
Domain-specific languages, regulated systems and sustainability

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
ltvanbinsbergen@acm.org

February 25, 2021

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 1 / 38

Section 1

Software languages and sustainability

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 2 / 38

Sustainability challenges in software

In what ways is sustainability promoted by domain-specific languages,
formal semantics and their application in regulated systems?

Technological and social challenges:

The continued ability to leverage software through execution, i.e. ensuring there
are practical means of running a software product

The ability of software to adjust to changing circumstances, e.g. new execution
environments (such as platforms, devices, services), new and updated regulations,
and changing teams of developers/maintainers

The continued ability to leverage the creative value put into software, i.e. can we
still understand the logic of the code / the algorithm? can we extract and reuse it?

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 3 / 38

Sustainability challenges in software

In what ways is sustainability promoted by domain-specific languages,
formal semantics and their application in regulated systems?

Technological and social challenges:

The continued ability to leverage software through execution, i.e. ensuring there
are practical means of running a software product

The ability of software to adjust to changing circumstances, e.g. new execution
environments (such as platforms, devices, services), new and updated regulations,
and changing teams of developers/maintainers

The continued ability to leverage the creative value put into software, i.e. can we
still understand the logic of the code / the algorithm? can we extract and reuse it?

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 3 / 38

Sustainability challenges in software

In what ways is sustainability promoted by domain-specific languages,
formal semantics and their application in regulated systems?

Technological and social challenges:

The continued ability to leverage software through execution, i.e. ensuring there
are practical means of running a software product

The ability of software to adjust to changing circumstances, e.g. new execution
environments (such as platforms, devices, services), new and updated regulations,
and changing teams of developers/maintainers

The continued ability to leverage the creative value put into software, i.e. can we
still understand the logic of the code / the algorithm? can we extract and reuse it?

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 3 / 38

Sustainability challenges in software

In what ways is sustainability promoted by domain-specific languages,
formal semantics and their application in regulated systems?

Technological and social challenges:

The continued ability to leverage software through execution, i.e. ensuring there
are practical means of running a software product

The ability of software to adjust to changing circumstances, e.g. new execution
environments (such as platforms, devices, services), new and updated regulations,
and changing teams of developers/maintainers

The continued ability to leverage the creative value put into software, i.e. can we
still understand the logic of the code / the algorithm? can we extract and reuse it?

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 3 / 38

Software sustainability gone wrong

Legacy Systems

Written in arcane, unstructured languages,

hard to maintain and costly to migrate

grew organically, in a non-modular fashion,

uses non-standardised interfaces between
components and other software,

has little documentation or of poor quality,

may require specific environments to run,

and no one ‘owns’ the software anymore,
nor understands how it does what it does BASIC program on an old Commodore

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 4 / 38

Formal semantics

Unlike natural languages, software languages are potentially formal and exact
However, few languages have a ‘formal contract’ between design and implementation

Formal semantics enables such formal contracts

Reference manuals typically have formal syntax and informal semantics

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 5 / 38

Domain-specific languages

Formalisations of general-purpose languages are complex and hard to maintain

Domain-specific languages have much smaller scopes

Figure: MySQL Figure: PlantUML Figure: DOT

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 6 / 38

Model-driven engineering

Generate implementations from models of the desired system:

Specify the essence, abstracting away from implementation details
Visualisation, inspection, and checking of model in isolation

Figure: by Johan den Haan, CTO at Mendix

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 7 / 38

Formal semantics – The PLanCompS project

Engineers typically learn individual languages by ‘speaking’ with a compiler

Programming should be taught in terms of paradigm-agnostic concepts

The PLanCompS project: http://plancomps.org

Component-based approach towards formal, operational semantics

Main contributions of the project:

A library of highly reusable, executable fundamental constructs (funcons)a

The meta-language CBS for defining component-based semanticsb

ahttps://plancomps.github.io/CBS-beta/Funcons-beta/Funcons-Index/
bExecutable Component-Based Semantics. Van Binsbergen, Sculthorpe, Mosses. JLAMP 2019

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 8 / 38

http://plancomps.org
https://plancomps.github.io/CBS-beta/Funcons-beta/Funcons-Index/

Formal semantics – The PLanCompS project

Engineers typically learn individual languages by ‘speaking’ with a compiler

Programming should be taught in terms of paradigm-agnostic concepts

The PLanCompS project: http://plancomps.org

Component-based approach towards formal, operational semantics

Main contributions of the project:

A library of highly reusable, executable fundamental constructs (funcons)a

The meta-language CBS for defining component-based semanticsb

ahttps://plancomps.github.io/CBS-beta/Funcons-beta/Funcons-Index/
bExecutable Component-Based Semantics. Van Binsbergen, Sculthorpe, Mosses. JLAMP 2019

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 8 / 38

http://plancomps.org
https://plancomps.github.io/CBS-beta/Funcons-beta/Funcons-Index/

Applying the PLanCompS approach

program ast fct semantics

parser translation interpreter

syntax equations funcon definitions

I-MSOSDenotationalBNF

Can this pipeline support modular, incremental DSL development?

Can funcons serve as the basis for teaching programming?

