-
tically in their interactions with violations and postulations.
Finally, we omit several instance- and predicate-expression
operators, including Exists and Or. For our purposes, these
omitted constructs can be sufficiently approximated by sim-
plified eFLINT, using combinations of facts and duties.

4.4 Cooperative eFLINT Specification
We encode eFLINT as in language schema S𝑒 , and reason
about the resulting composition control features:

• P is the set of syntactically-correct eFLINT programs,
i.e., P ≜ program.

• M is the set of models, i.e., M ≜ model.
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• JK captures the dynamic semantics of eFLINT, mapping
each program to its model.

• ◦ concatenates programs.
• ✓ recognises programs which 1. satisfy the static se-
mantics of eFLINT: identifiers are bound by quantifiers
or resolve to either identifier- or predicate-definitions,
and expressions are well-typed, and 2. have no viola-
tions in their models.

S𝑒 affords cooperative specification through the manip-
ulation of violated duties via statements (re)defining and
extending fact- and duty-types. This definition of invalidity
conflates normative violations (at the domain level) with un-
successful cooperation (at the meta-level). On the one hand,
this affords agents elegantly internalising cross-cutting con-
cerns. This manifests as a wide variety of control triples
⟨𝑝1, 𝑝2, 𝑝3⟩, including cases in which 𝑝2 contains no state-
ments directly altering duties. On the other hand, agents
cannot decouple these notions. Notably, agents cannot suc-
cessfully cooperate in the specification of a system exhibiting
normative violations; this is impractical for modelling real
cyber-social systems, where violations cannot be reliably
avoided, so they are corrected and worked around instead.

The biggest problem is that S𝑒 thoroughly empowers later
contributors, which earlier contributors experience as super-
ficial composition control. Precisely, the contributor of 𝑝1
has no control over each J𝑝1 ◦ 𝑝2K. Any derivation clause
in 𝑝1 can be effectively removed by a derivation condition in
𝑝2, and any statement in 𝑝1 can be suppressed by a statement
in 𝑝2. However, these language features cannot be simply
removed, as they are needed for the specification amend-
ments that are desired. The problem is that S𝑒 insufficiently
captures which amendments contributors permit.

Demonstration. Agents Amy, Bob, and Dan cooperate
to develop a shared specification. First, Amy makes the fol-
lowing contribution, formalising the processing of data as a
process-data relation, where processors are agents, and data
is partitioned over subjects. Each subject can have multiple
data-instances by identifying them with distinct strings:

Fact agent Identified by string.

Placeholder subject For agent.

Placeholder processor For agent.

Fact data Identified by subject * string.

Fact process Identified by processor * data.

Next, Bob formalises the legal notion of consent (to pro-
cess data) as an agent-process relation. Bob also introduces
the duty of processors to acquire consent for processing
of a subject’s data. Each duty instance is formalised as a
processor-subject-process triple, specified to be held by the
processor, and claimed by the subject. However, Bob does
not (yet) specify any cases in which these duties are violated:

Placeholder consenter For agent.

Fact consent Identified by consenter * process.

Duty get-consent Holder processor

Claimant subject Related to process

Derived from (Foreach process: get-consent(

process.processor, process.data.subject, process))

Conditioned by Not(Holds(consent(subject, process))).

Amy makes another contribution, introducing the notion
that some processes are started.

Fact started Identified by process.

Next, Bob contributes an extension that defines when the
duty to get consent is violated: when the process is started.
Bob also amends the definition of process to ensure that
Bob’s prior get-consent derivation clause does not “overlook”
started processes. In other words, Bob specifies that members
of the started relation are not only of the process data type,
but are also members of the process relation:

Extend Duty get-consent Violated when started(process).

Extend Fact process

Derived from (Foreach started: started.process).

Dan makes the following, final contribution. The first
statement is simple: Dan starts to process Amy’s X-Ray Data.
The other two statements remove Dan’s duty to get consent
for any data in general, and then (for good measure) grant
Dan consent to process any data in general.

