
Exploratory, Omniscient, and Multiverse Diagnostics
in Debuggers for Non-Deterministic Languages

Damian Frölich

dfrolich@acm.org
Informatics Institute, University of

Amsterdam

Amsterdam, the Netherlands

Tommaso Pacciani

t.c.pacciani@uva.nl
Informatics Institute, University of

Amsterdam

Amsterdam, the Netherlands

L. Thomas van Binsbergen

ltvanbinsbergen@acm.org
Informatics Institute, University of

Amsterdam

Amsterdam, the Netherlands

Abstract
Debugging non-deterministic programs is inherently difficult

as the compound effects of non-deterministic execution steps

is hard to predict and gives rise to a (potentially) vast space

of reachable program states such that manual exploration of

all reachable states is infeasible.

Multiverse debugging addresses these problems by re-

alising a fine-grained, exhaustive and interactive process

for state space exploration. At SLE2023, Pasquier et al. pre-

sented a generic framework that makes exploration practi-

cal through user-defined reductions on program states and

by proposing expressive logics for defining and searching

for states and traces of interest, generalising the concept

of breakpoint. The framework has been validated through

the case study language AnimUML designed to make non-

deterministic UML specifications executable.

In this paper, we perform additional case studies to eval-

uate the applicability of the framework. We analyse three

non-deterministic, domain-specific languages representing

three different domains: grammar engineering, formal op-

erational semantics, and norm engineering. The framework

is evaluated against requirements extracted from these do-

mains, resulting in the identification of several limitations of

the framework. We then propose a modified and extended

framework and apply it to develop multiverse debuggers for

the case study languages. The result demonstrates a multi-

verse debugging framework with more general applicability.

CCS Concepts: • Software and its engineering→ Parsers;

Domain specific languages; Software testing and debug-
ging.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SLE ’25, June 12–13, 2025, Koblenz, Germany
© 2025 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

Keywords: exploratory programming,debuggers,multiverse

debuggers,parsing,domain-specific languages

ACM Reference Format:
Damian Frölich, Tommaso Pacciani, and L. Thomas van Binsber-

gen. 2025. Exploratory, Omniscient, and Multiverse Diagnostics

in Debuggers for Non-Deterministic Languages. In Proceedings of
ACM SIGPLAN International Conference on Software Language En-
gineering (SLE ’25). ACM, New York, NY, USA, 14 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 Introduction
Conventional stepwise debuggers can be used to explore

the execution of a program (a run) in a step-by-step manner,

giving programmers control to interrupt and proceed execu-

tion as they see fit, and enabling them to inspect concrete

information about that run at the moment of interruption

(e.g., active bindings, variable assignments, object state). The

level of granularity of the steps, the control mechanisms,

and the observable context information depends per lan-

guage, but typically involves setting breakpoints on program

locations and monitoring mutations to specific variables.

Omniscient debuggers (also referred to as ‘back-in-time

debuggers’) extend stepwise debuggers by recording informa-

tion during a debug session to allow programmers to revisit

some or all steps of the execution [4, 14]. This functionality

is particularly useful to understand how a particular (unde-

sirable) program state came to be by retracing steps and the

evolution of variables and (other) objects (without having

to anticipate meaningful intermediate states beforehand by

setting up breakpoints and monitors).

Non-deterministic programs admit multiple runs, each

of which can (potentially) exhibit different desirable or un-

desirable behaviour (bugs). Debugging non-deterministic

programs is inherently challenging as the set of possible

runs may be vast, hard to predict, and may contain runs that

occur only rarely. Conventional debuggers provide only a

partial view on the bugs a program admits as they perform

a single run per debugging session. Repeated debugging

sessions are required and rare bugs may remain unobserved.

To address these challenges, multiverse debuggers pro-
vide an interactive, user-controlled and simultaneous ex-

ploration of multiple runs, avoiding redundant work by de-

tecting syntactically equal states [15]. Pasquier et al. [20]

https://orcid.org/0000-0003-1016-5303
https://orcid.org/0009-0000-4897-2851
https://orcid.org/0000-0001-8113-2221
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SLE ’25, June 12–13, 2025, Koblenz, Germany Frölich et al.

introduced user-defined reductions over states, giving the

user a mechanism to reduce the explored state space. The

authors define a language-parametric framework for obtain-

ing omniscient, multiverse debuggers through the definition

of a transition relation for the object language. In [21], the

authors introduce a generic breakpoint-specification mech-

anism and demonstrate various logics (such as regular ex-

pressions and linear temporal logic) for expressing traces of

interest and further inspection.

Exploratory programming [12, 24, 26] is a style of pro-

gramming in which programmers experiment with code to

simultaneously discover the desired result(s) and the (pre-

ferred) way of reaching the result(s). In [29], exploratory

programming is formulated as an extension of incremental

(REPL-based) programming in which a program is devel-

oped incrementally by submitting program fragments and

observing their effects. Exploratory programming gener-

alises incremental programming in a way similar to how

multiverse debugging generalises stepwise debugging: mul-

tiple runs are explored interactively and in parallel in order

to investigate (un)desirable outcomes. In exploratory pro-

gramming, a programmer may additionally be interested in

directly comparing the effects of multiple runs.

In this work, we introduce the execution graph to an ex-

tended version of the framework of Pasquier et al. and gen-

eralise the concepts of breakpoint and reduction to admit

additional user scenarios inspired by exploratory program-

ming. We evaluate the applicability of multiverse debugging

and the generality of the original and extended framework

by using three case studies: grammar exploration, formal

operational semantics, and reasoning with norms. As part of

these case studies, we collect requirements for exploratory,

omniscient, multiverse debuggers, forming the basis of our

evaluation. Concretely, we make the following contributions.

• We (re-)define the original framework by Pasquier et

al. using set-theoretic notation (in Section 2).

• We investigate the application of exploratory, omni-

scient, multiverse debugging in three domain-specific

languages, resulting in a set of user stories and require-

ments for each of the domains (in Sections 3 to 5).

• We evaluate the applicability of the framework against

the requirements, providing further evidence in sup-

port of the use of a generic framework, whilst identi-

fying a number of limitations (in Section 7).

• We introduce an extended version of the framework

that (partially) addresses these limitations (in Section 6).

Sections 8 to 10 discuss the threats to validity of our work,

related work and conclude (respectively).

2 The Original Multiverse Framework
Our work builds on the reusable multiverse debugging frame-

work introduced by Pasquier et al. [20]. For consistency rea-

sons, we define the framework using set-theoretic notation

Debug user

Language engineer

Framework engineer

STR definition

STR instance
Breakpoint

Reduction

supplies

Debug STR
interacts with

defines

constrains

constrains

defines

Syntax

Syntax

defines

Figure 1. The relations between roles and components of

the multiverse debugging framework.

as an alternative to the Lean [8] code given in the original

paper.

An overview of the debugging framework and the rela-

tions between different roles is displayed in Figure 1.

Definition 2.1. A Semantic Transition Relation (STR) is

a tuple ⟨𝐶,𝐶0, 𝐴, 𝐼 , 𝐴𝑐𝑡⟩, where 𝐶 is a set of configurations,

𝐶0 ⊆ 𝐶 a set of initial configurations, 𝐴 is a set of actions, 𝐼 :

𝐶 ×𝐴 → P(𝐶) is a non-deterministic interpreter of actions

upon configurations, and 𝐴𝑐𝑡 : 𝐶 → P(𝐴) determines the

set of executable actions for a given configuration.

There are two contributors to non-determinism in an STR:

(1) for every configuration, there might be multiple exe-

cutable actions (Act) and (2) for every action acting upon a

configuration, there might be multiple result configurations

(𝐼). The two contributors can be seen as stemming from a

non-deterministic choice internal to the interpreter and an

external non-deterministic choice.

Let 𝑆 = ⟨𝐶𝑠 ,𝐶𝑠0, 𝐴𝑠 , 𝐼𝑑 , 𝐴𝑐𝑡𝑠⟩ be a language STR, a multi-

verse debugger is defined in terms of this STR as follows:

𝐷𝑆 (𝑅, 𝐵) = ⟨𝐶𝑑 ,𝐶𝑑0, 𝐴𝑑 , 𝐼𝑑 , 𝐴𝑐𝑡𝑑⟩.

Parameter 𝑅 : 𝐶𝑠 → 𝐶𝑠/𝑟 is a reducer function reducing

configurations to a reduced form 𝐶𝑠/𝑟 which support equal-

ity between elements. Parameter 𝐵 : 𝐶𝑠 → B represents a

breakpoint as a predicate over configurations, determining

the configurations in which the breakpoint is ‘activated’.

The configuration of a debugger is defined as a tuple:𝐶𝑑 =

⟨𝐶𝑠 ∪ {⊥},P(𝐶𝑠),P(𝐶𝑠)⟩. The first component denotes the

current, object language-specific configuration or is ⊥ when

there is none. The second component is a history represented

as a set of (previously) encountered configurations. The last

component is a set of options to choose from after the (non-

deterministic) execution of an action.