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 9 / 38

Section 2

Regulated systems

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 10 / 38

Regulated data exchange:
Data exchange systems governed by regulations, agreements and policies

as an instance of

Regulated systems:
software systems with embedded regulatory services derived from norm speci-
fications that monitor and/or enforce compliance

NWO-funded: SSPDDP – Secure and scalable, policy-driven data exchange

EFRO-funded: AMDEX Fieldlab – neutral data-exchange infrastructure

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 11 / 38

Regulated data exchange:
Data exchange systems governed by regulations, agreements and policies

as an instance of

Regulated systems:
software systems with embedded regulatory services derived from norm speci-
fications that monitor and/or enforce compliance

NWO-funded: SSPDDP – Secure and scalable, policy-driven data exchange

EFRO-funded: AMDEX Fieldlab – neutral data-exchange infrastructure

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 11 / 38

Regulated data exchange:
Data exchange systems governed by regulations, agreements and policies

as an instance of

Regulated systems:
software systems with embedded regulatory services derived from norm speci-
fications that monitor and/or enforce compliance

NWO-funded: SSPDDP – Secure and scalable, policy-driven data exchange

EFRO-funded: AMDEX Fieldlab – neutral data-exchange infrastructure

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 11 / 38

Towards regulated systems

Monolithic programs

Service-oriented architectures
distribution

Autonomous systems

AI

Social software systems

AI

distribution

Regulated (software) systems

norms/enforcement

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 12 / 38

Towards regulated systems

Monolithic programs Service-oriented architectures
distribution

Autonomous systems

AI

Social software systems

AI

distribution

Regulated (software) systems

norms/enforcement

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 12 / 38

Towards regulated systems

Monolithic programs Service-oriented architectures
distribution

Autonomous systems

AI

Social software systems

AI

distribution

Regulated (software) systems

norms/enforcement

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 12 / 38

Towards regulated systems

Monolithic programs Service-oriented architectures
distribution

Autonomous systems

AI

Social software systems

AI

distribution

Regulated (software) systems

norms/enforcement

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 12 / 38

Towards regulated systems

Monolithic programs Service-oriented architectures
distribution

Autonomous systems

AI

Social software systems

AI

distribution

Regulated (software) systems

norms/enforcement

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 12 / 38

Regulated systems – points to address

Formalization of applicable norms: reusable, modular and dynamically updateable

Different methods of embedding and enforcing norms:

Static ex-ante: verify and apply norms during software production
e.g. correct-by-construction arguments, model checking

Dynamic ex-ante: apply rules at run-time, guaranteeing compliance
permits decisions (behavioural, normative) that depend on input

Embedded ex-post enforcement: specified responses to violations
permits (regulated) non-compliant behaviour, e.g. based on risk assessment by agent

External ex-post enforcement: external responses to violations
e.g. auditing, conformance checking
permits (human-)intervention in running system

Production of diagnostic reports and/or audit trails to enable evaluation and reflection

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 13 / 38

Our approach to regulated systems

Users

Application
Services

Enforcement
Services

Normative
Services

Users

input/output input/output

queries
monitors & notifies

penalizes, rewards & notifies

monitors & notifies

regulatory servicesapplication services

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 14 / 38

Regulated systems – points to address

Derivation of regulatory services from formalization of norms

Interfacing between application and regulatory services:

Monitoring (communicated and silent) behaviour of services
difficulties: fallible and subject to manipulation

Regulatory services responding to queries about normative positions
e.g. do I have permission to...? or the obligation to... ?

Application services verifying facts on behalf of regulatory services
e.g. verifying credentials

Regulatory services communicating changes in normative positions
e.g. gaining/losing powers, holding/satisfying obligations, violations

Challenges: different interpretations of norms and different qualifications of situations

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 15 / 38

Our approach to model-driven experimentation

norms agents

scenarioscoordination

A1 A2

A3 A4 A5

System specification

Executable actor-model

generation

event log

compare

logging

connect models

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 16 / 38

Our approach to model-driven experimentation

eFLINT – formalization of norms from a variety of sources
declarative reasoning about facts, actions and duties

reactive component for integration in software systems

including actor-based implementation published @ SPLASH 2020

AgentScriptCC – specification of services as agents
reactive BDI agents,

compiled to actor-based implementation

published @ SPLASH 2020

Actor-oriented programming in the Akka framework:
https://akka.io/

actor systems modelling social software systems

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 17 / 38

https://akka.io/

eFLINT actors

inference

eFLINT actor

Actor

changes in norms

query (e.g. permission?)

query (e.g. verification)

notification
(e.g. violation / new duty)

notification
(e.g. of action)

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 18 / 38

Our approach to model-driven experimentation

norms agents

scenarioscoordination

A1 A2

A3 A4 A5

System specification

Executable actor-model

generation

event log

compare

logging

connect models

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 19 / 38

AgentScriptCC

Agents are translated into
actor-based micro-systems

Consisting of:

Interface actor
Intention pool actor
n ≥ 1 Intention actors
Belief base actor
Belief base
Plan library

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 20 / 38

The KYC case study – SSPDDP

Case study around the Know Your Customer principle adopted by financial institutions
to meet international regulations by assessing client profiles to compute risk