Extend Fact started Derived from started(process(

processor("Dan"), data(subject("Amy"), "XRays"))).

Extend Duty get-consent

Conditioned by processor != agent("Dan").

Extend Fact consent Derived from (Foreach process:

consent(process.data.subject, process)

Where process.processor == agent("Dan")).

Each of the above contributions preserved the validity of
the specification. However, by contributing last, Dan had
full control over the model. We conclude that S𝑒 failed to
internalise some of Bob’s important, intuitive requirements
of the cooperation: 1. each agent is in control of their own
consent, and 2. each existing duty to get consent is removed
only by getting consent. In this case, Dan violated these
requirements even without suppressing any prior statements.
Bob experiences this as a lack of control over what Dan
contributes. Dan experiences this as a lack of insight into
what Bob permits or desires. For example, Bob and Dan
each extend a type defined by another agent (Amy and Bob,
respectively) with a derivation clause, failing to capture that
only the former extension is permissible or desirable.

4.5 Cooperative eFLINT Specification with Hybrid
Static/Dynamic Composition Control

We define S′
𝑒 as a variant of S𝑒 which has improved com-

position control by adapting a mix of the language features
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presented in Sections 3.2.3 and 3.2.4. Intuitively, errors dy-
namically recognise invalidating instances, while seals stati-
cally constrain clauses, e.g., preventing existing errors from
being trivialised. Precisely, let S′

𝑒 = ⟨P,M, JK, ◦,✓⟩, where:
• Let P be program but with clause extended by:

| Seal Conditions | Erroneous When boolExpr

• Let the models include new error instances. Precisely:

M B hold: kBase violate: kBase error: kBase

• Let each J𝑝K ≜ ⟨𝑘ℎ, 𝑘𝑣, 𝑘𝑒⟩ capture the eFLINT se-
mantics (as before) in the holding (𝑘ℎ) and violating
(𝑘𝑣) instances. Moreover, let 𝑘𝑒 be the subset of 𝑘ℎ
with an (Erroneous when 𝑒) clause where 𝑒 is satisfied
by 𝑘ℎ . Finally, let each instance be implicitly identified
by an extra parameter with type string and variable
contributor; each instance expression in a statement
that is contributed by agent 𝑎 implicitly constructs
instances with a fixed argument identifying 𝑎. For ex-
ample, the following statement is well-typed:
Fact f Identified by string Derived from f("a")

Erroneous when string == contributor.

• (as before) ◦ concatenates programs.
• Let ✓(𝑝) iff 1. (as before) it satisfies the static seman-
tics of eFLINT: identifiers are bound by quantifiers or
resolve to either identifier- or predicate-definitions,
and expressions are well-typed; 2. no statement is
suppressed; 3. there is no type 𝑡 whose seal is bro-
ken in 𝑝: for no 𝑖 < 𝑗 and type 𝑡 , the 𝑖th 𝑡-statement
includes Seal Conditions and the 𝑗th 𝑡-statement in-
cludes Conditioned by; 4. it has no errors in its model.

Syntactically, S′
𝑒 is an extension of S𝑒 , to support new

composition control features. Corresponding programs also
have corresponding semantic models with respect to holding
and violating instances. However, there are two cases where
a program 𝑝 has different validity under S′

𝑒 and S𝑒 . Firstly,
only S′

𝑒 programs are invalidated by suppressed statements.
This does not affect which models are expressible, as omit-
ting suppressed statements does not affect the model, but it
does prevent later contributors from trivialising earlier con-
tributions. Secondly, both languages can specify violations,
but errors in S′

𝑒 model the violations of S𝑒 : they invalidate
the specification. Thus, errors and violations are represented
and computed similarly in S′

𝑒 , but they have different mean-
ings. Notably, this lets contributors successfully cooperate
in specifying systems which have normative violations.