The debugger actions, set of available actions, and the

interpreter are defined as follows. The interpreter is defined

Exploratory, Omniscient, and Multiverse Diagnostics in Debuggers for Non-Deterministic Languages SLE ’25, June 12–13, 2025, Koblenz, Germany

𝑎𝑠 ∈ Act𝑠 (𝑐𝑠) 𝑐𝑠 ≠ ⊥ opts = 𝐼𝑠 (𝑐𝑠 , 𝑎𝑠)

⟨𝑐𝑠 , hist, _⟩
step 𝑎𝑠−−−−−→ ⟨⊥, hist, opts⟩

(step)

𝑐𝑠 ∈ opts

⟨_, hist, opts⟩ select 𝑐𝑠−−−−−−→ ⟨𝑐𝑠 , {𝑐𝑠 } ∪ hist, ∅⟩
(select)

𝑐𝑠 ∈ hist

⟨_, hist, _⟩
jump 𝑐𝑠−−−−−−→ ⟨𝑐𝑠 , {𝑐𝑠 } ∪ hist, ∅⟩

(jump)

𝑐𝑠 ≠ ⊥ find (𝑅,𝐵) ({𝑐𝑠 }) = (𝑐𝑠1, . . . , 𝑐𝑠𝑛)

⟨𝑐𝑠 , ℎ𝑖𝑠𝑡, _⟩
run_to_breakpoint
−−−−−−−−−−−−−→ ⟨𝑐𝑠1, ℎ𝑖𝑠𝑡 ∪ {𝑐𝑠1, . . . , 𝑐𝑠𝑛}, ∅⟩

(run)

find (𝑅,𝐵) (opts) = (𝑐𝑠1, . . . , 𝑐𝑠𝑛)

⟨⊥, hist, opts⟩
run_to_breakpoint
−−−−−−−−−−−−−→ ⟨𝑐𝑠1, hist ∪ {𝑐𝑠1, . . . , 𝑐𝑠𝑛}, ∅⟩

(run-2)

Figure 2. Semantics of the debugging operations. Under

scores denote unused meta-variables, and can be replaced

by an appropriate meta-variable as long as every underscore

gets assigned a uniquemeta-variable. The subscript 𝑠 denotes

components of the underlying language STR.

in terms of a transition relation

𝑎−→, defined by the inference

system in Figure 2.

𝐴𝑑 ::= step 𝐴𝑠 | select 𝐶𝑠 | jump 𝐶𝑠 | run_to_breakpoint
𝐴𝑐𝑡𝑑 (⟨𝑐𝑠 , ℎ, 𝑜⟩) = {𝑠𝑡𝑒𝑝 𝑎𝑠 | 𝑎𝑠 ∈ 𝐴𝑐𝑡𝑠 (𝑐𝑠), 𝑐𝑠 ≠ ⊥}

∪ { 𝑗𝑢𝑚𝑝 𝑐 | 𝑐 ∈ ℎ} ∪ {𝑠𝑒𝑙𝑒𝑐𝑡 𝑐 | 𝑐 ∈ 𝑜}
∪ {run_to_breakpoint}

𝐼𝑑 (𝑐, 𝑎) = {𝑐′ | 𝑐 𝑎−→ 𝑐′}
For any (stepwise) interpreter 𝐼 , we define the reachability

graph as embedding all the possible execution traces from a

given configuration. The definition is adapted from [29].

Definition 2.2. Let 𝐼𝑎 be an interpreter for actions 𝑎 ∈ 𝐴

and configurations 𝑐 ∈ 𝐶 . The reachability graph from a

configuration 𝑐 ∈ 𝐶 is the graph ⟨𝑉 , 𝐸⟩ with 𝑉 and 𝐸 the

smallest sets of nodes and labelled edges such that 𝑐 ∈ 𝑉

and for every triple ⟨𝑐1, 𝑎, 𝑐2⟩, with 𝑐1 ∈ 𝑉 and 𝑐2 = 𝐼𝑎 (𝑐1), it
holds that 𝑐2 ∈ 𝑉 and that ⟨𝑐1, 𝑎, 𝑐2⟩ ∈ 𝐸.

The semantics of run_to_breakpoint is defined in terms

of find (not defined here) performing a depth-first search

in the reachability graph to find a configuration for which

the 𝐵 predicate succeeds. Throughout this search, a set of re-

duced configurations is maintained, containing the reduced

versions of the configurations encountered during search

by applying reduction function 𝑅. When a reduced config-

uration is revisited, the current search-branch terminates

and find backtracks. If a configuration satisfying 𝐵 is found,

this configuration and its predecessors are returned as a se-

quence. If the search is exhausted, the empty sequence is

returned. The reductions can yield a finite exploration of

an infinite reachability graph. However, the algorithm does

not terminate in the general case. See [20] for a more formal

definition of find.
The functions 𝑅 and 𝐵 are the result of (partially) evalu-

ating a breakpoint and reduction expression given by the pro-

grammer. The syntax for breakpoint- and reduction-expressions

is determined by the language engineer (see Figure 1). The

implementation of find in the original framework [20], de-

scribed above, focused on breakpoints as predicates over

configurations. The implementation needs to be modified

for more expressive breakpoints. The implementation of find
in [21] adds support for breakpoints over transitions and

sequences of transitions with regular expressions and LTL-

formulae as example formalisms.

3 Grammar and parser engineering
In this and the following two sections we present case studies

across three different domains: grammar engineering, formal

operational semantics, and norm engineering. For every do-

main we investigate usage scenarios in which a user attempts

to locate, understand, and consider resolutions for (together:

diagnose) a particular error, bug, or otherwise unwanted re-

sult. To this end, we describe each domain, define the most

important user roles, and associate one or more user stories

which each of the roles. The user stories are re-formulated

as functional requirements for debuggers and, by extension,

for an underlying debugging framework. The requirements

are derived from the needs of (hypothetical) users of domain-

specific debugger implementations and are used in Section 7

to evaluate the multiverse debugging frameworks discussed

in this paper. The first case study investigates diagnosis in

the context of grammar and parser engineering.

A context-free grammar (simply ‘grammar’, hereafter)

specifies the concrete syntax of a (software) language. The

conventional definition of a grammar, originally provided

by Chomsky [5], associates one or more production rules

with nonterminal symbols. A production rule consists of a se-

quence of nonterminal symbols and terminal symbols, with

terminal symbols capturing the tokens (words) of a language.

A nonterminal in a grammar derives sentences (sequences of

tokens) through the recursive process of in-place replacing

nonterminal symbols – with one of the productions associ-

ated with that nonterminal – until a sequence consisting of

only terminal symbols is obtained.

This process is non-deterministic when at least one of the

encountered nonterminal symbols has two or more associ-

ated production rules. As a result, the same nonterminal can

be used to generate multiple sentences. Conversely, the same

SLE ’25, June 12–13, 2025, Koblenz, Germany Frölich et al.

sentence can be the result of alternative sequences of deriva-

tion steps starting from the same nonterminal. Grammars

that have one or more such sentences
1
are ambiguous. The

possibly many combinations of non-deterministic choices in

the derivation process is the source of the great expressive-

ness of grammars, but also of (any) complexity in parsers.

A parser is an algorithm that attempts to determinewhether

a given input sentence can be derived from a nominated

nonterminal symbol (the ‘start symbol’). The evidence of a

successful parse can be a parse tree effectively encoding the

steps of a derivation process. For a more extensive take on

grammars and parsing, the reader is referred to [1, 11].

In the context of software languages, ambiguities in a

grammar are often considered as flaws of the grammar intro-

duced by the grammar engineer who wrote the grammar
2
.

Many examples of ambiguities in real-world software lan-

guage definitions exist [32], e.g., in ANSI-C, and ambiguities

can be notoriously difficult to detect [3]. An ambiguity can

be resolved by a refactoring of the grammar that preserves

the set of sentences generated by the grammar. Additional

refactorings, such as left-factoring, can be performed to re-

duce the non-determinism of the grammar. Such refactorings

are often performed, explicitly or implicitly, by a parser engi-
neer responsible for implementing a parser for the language.

The implemented parser should be sound with respect to the

(original) grammar definition such that it accepts only deriv-

able sentences. This is especially the case when the grammar

forms a contract between the grammar engineer and the

programmer, e.g., when the grammar is part of a reference

manual. In this case, helpful errors messages provided by a

parser can refer to the grammar to help solve syntax errors

in a program. Figure 3 visualises the user roles, artefacts and

relations in this (idealised) view on syntax and parsing.

Based on this view, we have defined four user stories for

the various user roles. 1): As a grammar engineer, I want

to diagnose and remove ambiguities in the grammar. 2): As

a grammar engineer, I want to explore the set of sentences

(the language) generated by the grammar. 3): As a parser

engineer, I want to discover whether the grammar is in the

class LL(1), as this enables (hand- written) deterministic re-

cursive descent parsers. 4): As a programmer, I want to better

understand syntax errors reported to me by a (deterministic

or non- deterministic) top-down parser.