The language extensions to S′
𝑒 implement a mix of static

and dynamic composition control. Dynamically, errors recog-
nise cases of invalidity as a function of the knowledge base.
Statically, sealing clauses prevent subsequent statements
adding conditions to types. Thus, seals let agents stop later
contributors from arbitrarily removing errors, e.g., by ex-
tending types with the clause Conditioned by Not(True).

Demonstration. We reconsider the prior demonstration
in which Amy, Bob, and Dan cooperate. The contributions
of Amy and Bob proceed exactly as before, with one minor
alteration: Bob’s first contribution is extended with the fol-
lowing statements, which serve to more completely capture
Bob’s requirements of the other contributions to the specifica-
tion. Firstly, get-consent is extended to prevent subsequent
Conditioned by clauses. This ensures each get-consent duty
is removed only by getting consent. Secondly, consent inval-
idates the specification if any consent instance is inferred by
a derivation rule not contributed by the consenter:

Extend Fact get-consent Seal Conditions.

Extend Fact consent Seal Conditions

Erroneous when agent(contributor) != consenter.

Consequently, Dan’s prior contribution would now invali-
date the specification. Dan experiences this as insight into the
distinction between amendments to type definitions that are
and are not permitted. Evidently, Amy permits anyone to add
and remove process-instances, but Bob permits only particu-
lar extensions to the definitions of consent and get-consent.
Moreover, agents can diagnose the cause for invalidity in
(potential) contributions, because each case of invalidity can
be traced to two statements: one that establishes a meta-
requirement, and one that violates it. For example, Dan’s
prior contribution is invalidated in two ways. The static
reason is that Dan conditions get-consent after Bob speci-
fies not to. Finally, the specification distinguishes between
domain-level violations and meta-level invalidity, such that
agents can successfully cooperate to describe data processing
systems in which data-processors violate the specification by
processing data without consent. For example, Dan cannot
grant consent on behalf of Amy. However, Dan can process
Amy’s X-Ray data without consent, even though the agents
agree that this represents Dan violating a (domain-level)
normative duty to get consent from Amy.

5 Related Work
This section overviews related work and remarks on oppor-
tunities for using related works to inform the cooperative
specification of data exchange systems in the future.

5.1 Composition Control Mechanisms of
General-Purpose Programming Languages

Many long-established general purpose programming lan-
guages have language features that are essential for pro-
tecting fundamental program abstractions. A conspicuous
example is the visibility- or access-modifiers in languages in-
cluding Java and C++. These have no impact on the dynamic
semantics, but only introduce static errors if identifiers are
accessed out of the specified scope. Most obviously, visibil-
ity modifiers protect abstractions, thus hardening programs
against the accidental introduction of bugs.
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The strength of these approaches is their simplicity; the
errors they introduce are largely isolated from other seman-
tic concepts, yet reliably connected to particular syntactic
constructs that are directly exposed to the programmer. Con-
sequently, they are easily computed and reasoned about.
Visibility modifiers directly inspired the notion of sealing
presented in Section 3.2.4. They have also inspired other
works for similar reasons. For example, [1] adapts them for
use in securing object-oriented databases.
Note that programming languages also internalise con-

trols that are more powerful, but come at the cost of being
difficult to reason about. For example, enforcing the laws of
Haskell type classes requires property-based testing [18] or
automatic theorem proving [2]. Nevertheless, these controls
offer fruitful ideas for powerful control mechanisms.

Many existing languages and features remain to be investi-
gated for applicability to cooperative specification. For exam-
ple, we hypothesise that the notion of mode in the Mercury
language [33] captures a simple, useful, static abstraction.
In Mercury, modes prescribe the input/output modalities of
arguments in logical predicates, enabling their compilation
to efficient, imperative procedures [8].