In the next subsection, we will use the multiverse debug-

ging framework to define a debugger targeting these user

stories. The STR of this debugger captures the derivation

process as the described at the start of this subsection. Top-

down and recursive descent parsers (such as LL(k) and GLL)

1
Strictly speaking, a grammar is ambiguous iff there are multiple left-most
or right-most derivations of a sentence.
2
Although the developers of software language workbenches typically ac-

cept ambiguity as a consequence of a more ‘natural’ definition of a language

and introduce ambiguity reduction annotations to the grammar formalism

provided by the workbench to disambiguate under-the-hood.

Grammar

yes

Program

builds

Grammar Engineer

builds

reads

Parser Engineer

builds

Programmer

nomatch?

Parser

Parse Tree

Error

derivation in

refers to

Figure 3. The ideal relation between the different roles and

artefacts involved in the production and usage of grammars

and parsers. The program is the input sentence to the parser.

implement an algorithm that resembles this process quite

closely. As a result, a debugger that simultaneously aids en-

gineers of grammars and top-down parsers is more likely (to

be feasible and intuitive) than a debugger that combines di-

agnosis for grammars and bottom-up parsers (such as LR(k)

and LALR). We have left bottom-up parsing out of scope in

this paper.

3.1 An STR for grammars
The STR interface for debugging grammars is defined as

follows. A configuration is defined as a tuple ⟨𝑆, 𝑖⟩, where
𝑆 is a stack and 𝑖 ≥ 0 is an index into some input sentence

𝐼 . The input sentence 𝐼 and the grammar𝔊 do not occur in

a configuration as they are constant per derivation/parsing

session. The configuration ⟨(X → ·𝔊𝑆), 0⟩ is the single start-
ing configuration in which𝔊𝑆 denotes the nominated start

symbol of the grammar and X a fresh, auxiliary start symbol

used to detect a successful derivation (see Rule accept in

Figure 4). The elements of the stack are quadruples displayed

as (𝑋 → 𝛼 · 𝛽, 𝑖), with 𝑖 an index, (𝑋, 𝛼𝛽) a production, 𝛼, 𝛽
are sequences of symbols, and · denoting the progress made

in matching the production, with the symbols 𝛼 already

matched. Notationally, the stack is a sequence of elements

separated by the • symbol, with the more recently pushed

element on the right. We refer to the symbol after the · in the

top-most element of the stack as the next symbol to match.

The actions are given by the following grammar:

𝑎 ∈ actions ::= match(𝑡) | descend(𝑋, 𝛼) | ascend | accept
Meta-variable 𝑡 refers to a token,𝑋 to a non-terminal symbol,

and 𝛼 to a sequence of symbols. The semantics of the ac-

tions are given as inference rules in Figure 4. The match(𝑡)
action is available when terminal 𝑡 is the next symbol to

match and when the current index 𝑖 points to 𝑡 in the input

sentence. The descend(𝑋, 𝛼) action is available when nonter-

minal 𝑋 is the next symbol to match and when 𝑋 → 𝛼 is a

production in the grammar. The descend action corresponds

to the function call of a recursive descent parser in which

Exploratory, Omniscient, and Multiverse Diagnostics in Debuggers for Non-Deterministic Languages SLE ’25, June 12–13, 2025, Koblenz, Germany

𝐼𝑖 = 𝑡

⟨𝑆 • (𝑋 → 𝛼 · 𝑡𝛽, 𝑗), 𝑖⟩
match(𝑡)
========⇒ ⟨𝑆 • (𝑋 → 𝛼𝑡 · 𝛽, 𝑗), 𝑖 + 1⟩

(match)

𝑆 = 𝑆 ′ • (𝑌 → 𝛼 · 𝑋𝛽, 𝑗) (𝑋, 𝛿) ∈𝔊

⟨𝑆, 𝑖⟩
descend (𝑋,𝛿)
===========⇒ ⟨𝑆 • (𝑋 → ·𝛿, 𝑖), 𝑖⟩

(descend)

𝑆 ′ = 𝑆 • (𝑌 → 𝛼𝑋 · 𝛽, 𝑘)

⟨𝑆 • (𝑌 → 𝛼 · 𝑋𝛽, 𝑘) • (𝑋 → 𝛾 ·, 𝑗), 𝑖⟩ ascend
=====⇒ ⟨𝑆 ′, 𝑖⟩

(ascend)

𝐼𝑖 = $ 𝑆 = (X →𝔊𝑆 ·, 0)

⟨𝑆, 𝑖⟩
accept
=====⇒ ⟨𝑆, 𝑖⟩

(accept)

𝐼 (𝑐, 𝑎) = {𝑐′ | 𝑐 𝑎
=⇒ 𝑐′}

(Interpreter)

Figure 4. Semantics of the grammar-engineering domain-

specific debug actions, and the resulting interpreter. For sim-

plicity, the rules encode LL(1). LL(k) can be obtained with

slight modifications to the handling of indices in the rules.

the stack resembles the call-stack of the parser. The ascend
action is available when there is no next symbol to match

and is analogous to returning from a call to a recursive de-

scent parser. The accept action is available only when the

stack indicates the start symbol of the grammar has been

matched and the end of the input has been reached, indicat-

ing a completed derivation/parsing process. The naming of

the actions is inspired by the characterisation of recursive

descent (top-down) parsing algorithms given in [27].

3.2 User interactions
A debugger is considered to satisfy a user story if it affords

a sequence of user interactions that together (sufficiently)

support the user in realising the goal formulated in the user

story. In the analysis we focus on a theoretical/objective

realisation of the story rather than user experience. That is,

we determine whether the sequence of interactions yields

the informational content needed for the diagnosis, not on

how this information is made available or presented.

To explore suitable interactions for the ambiguity user

story, let 𝑖 , 𝑗 be integers, and 𝑋 a nonterminal. All config-

urations of the form ⟨𝑆 • (𝑋 → 𝛾 ·, 𝑗), 𝑖⟩ in the reachability

graph generated by the interpreter indicate that the nonter-

minal𝑋 can derive the subsentence 𝐼 𝑗,𝑖 of the input 𝐼 ranging

from 𝑗 to 𝑖 . The grammar engineer can inspect the reach-

ability graph in two ways: (1) choosing a concrete 𝛾 and

finding multiple paths in the reachability graph reaching the

corresponding configuration and (2) finding multiple config-

urations for different choices of 𝛾 . In both cases, known as

horizontal and vertical ambiguity respectively [3], there is a

(left-most) derivation of 𝐼 𝑗,𝑖 per path and the path gives the

specific and concrete details of the derivation. Analysing and

comparing these paths gives insight into the nature of the

ambiguity, which can then be used to resolve the ambiguity

by modifying the grammar. A feasible reduction discards the

tail of the stack (𝑆 above) from a configuration. Figure 8 gives

several examples of breakpoint and reduction expression for

this case study. Based on these observations, we define the

following two requirements.

Requirement 1 (RQ1)

A debug user should be able to define breakpoints

over paths.

Requirement 2 (RQ2)

A debug user should be able to find all configurations

satisfying a breakpoint

The first requirement supports the first case of ambiguity,

where a user can use a breakpoint to find a configuration

with multiple incoming edges. The second requirement sup-

ports the second case of ambiguity, where a user can find all

configurations that project the same information (𝑋, 𝑖 and 𝑗

in this case).

A grammar is left recursive when it contains a production

rule 𝑋 → 𝛼 for which holds that the derivation process

applied to 𝛼 can yield a sentence of the form 𝑋𝛾 , for some

𝛾 , via one or more derivation steps. The reachability graph

generated by the interpreter applied to a left-recursive gram-

mar is infinite as infinitely many descend actions on 𝑋 can

be performed whilst ever-growing the stack. To still utilize

breakpoint finding in such scenarios, a bounded search can

be applied. Hence, we formulate the following requirement.

Instead of indiscriminately bounding the search space, we

can also filter out only those paths where the stack displays

more ‘recursive calls’ than elements left in the input sentence

(an approach to handle left-recursion suggested in [10]). We

therefore formulate the following requirement. Based on

these observations, we formulate the following two require-

ments.

Requirement 3 (RQ3)

A debug user should be able to control the depth of

breakpoint searches.

Requirement 4 (RQ4)

A debug user should be able to pre-emptively reduce

(prune) the search space.

SLE ’25, June 12–13, 2025, Koblenz, Germany Frölich et al.

The second user story is related to sentence generation.

The STR can be used to generate sentences by (selectively)

ignoring 𝐼 when determining whether match and accept ac-
tions are available. Paths in the reachability graph ending

with an accept transition then display sentences derivable

from the start symbol (by inspecting the match-transitions
of the path). Note that there may be infinitely many such

paths. A grammar engineer might be interested in sentences

of a particular structure by selectively disabling the input

sentence. The order of the sentences generated via find is

determined by the implemented search strategy. And a depth-

first search strategy may not yield a representative sample

when applied a limited amount of times.

Requirement 5 (RQ5)

A debug user should be able to control the search

strategy used during breakpoint finding.

The third user story is related to the implementation of

the parser. If the grammar is in the class of LL(1) grammars,

the parser engineer can hand-write a performant recursive

descent parser. We modify the debugger by adding a condi-

tion that makes an action descend (𝑋, 𝛼) available only if 𝐼𝑖
is in the first-set of 𝛼 (first-sets can be precomputed from the

grammar definition [11]). A concrete counter-example to the

LL(1) property is found if there is a configuration admitting

two or more descend actions. Requirements 1, 2, 3 suffice.

The fourth and final user story is related to a programmer

interacting with a parser. The programmer wants to better

understand the error they made in a program rejected by

a parser. The programmer can use the debugger by finding

configurations not admitting any actions (the derivation

cannot continue and is not complete). The programmer can

then inspect the trace of the current execution to obtain

information regarding the parse error. A top-down parser

typically performs LL(1)-lookahead. Thus we need the first-

set condition described above. If the parser is deterministic,

and the grammar LL(1), then our debugger will run into the

same unique error. If the parser is non-deterministic, we can

use the debugger to find all error states discovered by the

parser. Basic breakpoints and Requirement 2 suffice.

4 Funcons
Defining the semantics of a programming language is com-

plex, but programming languages often share concepts and

constructs, giving reuse opportunities. In this case study

we explore debugging in the context of the funcons frame-

work for defining the operational semantics of programming

languages with reusable components referred to as ‘fun-

cons’ [17]. The framework provides a library of fundamental

constructs (funcons) as building blocks for the operational se-
mantics of programming languages. Every funcon is formally

defined by a funcon engineer in the CBS meta-language [17],

Funcon engineer

Language engineer

Programmer

Program

Funcons
database

Language
specification

defines

reads

builds

Interpreter
builds

depends on

generates

Figure 5. The ideal relation between the different roles and

artefacts involved in the production and usage of operational

semantics and (derived) interpreters.

using small-step I-MSOS [16, 18], a modular variant of struc-

tural operational semantics (SOS) [22]. The operational se-

mantics of a programming language is defined by a language
engineer via a translation from object language programs to

funcon terms. A programmer (language user) writes a pro-
gram in the object language as input to an interpreter that

first converts the input program to a funcon term (following

the translational semantics) and then applies the existing fun-

con term interpreter to the resulting funcon term [30]. In this

case study we investigate whether and how the multiverse

debugging framework can be used to obtain a multiverse

debugger for both funcon terms and object language pro-

grams. Figure 5 visualises the aforementioned user roles,

artefacts and relations in this (idealised) view on reusable

programming language semantics.

The funcon term interpreter is directly derived from the

small-step definition of the funcons written in CBS [30]. The

small-step nature of these definitions makes it possible to

instrument the funcon interpreter to enable stepwise de-

bugging, with each step in the underlying SOS semantics

corresponding to a step in the debugger
3
. The funcon inter-

preter is non-deterministic if at least one of the funcons in

the funcon library is non-deterministic, which is the case if:

The funcon is defined by (I-MSOS) rules that are not mutually

exclusive, i.e., two or more rule instances
4
can be simulta-

neously applied to perform a step on a given funcon term.

Or, the funcon term is given an informal or axiomatic defini-

tion that is inherently non-deterministic. The first source of

non-determinism is generally considered to be undesirable

when defining the semantics of a deterministic or sequential

programming language. However, one can use this source of

non-determinism to specify the behaviour of concurrent pro-

gramming constructs (e.g., threads) and non-deterministic

3
Note that this process may not result in the desired granularity of steps.

4
In SOS and variants, a rule is instantiated to form a rule instance by

substituting meta-variables, not all of which may be bound by the term

under evaluation, creating a source of non-determinism.

Exploratory, Omniscient, and Multiverse Diagnostics in Debuggers for Non-Deterministic Languages SLE ’25, June 12–13, 2025, Koblenz, Germany

operators (e.g., without a well-defined order of argument

evaluation).

In the current funcon library, set-elements is a non-

deterministic operator which returns a permutation of the

elements of a set. Crucially, the order of the returned se-

quence is unspecified. This funcon is directly or indirectly

used in the definition of other non-deterministic funcons

such as some-element (yielding an arbitrary element from a

non-empty set), which is used to define the semantics of con-

current programming languages based on the thread-model.

Based on the aforementioned described domain, we have

defined five user stories. 1): As a funcons engineer, I want

to introduce new (non-deterministic) funcons and explore

their semantics and interaction with existing funcons. 2): As

a language engineer, I want to experiment with funcons to

determine the right combination of funcons for my language

semantics. 3): As a language user, I want to query the current

program state. 4): As a language user, I want to see the code

around the current program point. 5): As a language user, I

want to modify the program and observe the effects of the

modification.

4.1 A STR for funcons
The STR configuration for funcons consists out of the current

(funcon) term under execution and a set of auxiliary semantic

entities capturing contextual information such as variable

bindings, assignments and printed output (see [30]). The

funcon debugger has one action: step. Its semantics and the

resulting interpreter are as follows.

𝑡
(𝑒,𝑒′)
−−−−→ 𝑡 ′

⟨𝑡, 𝑒⟩
step
===⇒ ⟨𝑡 ′, 𝑒′⟩

(step) 𝐼 (𝑐, 𝑎) = {𝑐′ | 𝑐 𝑎
=⇒ 𝑐′}

(Interpreter)

The step action steps the current term and updates the

configuration with the derived term and the updated en-

tities, if any. If the step triggers the evaluation of a non-

deterministic funcon, the step may yield more than one out-

put configuration.

4.2 User interactions
The first user story is from a funcon engineers viewpoint who

wants to explore the right definition for a non-deterministic

funcon. A funcon is non-deterministic if the reachability

graph contains a configuration with multiple outgoing edges.

Such configurations can be easily found using Requirement 1.

However, even with a small-step semantics, one step can in-

troduce many new configurations. This can happen either

when the root term directly produces many result configu-

rations, or because sub-computations produce many result

configurations, which can aggregate. So, performing one

step can still cause an enormous growth of the state space,

such that it is infeasible to control manually. Nevertheless,

not all the non-determinism observed during a step is of

interest. Therefore, by focusing only on non-determinism

that is significant to the debugging task at hand, the amount

of states produced by one step can be significantly reduced.

We therefore formulate the following requirement.

Requirement 6 (RQ6)

A debug user should be able to control for which

non-deterministic terms all states are visited.

The second user story is from the perspective of a lan-

guage engineer who uses funcons to give semantics to an

object language. This type of user might utilize the debugger

to explore semantics for a specific language construct by

giving a definition for that construct in terms of funcons and

testing the construct. The language engineer can achieve

this by starting a new debugging session for every example

program and observing the behaviour. However, that makes

it difficult to compare debug sessions, which is a primary

goal in this user story. With that in mind, we define the

following requirement.

Requirement 7 (RQ7)

A debug user should be able to go back-in-time to

retry a scenario with different input values and com-

pare the outcome values of the different scenarios.

The third and fourth user stories are from the perspective

of a programmer using an object-language with semantics

defined in terms of funcons. Both these user stories describe

interactions with the debugger that enable a programmer

to get a better idea of the current state the program is in,

without getting overloaded with too much information. The

third user story does this by enabling the user to query spe-

cific information out of a specific state. And the fourth user

story enables a user to build a better mental model where

the execution is paused. Both of these interactions can be

achieved via the breakpoint and reduction functionality al-

ready present in the debugger. A query on the state can be

formulated as a breakpoint, if the answer is boolean. Alterna-

tively, a reduction and display of the reduced configuration

can project specific information out of configurations. We

therefore formulate the following requirement.

Requirement 8 (RQ8)

A debug user should be able to test for breakpoints

and to visualize (reduced) configurations.

5 eFLINT (reasoning with norms)
The eFLINT language is a domain-specific language for rea-

soning with formalized interpretations of norms as they

are found in laws, regulations, contracts and organisational

policies [28]. In eFLINT, a normative specification encodes

SLE ’25, June 12–13, 2025, Koblenz, Germany Frölich et al.

a formal interpretation of norms, declares data-structures

(types) for knowledge representation whose instances (facts)

are either true or false. This part of a specification is referred

to as the ontology of the specification. In the process model of
a specification, effects are associated with action- and event-

types, determining which facts are rendered true or false by

the triggering of instances of these types (actions and events,

respectively). Together, the ontology and the process model

describe a finite, non-deterministic state automaton in which

states are formed by the set of (true) facts and transitions are

formed by the (effects of) actions and events. The automa-

ton is non-deterministic in that in any given state, multiple

actions and/or events may be triggereable. The automaton is

finite as there is a finite amount of (possible true) facts and

because the amount of outgoing transitions of any state is

bounded by the finite set of possible actions and events.

The normative classification, the final part of an eFLINT

specification, assigns violations to states and transitions of

the automaton
5
. A duty-type declaration establishes that a

state is violating if it states the truth of an instance of the type

(a duty) whilst also satisfying one or more of the violation

conditions (Boolean expressions over facts) associated with

the duty-type. An action-type declaration establishes that a

transition is violating if one or more of the pre-conditions

(Boolean expressions over facts) associated with the action-

type is not satisfied by the source-state of the transition.