5.2 Smart Contract Languages
Smart contract languages are oriented around the multi-
party definition and use of smart contracts, which encode
inter-agent powers as cryptographically secured, replicated,
executable programs [13, 34]. We are particularly inspired
by two characteristics of these languages.

Firstly, smart contract languages are designed around the
understanding that shared contracts represent commitments;
they are meaningful and useful because they are not trivially
retracted. For example, contracts justify costly and sensitive
work. A major consequence is that, in this context, it makes
less sense to rely on destructive refactorings to amend spec-
ifications. Instead, there is greater emphasis on extensible
specifications and anticipating and avoiding conflicts and
contention. This view is evident in our notion of cooper-
ative specification, which frames change as an inherently
constructive process via specification composition.
Secondly, smart contract languages emphasise the cap-

turing of inter-agent power dynamics. This is achieved by
internalising agents in the specifications themselves, such
that they may be systematically reasoned about in relation to
other domain-level concepts. For example, the DAML smart
contract language (presented in an archived article [5]) re-
flects signatories of smart contracts as the agent argument of
the corresponding contract construct. To some extent, this
pattern is even observable in languages targeting a broader
notion of contract. For example, eFLINT provides actor as an
inbuilt type which parameterises each user-defined action-
type by default [37], affording their relation to domain-level
concepts via eFLINT types and instances, as usual.

5.3 Powerful Formalisms and Formal Verification
Many communities develop (understandings of) complex
software systems by encoding them in powerfully expres-
sive formalisms, to capture complex requirements and to
automate complex reasoning processes. For example, by en-
coding system behaviour as dependently-typed definitions,
the Coq theorem prover can verify complex properties. For
example, [12] encodes the Grid Component Model of modu-
lar grid computing systems [4] in Coq’s vernacular language.
Compared to works in these communities, the specifica-

tion languages we have considered are conservative in the
power of their semantics and the extent of their automation.
To some extent, this is incidental, and can be improved; fu-
ture work can improve the expressivity of Alloy and eFLINT
to allow capturing new requirements. However, to some ex-
tent, it is advantageous to minimise the expressive power of
our specification languages up to the requirements of the ap-
plication domain. This choice minimises conceptual burden
on human users developing specifications, and minimises the
cost of automated reasoning activities. Moreover, it leaves
room for more powerful languages and systems to assist in
the development and reasoning about simple specifications.
For example, we see potential in using the (more powerful)
Clingo language to partially automate the search for desir-
able contributions to a cooperative specification expressed
in the (less powerful) Datalog language; Clingo is a versatile
answer-set solver overviewed in [20].

5.4 Abstract Argumentation Frameworks
Abstract argumentation frameworks in the style of Dung
[9] capture logical systems in which different logical con-
clusions can conflict, precisely, as an argument-argument
attack relation. The ASPIC+ framework builds new relations
(like argument-preorder ≤) and properties (like contrary)
for characterising logical systems [40]. Its use is in enabling
reasoning about key “rationality” postulates of particular
systems [28], which can be understood as characterising
their “usefulness”. Works like [24] are related, investigating
argument-preferences as a means to resolve conflicts.

These works complement our own; we share the premise
of composing declarative specifications whose meaning is
robust to the presence of conflicts and changes. Appropri-
ately, our motivations also often overlap. For example, [23]
investigates abstract argumentation in the context of con-
flicts between agent-local desires, and system-wide norms,
comparable to our example in section 4.1 of Dan’s desire
conflicting with Bob’s legal norms. We see promise in more
thoroughly studying and incorporating the methods and
tools of abstract interpretation in the development and ap-
plication of cooperative specification languages.
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6 Reflections and Future Work
In this article, we have demonstrated the extension of the
Datalog, Alloy, and eFLINT specification languages to give
agents control during cooperative specification without sig-
nificant impact on the languages’ abilities to capture domain
concepts. As a result, specifications make clear which speci-
fication properties should be preserved by composition. In
practical terms, the requirements added by agents reveal
which details are intentionally fixed and where collaborators
are invited to contribute. We did observe that the benefits
of the composition control features vary across designs. For
example (as demonstrated with Alloy), static composition
control captured requirements in a form that afforded simple
diagnosis in terms the agents can understand. Whereas (as
demonstrated with eFLINT) dynamic composition control
effectively captured requirements inter-relating domain- and
meta-level requirements, such as the requirement for con-
tributors not to consent on the behalf of their peers. Which
method is most suited depends heavily on the application
domain and the language in question.