The language can be used to establish the extent to which

a software system complies with (the formalised interpreta-

tion of norms encoded in) a policy document. In an idealised

setting, visualised in Figure 6, a policy expert determines the

policy – possibly including relevant laws and regulations –

of an organisation employing some software system. Follow-

ing a model-driven approach, a software engineer maintains
6

both the running software system as well as the parts of

the eFLINT specification that model the software system

(ontology and process model). The policy engineer extends
this eFLINT specification with the normative classification,

established by formalizing the norms encoded in the policy
7
.

Based on the above description of the domain, we formu-

late the following five user stories. 1): As a policy engineer, I

want to discover in what ways particular transitions or states

can be reached. 2): As a policy engineer, I want to discover

the effects on possible violations of certain modifications

to the normative classification of an eFLINT specification.

3): As a policy engineer, I want discover how to modify the

5
In practice, a normative classificationwill also introduce sets of institutional
facts and actions that play a role in establishing compliance, separate from

the physical facts and actions representing the software system, see [19, 25,

28, 31].

6
We are not concerned here with whether or how one is derived from the

other or how the two are kept consistent.

7
We are also not concernedwith the processes required to integrate concepts

from the policy and software system

Software
System

builds

specifies

specifies

Software
Engineer

Normative Classification

models

Process
Ontology

specifiesPolicy
Engineer

models determines

Policy
Maker

regulates
Policy

models

Figure 6. The ideal relation between the different roles and

artefacts involved in checking the compliance of a software

system against policy using eFLINT.

normative classification to ensure certain states or transi-

tions are (no longer) violating. 4): As a software engineer, I

want to assess the compliance risks of the software system

modelled by an eFLINT specification by determining in what

ways violating states and transitions can be reached. 5): As

a software engineer, I want to modify the process model of

an eFLINT specification to reduce the number of possible

occurrences of violations.

5.1 A STR for eFLINT
The eFLINT STR consists of a configuration defined as a

tuple containing the current specification and the current

knowledge base. eFLINT has one type of action: trigger 𝑡 . A
trigger action is generated for every trigger-able action in

the knowledge base. The semantics of the debugging action

and the resulting interpreter are as follows.

𝑡 ∈ 𝑘𝑏 𝑘𝑏
𝑡−→ 𝑘𝑏′

𝑘𝑏
trigger 𝑡
=======⇒ 𝑘𝑏′

(trigger)

𝐼 (𝑐, 𝑎) = {𝑐′ | 𝑐 𝑎
=⇒ 𝑐′}

(Interpreter)

5.2 User interactions
For the first user story, the user wants to find states that

are reached in a particular way. This user story is already

captured by Requirement 1.

The second user story is focused on comparing paths or

configurations at different points in a debugging session. We

therefore formulate the following requirement.

Requirement 9 (RQ9)

A debug user should be able to inspect partial debug

traces.

This requirement differs from Requirement 7 in two as-

pects: no back-in-time functionality is required, and only

one particular trace is inspected.

The third user story is concerned with assessing the effects

of modifications to the normative specification, such as the

possible violations that can occur in a system. This can be

achieved by altering the specification being debugged and

Exploratory, Omniscient, and Multiverse Diagnostics in Debuggers for Non-Deterministic Languages SLE ’25, June 12–13, 2025, Koblenz, Germany

re-evaluating a particular scenario. The requirement for such

interactions correspond to Requirement 7.

The fourth user story concerns finding compliance related

breakpoints for a scenario in a specification. A user could

achieve this user story by defining a breakpoint that finds

states inwhich a violation exists. To findmultiple such points,

the debugger needs to support finding multiple breakpoints,

as formulated in Requirement 2. To also determine how these

different breakpoints were reached, the debugger needs to

keep track of multiple histories and make multiple histories

insightful. Hence, we formulate the following requirement.

Requirement 10 (RQ10)

A debug users should be able to operate on multiple

histories in one debug session.

The fifth user story concerns the viewpoint of a systems

engineer that wants to reduce violations in their system by

modifying the process. This user story is similar to the third

user story, but from the viewpoint of a different actor. Never-

theless, the specific user interaction is the same. Hence, the

requirements needed to satisfy the current user interactions

are also captured by Requirement 7.

6 Generalized Multiverse Debugging
We introduce the generalized STR (GSTR) which adapts the

STR-based debugging framework along three dimensions:

new components for meta-actions are added to the STR, the

history and options component are generalized using graph

structures instead of sets, and the breakpoint (𝐵) and reduce

(𝑅) functions are generalized by Step and Label functions.
The meta-action components are motivated by Require-

ments 7,8, and the removal of the breakpoint and reduce func-

tions. Using meta-actions, language engineers can extend

their debugger with language-specific functionality. This is

extra useful for visualisation and query operations which

do not alter the configuration in any way, but as actions

would still be included in the history. With meta-actions, the

functionality remains without polluting the history.

Using graphs instead of sets for the history and options

component is motivated by Requirements 1,9. With graphs,

more information is retained, empowering more expressive

breakpoint and reduction functions.

The last adaptation generalizes the breakpoint and reduce

functions by Step and Label functions, and is motivated by

Requirements 2,3,4,5. The Label function assigns a label to

every configuration in the current search graph. The Step
function performs a step on the current search graph based

on the labelling by the Label function. After a step, the search
graph is extended with new configurations and another iter-

ation of labelling and stepping is performed. When no new

configurations are added the algorithm stops. Compared to

the original breakpoint (𝐵) and reduce (𝑅) functions, the

Step and Label functions provide more flexibility and expres-

siveness, while also promoting reusability among different

language-specific debuggers. For instance, in our implemen-

tation we have defined several reusable functions that can

be combined to create concrete Step and Label instances. It
is thus possible to implement new search strategies without

modifications to the debugging framework.

6.1 Formal generalized-STR definition
We now give the formal definition of the GSTR, following

the formal definition in Section 2.

Definition 6.1. A generalized STR (GSTR) is a tuple

⟨𝐶,𝐶0, 𝐴,𝑀, 𝐼, 𝐴𝑐𝑡, 𝑃,𝐶𝑜𝑚⟩, which extends the STRwith three

new elements:𝑀, 𝑃,𝐶𝑜𝑚.𝑀 denotes a set of meta-actions (or

commands). 𝑃 is a function𝐶 ×𝑀 → 𝐶 ×𝑂 which performs

a command on a configuration, resulting in an updated con-

figuration and an output value. The set 𝑂 is left abstract but

is defined by the debugging framework and varies depend-

ing on the execution environment. It provides a mechanism

for meta-actions to communicate with the external world.
8

Finally, the𝐶𝑜𝑚 component is a function𝐶 → P(𝑀) giving
the active commands for the given configuration.

A generalized debugger is defined in terms of a GSTR,

where 𝐺𝑆 = ⟨𝐶𝑠 ,𝐶𝑠0, 𝐴𝑠 , 𝑀𝑠 , 𝐼𝑠 ,Act𝑠 , 𝑃𝑠 ,Com𝑠⟩ is the GSTR
for the language being debugged:

𝐺𝐷𝐺𝑆 (Step, Label) = ⟨𝐶𝑑 ,𝐶𝑑0, 𝐴𝑑 , 𝑀𝑑 , 𝐼𝑑 ,Act𝑑 , 𝑃𝑑 ,Com𝑑⟩.
The debugger configuration is defined as a tuple:𝐶𝑑 = ⟨𝐶𝑠 ∪
{⊥},G(𝐶𝑠 , 𝐴𝑠),G(𝐶𝑠 , 𝐴𝑠)⟩, with G(𝐶,𝐴) = ⟨P(𝐶),P(𝐶 ×
𝐴 ×𝐶)⟩ denoting a graph with vertices being elements of 𝐶

and edges are labelled by elements of𝐴. The set of actions𝐴𝑑

is the set of actions of STR debugger extended with ameta𝑚
action for execution of the meta-commands in 𝑀𝑠 . For the

debugger, we leave the set of meta-commands (𝑀𝑑) empty.

Therefore, the function 𝑃𝑑 is a constant function returning

the given configuration and no output. The debugger is in-

dexed by two functions: Step and Label, which generalize

over the Breakpoint(𝐵) and Reduce(𝑅) functions from the STR

definition, which is discussed in more detail in Section 6.2.

Step : (𝐶 → 𝐿) → G(𝐶,𝐴) → G(𝐶,𝐴)
Label : G(𝐶,𝐴) → (𝐶 → 𝐿)

The set 𝐿 is a label set with elements forming labels. Every la-

bel set comes associated with two functions ⟨accept, enabled⟩
of type 𝐿 → B. The accept function denotes whether a par-

ticular label indicates that the associated configuration is

an accepting state. The enabled function denotes whether a

particular label indicates that the associated configuration is

enabled for transitions. The Step function iterates the graph

in such a way that only new outgoing edges are added to

8
An alternative method to model external communication is to execute the

meta-action in a monad. For simplicity, we have opted to model it using an

abstract output value.