At present, our contribution is conceptual and has not yet
been implemented as an extension to an existing language.
Moreover, as a language extension, the features are not im-
mediately available to all potential users (until any extension
is widely adopted). The previous sections have shown the
value of the discussed languages, eFLINT in particular, for
the specification of data exchange systems, yet thorough
evaluation using one or more case studies is required.
In the remainder of this section, we lay out additional

directions of future work.

Specialised eFLINT Variant. We observe that eFLINT
is quite well-suited to the formalisation of data exchange
systems through its explicit connection between legal and
computational concepts and its constructive approach to
deriving information, such that semantic problems are ex-
plainable in terms users can understand. This contrasts with
our findings for Alloy, whose specifications are more simple
and composable, but for which invalidity is generally diffi-
cult to diagnose. To bring our approach to practice we intend
to formalise eFLINT with composition control features and
extend the existing reference implementation accordingly.

Developing Datalog Variants. Like eFLINT, Datalog has
a constructive approach to prescribing relations, which lays
the groundwork for capturingmeta-level requirementswhose
violations are easily diagnosed and understood. Datalog has
been thoroughly researched bymany people overmany years
(as summarised, for example, in [21, 22]) and there are many
formalised Datalog variants to choose from.
We see value in exploring (additional) Datalog variants

that are specialised for cooperative specification. We pro-
pose the development of different languages for exploring

the extremes of the static-dynamic spectrum of composi-
tion control mechanisms. The static variant focuses entirely
on seals, separating meta-level and domain-level concerns
to emphasise low-cost reasoning and simple explainability.
The dynamic variant focuses entirely on reflection and dy-
namic (in)validity, emphasising a simple semantics, powerful
expressiveness, and the flexibility of programs to change.

Enforcement. Our notion of cooperative specification re-
sembles dynamic enforcement, such as with access control,
when cooperative specification is interleaved with the exe-
cution of the specified system. Our work was done with this
possibility in mind. Also, our notion of meta-specification
matches the policies of [10], which prescribes the means by
which incrementally composed specifications control agent
communications and actions. Future work can develop par-
ticular runtime systems enforcing particular cooperative
specifications realising data exchange scenarios.

7 Conclusion
In this paper, we have presented the challenges that arise
in agents cooperating to formalise their requirements of a
complex, distributed system. We consider data exchange
systems in particular, whose nature exacerbates the usual
difficulties in expressing and composing requirements.
We give the problem a technical framing via cooperative

specification, where agents incrementally compose their con-
tributions to a shared program, careful to preserve its va-
lidity. We showed that existing languages Datalog, Alloy,
and eFLINT take us part of the way to satisfactory solu-
tions. However, we observe their limitations in capturing
important “meta-level” requirements, which concern the
ways agents may change the specification itself. Driven by
our focus on composition control language features, we de-
fine minor language extensions that let agents capture more
meta-level requirements, and we demonstrate how these en-
able more successful scenarios of cooperative specification.
Future case studies are required to thoroughly evaluate our
contributions in the context of data exchange systems.
We identified several opportunities for future work to

continue developing specialised cooperative specification
languages. We hope to leverage related works to ease the
development of the languages and the specifications, to the
end of improving the productivity of the specification pro-
cess, and the fruitfulness of its results. This contributes to
the vision of inter-organisational data exchange systems exe-
cuted by autonomous, cooperating agents that enforce their
shared requirements, even when requirements change.
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