SLE ’25, June 12–13, 2025, Koblenz, Germany Frölich et al.

𝑎𝑠 ∈ 𝐴𝑐𝑡𝑠 (𝑐𝑠) 𝑐𝑠 ≠ ⊥ 𝑐𝑠 = 𝐼𝑠 (𝑐𝑠 , 𝑎𝑠)
𝑜𝑝𝑡𝑠 = (𝑐𝑠, {(𝑐, 𝑎, 𝑐′) | 𝑐′ ∈ 𝑐𝑠})

⟨𝑐𝑠 , ℎ𝑖𝑠𝑡, _⟩
𝑠𝑡𝑒𝑝 𝑎𝑠−−−−−→ ⟨⊥, ℎ𝑖𝑠𝑡, 𝑜𝑝𝑡𝑠⟩

(step)

𝑐𝑠 ∈ V(𝑜𝑝𝑡𝑠) 𝑔′ = 𝑔 ∪𝐺 𝑜𝑝𝑡𝑠

⟨_, 𝑔, 𝑜𝑝𝑡𝑠⟩ 𝑠𝑒𝑙𝑒𝑐𝑡 𝑐𝑠−−−−−−−→ ⟨𝑐𝑠 , 𝑔′, 𝜖⟩
(select)

𝑐𝑠 ∈ V(𝑔)

⟨_, 𝑔, _⟩
𝑗𝑢𝑚𝑝 𝑐𝑠−−−−−−→ ⟨𝑐𝑠 , 𝑔, 𝜖⟩

(jump)

𝑐𝑠 ≠ ⊥ 𝑚𝑠 ∈ Com𝑠 (𝑐𝑠) 𝑀𝑠 (𝑚𝑠) = ⟨𝑐′, 𝑜⟩

⟨𝑐𝑠 , 𝑔, 𝜖⟩
𝑚𝑒𝑡𝑎 𝑚−−−−−−→ ⟨𝑐′, 𝑔 ⌢ 𝑐′, 𝜖⟩

(meta)

find𝜓 (({𝑐𝑠 }, ∅)) = (𝑔𝑛, 𝑐𝑛)

⟨𝑐𝑠 , 𝑔, _⟩
run_to_breakpoint
−−−−−−−−−−−−−→ ⟨⊥, 𝑔 ∪𝐺 𝑔𝑛, 𝑐𝑛⟩

(run)

find𝜓 (𝑜𝑝𝑡𝑠) = (𝑔𝑛, 𝑐𝑛)

⟨⊥, 𝑔, 𝑜𝑝𝑡𝑠⟩
run_to_breakpoint
−−−−−−−−−−−−−→ ⟨⊥, 𝑔 ∪𝐺 𝑔𝑛, 𝑐𝑛⟩

(run-2)

𝐼𝑑 (𝑐𝑑 , 𝑎𝑑) = {𝑐′
𝑑
| 𝑐𝑑

𝑎−→ 𝑐′
𝑑
} (Interpreter)

Figure 7. Semantics of the debugging operations for the

generalized debugger. The function V projects the vertices

out of a graph. The⌢ operation adds a configuration to the

vertices of a graph. The ∪𝑔 operation combines two graphs

by taking the pointwise union. We use 𝜖 for empty graphs.

vertices with a label marked as enabled. The debugger itself
uses the accept function to extract the interesting configura-

tions after a search. The iterative process is performed until

a fixed-point is reached, which requires that the Step func-

tion is monotonic on the structure of the graph. Finally, the

semantics of the debugger (𝐼𝑑) is updated, shown in Figure 7.

Compared to the STR definition, the GSTR definition does

not use Break and Reduce functions. Instead, Step and Label
functions are used, and the history and options components

are now generalized to graphs. This generalization is the

biggest contributor to the changes required in the semantics

of the debug actions.

6.2 Concrete Step and Label components
To show the expressiveness of the Step and Label functions,
we highlight some of the breakpoint and reduction expres-

sions from our grammar case study, and explain how to ob-

tain the functionality of the original breakpoint and reduce

functions using Step and Label functions.
Figure 8 highlights several breakpoint and reduction ex-

pressions defined for our grammar case study. Several of

these examples were discussed from the user-interaction

Breakpoints:

(∀𝑐) (∃𝑐′) (𝑐
𝑎𝑐𝑐𝑒𝑝𝑡
−−−−−→ 𝑐′). (Accepting states)

(∀𝑐) (∃𝑐′, 𝑝, 𝑝′) (𝑐′
𝑝
−→𝑚 𝑐 ∧ 𝑐′

𝑝′

−→𝑛 𝑐 ∧ 𝑝 ≠ 𝑝′).
(Ambiguity points)

Reductions:
(∀𝑐) (I[𝑐.𝑖] ∉ F (𝑐)) .

(∀𝑐) (∃𝑋, 𝛼) (count(descend(𝑋, 𝑎), 𝑐 .𝑆) > length(I) − 𝑐.𝑖).

Figure 8. Example breakpoint and reductions applicable to

the GSTR of the grammar-engineering case study. We use

F (𝑐) to denote the follow-set. Traces longer than 1 step are

subscripted to denote the length of the trace.

point-of-view in Section 3.2. The first breakpoint finds con-

figurations denoting a successful parsing derivation. For this

breakpoint, the Label function checks for every configura-

tion if the condition is met, and if so the configuration is

labelled as accepting. The second breakpoint finds configu-

ration for which there exist two unique paths to some other

configuration. The first reduction reduces configurations in

which the next terminal to match is not a member of the

computed follow-set. The second reduction reduces configu-

rations where the stack is larger than the size of the input

not yet matched. Both reductions do not work with a seen

set, and instead prune, by labelling the configuration dis-

abled, the search space immediately when a configuration

that satisfies the expressions is found.

To obtain the breakpoint/reduce functionality from the

STR-debugger, we define a label set with three labels: enabled,
disabled, and accepted. The Label function maps the graph

to a reduced graph according to some reduction function,

and assigns labels to the configurations according to the

original semantics of the STR-based debugger: accepted if a

configuration matches the breakpoint, enabled if a reduced

configuration has no outgoing edges, and disabled otherwise.

The Step function does a depth-first search until there exists

a configuration with an accepted label or until there exists

no configuration with an enabled label. The implementation

is parametrized by the reduction and breakpoint function.

This parametrization is fully hidden from the debugging

framework.

7 Satisfaction of the Requirements
Table 1 discusses for each framework whether it satisfies a

requirement and if not which modifications can be made to

the framework to satisfy the requirement.

At a high level, the first five requirements are met by our

framework due to the introduction of the Step and Label func-
tions. Some of the requirements can be met by the original

Exploratory, Omniscient, and Multiverse Diagnostics in Debuggers for Non-Deterministic Languages SLE ’25, June 12–13, 2025, Koblenz, Germany

framework via a small modification of the semantics, for ex-

ample via an alternative implementation of the find function.

This is also what we observed during the implementation

of the case-study debuggers. Based on these observations,

we came to the generalization via the Step and Label com-

ponents that encompass all those requirements while also

offering reusability and flexibility between different debug-

ger implementations. With the Step and Label components,

new search strategies, essentially alternative implementa-

tions for the find function, can be defined without needing

modifications to the debugging framework semantics. There-

fore, a Language engineer is not dependant on a Framework
engineer when desiring alternative search strategies.

The second set of the requirements is more focused on the

history mechanism, and most requirements are met by both

frameworks. Still, the introduction of the graph-based history

adds several new possibilities to the debuggers, including

the generalization of the reduce and breakpoint functional-

ity, while also supporting multiple independent debugging

explorations in the same debugging session.

Finally, Requirement 6 is met by both frameworks, but not

using a reusable mechanism. Instead, the required work is

pushed to the interpreter of the language being debugged.

Satisfying this requirement in a reusable manner requires

interaction between the debugger and interpreter on every

sub-computation, which requires severe alterations to the

interpreter implementations. By not integrating this, we keep

the framework interface simpler for languages that do not

need the support for this feature, while still supporting the

feature for languages that require it.

8 Threats to Validity
In this section we discuss the threats to validity present in

this work from the point of view of empirical software re-

search [6]. The primary component in our research is the

requirements. The validity of the requirements can be af-

fected by the chosen domains, and the selected user stories.

The selected user stories were determined by the authors

based on expert experience in the respective domains. A

more diverse set of user stories could be obtained by per-

forming interviews with users across different experience

levels. However, due to the fact that two out of the three

domains have a small user base this was deemed impractical.

In our case, we have thus opted to base our user stories on

the experience of an expert in the respective domains.

To ensure our approach is transferable to different do-

mains, we have performed our approach on three differ-

ent domains. Furthermore, by being able to define the old

framework in terms of the new framework, we retain the

applicability of our work on those case studies.

9 Related work
The original multiverse debugging paper [15] presented Voy-

ager, a multiverse debugger focused on AmbientTalk pro-

grams. As part of this implementation, they stored the ex-

ploration graph using the ArangoDB graph database. Hence,

the graph of a debugging session can be queried using the

ArangoDB query language. Our work is essentially a combi-

nation of the graph idea applied to the reusable framework

of Pasquier et al. [21]. Although our implementation does

not run on a (commercial) graph database, this is achievable

in future work. Alternative options are also interesting, es-

pecially in combination with the Step and Label components.

For example, using a graph algorithm language based on

semigroups [13] or Kleene algebras [7] to guide the search.

These ideas have been partially explored by [21] in the con-

text of temporal breakpoints.

Omniscient debugging [14] enables back-in-time debug-

ging, but does not have an explicit focus on non-deterministic

programs. A reusable framework for omniscient debugging

exists [4]. In addition, a significant amount of optimizations

exist for omniscient debugging systems [2, 23]. In future

work, it would be interesting to see if some of the optimiza-

tions can be applied to our framework, and how much work

is required to extend existing omniscient debugging frame-

works with multiverse debugging support.

With our debugger, a sequence of debugging interactions

can be retried between different scenarios; a feature that is

inspired by exploratory programming. Previous work [9] has

done a deep-dive into the implications of different history

mechanisms to store the exploration graph. Using a graph

gives rise to all traces, which can encompassmore traces than

actively explored by the user. The full implications of this

in the debugging context requires future work to determine.

Nevertheless, our framework can be extended to keep a log

of actions to reconstruct the concrete traces debugged by

the user.

10 Conclusion
Debugging non-deterministic programs is challenging, pri-

marily due to the state space explosion problem. Multiverse

debugging aims to aid debugging non-deterministic pro-

grams bymaking debugging an interactive and user-controlled

exploration of the state space. Previous work introduced a

reusable framework for multiverse debugging, with the ad-

dition of user-definable reductions with which the search

space can be reduced. Based on this framework, we have

collected requirements for multiverse debuggers using three

case studies in three different domains. Based on these re-

quirements we have identified several limitations in previous

work. Using these insights, we have introduced a modified

and extended framework formultiverse debuggers withmore

general applicability while promoting reusability.

SLE ’25, June 12–13, 2025, Koblenz, Germany Frölich et al.

Table 1. Analysis of the extent to which the debugging framework of [20] and our extended version satisfy the requirements

formulated for the case studies of this paper.

Requirement Pasquier et al. [20] Our work

RQ1 This requirement is met using a modified find function

as demonstrated by [21].

This requirement is met owing to the introduction of the

graph history and the Label function over this history,

which can be defined such that it assigns a breakpoint

label to configurations based on paths in the graph.

RQ2 This requirement can be met via a modification to the

find function of the debugging framework, which cur-

rently performs a depth-first search and stops after find-

ing a breakpoint.

This requirement is met owing to the definition of

the find function in terms of the Step and Label func-
tions. The Step and Label functions can be defined such

that they continue the search until all breakpoints are
reached. Termination of this process depends on the con-

crete Label function, and the underlying language being

debugged.

RQ3 This requirement is not met due to the fixed semantics

of the find function, which continues until either all (re-

duced) configurations have been visited or a breakpoint

is reached. Nevertheless, this requirement is easily sat-

isfied by modifying the find function to take an integer

parameter to control the recursion depth of the search.

This requirement is met by defining a Label function
that disables all configurations when there exists a

non-repeating path in the graph of certain length. By

disabling all configurations, the Step function cannot

progress on any configuration, and the search will be

terminated.

RQ4 This requirement can be met via a modification to the

find function of the debugging framework, which cur-

rently utilizes a set of previously seen (reduced) configu-

rations to handle pruning of the search space.

This requirement is met by defining a Label function
that performs pruning based on properties of configu-

rations in the graph. The previously seen (reduced) con-

figurations is an example of such a property, but other

implementations are possible, such as the pruning of

left-recursion in the grammar case study.

RQ5 This requirement can be met by modifying the find func-

tion of the debugging framework, which currently per-

forms a depth-first search.

This requirement is met by defining Step functions with

different search strategies. For our case studies, we imple-

mented depth- and breadth-first search. Other strategies,

such as a parallel search strategy, are also possible.

RQ6 This requirement is met, but not in a reusable manner.

Instead, the language designer needs to encode this func-

tionality in the interpreter and use the configuration to

communicate which non-deterministic terms need to be

collapsed and which terms need to be fully explored.

This requirement is met, but not in a reusable manner.

Instead, the language designer needs to encode this func-

tionality in the interpreter and use the configuration to

communicate which non-deterministic terms need to be

collapsed and which terms need to be fully explored.

RQ7 This requirement is met via the support of user-definable

actions and jump. A language engineer can add an action

that modifies the program being debugged. A user can

then jump to the specific configuration and perform the

modification action at that point.

This requirement is met via the support of user-definable

actions and jump. A language engineer can add an action

that modifies the program being debugged. Meta-actions

can be used instead, adding an isolated configuration to

the history, resulting in a clearer divide between different

explorations in the same debugging session.

RQ8 This requirement is not met by the framework because

breakpoints and reductions are purely available inside

the find function. Nevertheless, it would be trivial to

extend the framework with this semantics by adding two

new actions to the debugger, one to test a breakpoint on

the current configuration, and one to reduce the current

configuration.

This requirement is met by our framework via the usage

of meta-actions in combination with the output result.

Direct support from the framework for this requirement

is thus removed. Requiring the usage of meta-actions to

satisfy this requirement does move some implementa-

tion efforts away from the framework to the language

engineer.

RQ9 This requirement can be satisfied through a relatively

simple modification to the framework, using a tree or

list to represent history instead (also discussed in [20]).

This requirement is satisfied owing to storing the history

as a graph, which makes it trivial to focus on (partial)

traces of the current debugging session.

RQ10 This requirement is satisfied via the jump action, which

makes it possible to go back to a previous configuration

and explore a different part of the history, thus support-

ing multiple histories in one debugging session.

This requirement is satisfied via the jump action, which

makes it possible to go back to a previous configuration

and explore a different part of the history, thus support-

ing multiple histories in one debugging session.

Exploratory, Omniscient, and Multiverse Diagnostics in Debuggers for Non-Deterministic Languages SLE ’25, June 12–13, 2025, Koblenz, Germany

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers:

Principles, Techniques, and Tools. Addison-Wesley. I–X, 1–796 pages.

[2] Earl T. Barr and Mark Marron. 2014. Tardis: affordable time-travel

debugging in managed runtimes. In Proceedings of the 2014 ACM In-
ternational Conference on Object Oriented Programming Systems Lan-
guages & Applications, OOPSLA 2014, part of SPLASH 2014, Portland,
OR, USA, October 20-24, 2014, Andrew P. Black and Todd D. Millstein

(Eds.). ACM, 67–82. https://doi.org/10.1145/2660193.2660209
[3] Hendrikus J. S. Basten and Jurgen J. Vinju. 2012. Parse Forest Diagnos-

tics with Dr. Ambiguity. In Software Language Engineering, Anthony
Sloane and Uwe Aßmann (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 283–302.

[4] Erwan Bousse, Dorian Leroy, Benoît Combemale, Manuel Wimmer,

and Benoit Baudry. 2018. Omniscient debugging for executable DSLs.

J. Syst. Softw. 137 (2018), 261–288. https://doi.org/10.1016/J.JSS.2017.
11.025

[5] N. Chomsky and M.P. Schützenberger. 1963. The Algebraic Theory

of Context-Free Languages*. In Computer Programming and Formal
Systems, P. Braffort and D. Hirschberg (Eds.). Studies in Logic and

the Foundations of Mathematics, Vol. 35. Elsevier, 118–161. https:
//doi.org/10.1016/S0049-237X(08)72023-8

[6] Daniela S Cruzes and Lotfi ben Othmane. 2017. Threats to validity in

empirical software security research. In Empirical research for software
security. CRC Press, 275–300.

[7] Nikita Danilenko. 2015. Designing Functional Implementations of Graph
Algorithms (Entwurf funktionaler Implementierungen von Graphalgo-
rithmen). Ph. D. Dissertation. Kiel University, Germany. https://nbn-
resolving.org/urn:nbn:de:gbv:8-diss-186649

[8] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris

van Doorn, and Jakob von Raumer. 2015. The Lean Theorem Prover

(System Description). In Automated Deduction - CADE-25 - 25th Inter-
national Conference on Automated Deduction, Berlin, Germany, August
1-7, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9195),
Amy P. Felty and Aart Middeldorp (Eds.). Springer, 378–388. https:
//doi.org/10.1007/978-3-319-21401-6_26

[9] Damian Frölich and L. Thomas van Binsbergen. 2021. A Generic

Back-End for Exploratory Programming. In Trends in Functional Pro-
gramming - 22nd International Symposium, TFP 2021, Virtual Event,
February 17-19, 2021, Revised Selected Papers (Lecture Notes in Computer
Science, Vol. 12834), Viktória Zsók and John Hughes (Eds.). Springer,

24–43. https://doi.org/10.1007/978-3-030-83978-9_2
[10] Richard A. Frost, Rahmatullah Hafiz, and Paul Callaghan. 2008. Parser

Combinators for Ambiguous Left-Recursive Grammars. In Practical
Aspects of Declarative Languages (Lecture Notes in Computer Science,
Vol. 4902). Springer Berlin Heidelberg, 167–181. https://doi.org/10.
1007/978-3-540-77442-6_12

[11] Dick Grune. 2010. Parsing Techniques: A Practical Guide (2nd ed.).

Springer Publishing Company, Incorporated.

[12] Mary Beth Kery and Brad A. Myers. 2017. Exploring exploratory pro-

gramming. In 2017 IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC 2017, Raleigh, NC, USA, October 11-14, 2017,
Austin Z. Henley, Peter Rogers, and Anita Sarma (Eds.). IEEE Computer

Society, 25–29. https://doi.org/10.1109/VLHCC.2017.8103446
[13] Donnacha Oisín Kidney and Nicolas Wu. 2025. Formalising Graph

Algorithms with Coinduction. Proc. ACM Program. Lang. 9, POPL
(2025), 1657–1686. https://doi.org/10.1145/3704892

[14] Bil Lewis. 2003. Debugging Backwards in Time. CoRR cs.SE/0310016

(2003). http://arxiv.org/abs/cs/0310016
[15] Carmen Torres Lopez, Robbert Gurdeep Singh, Stefan Marr, Elisa Gon-

zalez Boix, and Christophe Scholliers. 2019. Multiverse Debugging:

Non-Deterministic Debugging for Non-Deterministic Programs (Brave

New Idea Paper). In 33rd European Conference on Object-Oriented Pro-
gramming, ECOOP 2019, July 15-19, 2019, London, United Kingdom

(LIPIcs, Vol. 134), Alastair F. Donaldson (Ed.). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 27:1–27:30. https://doi.org/10.4230/LIPICS.
ECOOP.2019.27

[16] Peter D. Mosses. 2004. Modular Structural Operational Semantics.

Journal of Logic and Algebraic Programming 60–61 (2004), 195–228.

[17] Peter D. Mosses. 2019. Software meta-language engineering and CBS.

Journal of Computer Languages 50 (2019), 39–48. https://doi.org/10.
1016/j.jvlc.2018.11.003

[18] Peter D. Mosses and Mark J. New. 2009. Implicit Propagation in Struc-

tural Operational Semantics. Electronic Notes in Theoretical Computer
Science 229, 4 (2009).

[19] Pablo Noriega, Amit K. Chopra, Nicoletta Fornara, Henrique Lopes

Cardoso, and Munindar P. Singh. 2013. Regulated MAS: Social Per-

spective. In Normative Multi-Agent Systems, Giulia Andrighetto, Guido
Governatori, Pablo Noriega, and Leendert W. N. van der Torre (Eds.).

Dagstuhl Follow-Ups, Vol. 4. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 93–133. https://doi.org/10.4230/DFU.VOL4.12111.93
[20] Matthias Pasquier, Ciprian Teodorov, Frédéric Jouault, Matthias Brun,

Luka Le Roux, and Loïc Lagadec. 2022. Practical multiverse debug-

ging through user-defined reductions: application to UML models.

In Proceedings of the 25th International Conference on Model Driven
Engineering Languages and Systems, MODELS 2022, Montreal, Que-
bec, Canada, October 23-28, 2022, Eugene Syriani, Houari A. Sahraoui,
Nelly Bencomo, and Manuel Wimmer (Eds.). ACM, 87–97. https:
//doi.org/10.1145/3550355.3552447

[21] Matthias Pasquier, Ciprian Teodorov, Frédéric Jouault, Matthias Brun,

Luka Le Roux, and Loïc Lagadec. 2023. Temporal Breakpoints for Multi-

verse Debugging. In Proceedings of the 16th ACM SIGPLAN International
Conference on Software Language Engineering, SLE 2023, Cascais, Portu-
gal, October 23-24, 2023, João Saraiva, Thomas Degueule, and Elizabeth

Scott (Eds.). ACM, 125–137. https://doi.org/10.1145/3623476.3623526
[22] Gordon D. Plotkin. 2004. A structural approach to operational seman-

tics. The Journal of Logic and Algebraic Programming 60-61 (2004), 17

– 139.

[23] Guillaume Pothier, Éric Tanter, and José M. Piquer. 2007. Scalable

omniscient debugging. In Proceedings of the 22nd Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec,
Canada, Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes,

and Guy L. Steele Jr. (Eds.). ACM, 535–552. https://doi.org/10.1145/
1297027.1297067

[24] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and To-

bias Pape. 2018. Exploratory and Live, Programming and Coding: A

Literature Study Comparing Perspectives on Liveness. The Art Science
and Engineering of Programming (07 2018). https://doi.org/10.22152/
programming-journal.org/2019/3/1

[25] John R Searle. 1995. The construction of social reality. Simon and

Schuster.

[26] J. Trenouth. 1991. A Survey of Exploratory Software Development.

Comput. J. 34, 2 (01 1991), 153–163. https://doi.org/10.1093/comjnl/34.
2.153

[27] L. Thomas van Binsbergen. 2019. Executable formal specification of
programming languages with reusable components. Ph. D. Dissertation.
Royal Holloway, University of London, Egham, UK.

[28] L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and

Tom van Engers. 2020. eFLINT: A Domain-Specific Language for Exe-

cutable Norm Specifications. In Proceedings of the 19th ACM SIGPLAN
International Conference on Generative Programming: Concepts and
Experiences (GPCE 2020). ACM.

[29] L. Thomas van Binsbergen, Mauricio Verano Merino, Pierre Jeanjean,

Tijs van der Storm, Benoît Combemale, and Olivier Barais. 2020. A prin-

cipled approach to REPL interpreters. In Proceedings of the 2020 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and

https://doi.org/10.1145/2660193.2660209
https://doi.org/10.1016/J.JSS.2017.11.025
https://doi.org/10.1016/J.JSS.2017.11.025
https://doi.org/10.1016/S0049-237X(08)72023-8
https://doi.org/10.1016/S0049-237X(08)72023-8
https://nbn-resolving.org/urn:nbn:de:gbv:8-diss-186649
https://nbn-resolving.org/urn:nbn:de:gbv:8-diss-186649
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-030-83978-9_2
https://doi.org/10.1007/978-3-540-77442-6_12
https://doi.org/10.1007/978-3-540-77442-6_12
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1145/3704892
http://arxiv.org/abs/cs/0310016
https://doi.org/10.4230/LIPICS.ECOOP.2019.27
https://doi.org/10.4230/LIPICS.ECOOP.2019.27
https://doi.org/10.1016/j.jvlc.2018.11.003
https://doi.org/10.1016/j.jvlc.2018.11.003
https://doi.org/10.4230/DFU.VOL4.12111.93
https://doi.org/10.1145/3550355.3552447
https://doi.org/10.1145/3550355.3552447
https://doi.org/10.1145/3623476.3623526
https://doi.org/10.1145/1297027.1297067
https://doi.org/10.1145/1297027.1297067
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1093/comjnl/34.2.153
https://doi.org/10.1093/comjnl/34.2.153

SLE ’25, June 12–13, 2025, Koblenz, Germany Frölich et al.

Reflections on Programming and Software, Onward! 2020, Virtual, No-
vember, 2020. ACM, 84–100. https://doi.org/10.1145/3426428.3426917

[30] L. Thomas van Binsbergen, Peter D. Mosses, and Neil Sculthorpe.

2019. Executable Component-Based Semantics. Journal of Logical and
Algebraic Methods in Programming 103 (feb 2019), 184–212. https:
//doi.org/10.1016/j.jlamp.2018.12.004

[31] Robert van Doesburg and Tom M. van Engers. 2016. Perspectives on

the Formal Representation of the Interpretation of Norms. In Legal
Knowledge and Information Systems - JURIX 2016: The Twenty-Ninth

Annual Conference (Frontiers in Artificial Intelligence and Applications,
Vol. 294), Floris Bex and Serena Villata (Eds.). IOS Press, 183–186.

https://doi.org/10.3233/978-1-61499-726-9-183
[32] Robert Michael Walsh. 2016. Adapting Compiler Front Ends for Gen-

eralised Parsing. Ph. D. Dissertation. Royal Holloway, University of

London.

Received 4 March 2025; accepted 9 April 2025

https://doi.org/10.1145/3426428.3426917
https://doi.org/10.1016/j.jlamp.2018.12.004
https://doi.org/10.1016/j.jlamp.2018.12.004
https://doi.org/10.3233/978-1-61499-726-9-183

	Abstract
	1 Introduction
	2 The Original Multiverse Framework
	3 Grammar and parser engineering
	3.1 An STR for grammars
	3.2 User interactions

	4 Funcons
	4.1 A STR for funcons
	4.2 User interactions

	5 eFLINT (reasoning with norms)
	5.1 A STR for eFLINT
	5.2 User interactions

	6 Generalized Multiverse Debugging
	6.1 Formal generalized-STR definition
	6.2 Concrete Step and Label components

	7 Satisfaction of the Requirements
	8 Threats to Validity
	9 Related work
	10 Conclusion
	References