Involves three types of “normative documents”:

1 Sharing agreement – a contract between banks of a consortium

2 Internal policy – a sort of contract between bank and employee

3 GDPR – a sort of contract between bank and client

For each document we can describe its norms, the behaviour of relevant actors (clients,
banks, employees and broker) and how the norms are enforced

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 21 / 38

Dynamic enforcement examples – sharing agreement

(Article 1) A member of the consor-
tium has the right to request a risk as-
sessment computation from the broker
for any (potential) client

(Article 2) The data broker has the
power to oblige members of the con-
sortium to share information about any
client the member does business with

Bank1 Agreement Broker Enforcer Bank2

permission(request-compute(C))?

true {member of consortium}

request-compute(C)

share-data(C,Info1)

request-data(C)

request-data(C,B2)

timeout(share-data(B2,C))

demand-data(C)

share-data(C,Info2)

share-data(B2,C)

terminated(share-data(B2,C))

compute-result(C,Res)

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 22 / 38

eFLINT example – GDPR

(Article 16) The data subject shall have the right to obtain from the controller without
undue delay the rectification of inaccurate personal data concerning him or her. [...]

Act demand -rectification

Actor subject

Recipient controller

Related to purpose

Creates rectification -duty()

Holds when (Exists data , processor:

subject -of() && processes () && !accurate -for -purpose ())

Duty rectification -duty

Holder controller

Claimant subject

Related to purpose

Violated when undue -rectification -delay()

Fact undue -rectification -delay

Identified by controller * purpose * subject

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 23 / 38

From eFLINT specifications to eFLINT actors

idea: let ‘eFLINT actors’ administer eFLINT specifications

Incoming messages trigger input events

Creating/terminating facts and triggering actions and events (statements)
Dynamic scenario (case) construction with automated assessment

Creating, modifying or removing fact-, act-, event- and duty-types (declarations)
Dynamic policy construction

Queries, e.g. to check whether actions are permitted or duties are violated

Output events trigger outgoing messages

Notifications of newly permitted actions

Notifications of executed actions and whether they were permitted

Notifications of new duties and violations of duties

Querying an actor to determine or verify the truth of a fact

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 24 / 38

eFLINT actors

inference

eFLINT actor

Actor

changes in norms

query (e.g. permission?)

query (e.g. verification)

notification
(e.g. violation / new duty)

notification
(e.g. of action)

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 25 / 38

eFLINT integration and reuse – overview

M

Specialized specification

Reusable specification

OntologyConsent Rectification

composition

specialization

I1 ... In

initialization

online

offline

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 26 / 38

eFLINT integration – example

Reusable GDPR concepts

Fact controller

Fact subject

Fact data

Fact subject -of

Identified by subject * data

Specialization to application

Fact bank

Fact client

Fact controller

Derived from bank

Fact subject

Derived from client

Fact data

Identified by Int

Event data -change

Terminates data

Creates data(data + 1)

Fact subject -of

Derived from

subject -of(client ,processed)

,subject -of(client ,data)

Fact processed

...

Instantiation at run-time

+bank(GNB).

+client(Alice).

+data (0).

Derived after instantiation

+controller(GNB).

+subject(Alice).

+subject -of(Alice ,0).

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 27 / 38

eFLINT integration – overview

M

Specialized specification

Reusable specification

OntologyConsent Rectification

composition

specialization

I1 ... In

initialization

online

offline

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 28 / 38

Monitoring GDPR compliance

WHEN

Message(client:ClientRef ,bank:BankRef ,req:BankTypes.ApplicationRequest)

TRIGGER

INIT gdpr(bank , client) // instantiates GDPR actor

INIT gdpr // defines constructor

WITH bank:BankRef , client:ClientRef // Scala class parameters

IDENTIFIED BY (bank.path.name , client.path.name) // pair of values as id

FROM "gdpr_specialization.eflint" // eFLINT file to load

TRIGGER // eFLINT initialization

+client(${client.path.name}). // statements

+bank(${bank.path.name}).
+data (0).

WHEN

Message(client:ClientRef ,bank:BankRef ,msg:BankTypes.CountryUpdate)

TRIGGER IN gdpr(bank.path.name , client.path.name)

demand -rectification(purpose=KYC). // qualified as demand

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 29 / 38

AgentScriptCC DSL

Main component: ‘plan rules’ E : C => A

when event E happens

and if condition C holds,

then do action A

Example from client:

E: Agent receives the message
give_info

C: B is a bank to which client is
applying or has successfully applied, S

is SBI-code of client, C is country
where client is based and message
sender is employee of bank B.

A: send SBI-code and country to
original sender of give_info message

+! give_info(B) :

my_sbi(S) &&

my_country(C) &&

employee_of (# executionContext.sender.name , B) &&

(applying_to(B) || client_of(B)) =>

#achieve (# executionContext.sender.ref ,info(S,C)).

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 30 / 38

Our approach to model-driven experimentation

norms agents

scenarioscoordination

A1 A2

A3 A4 A5

System specification

Executable actor-model

generation

event log

compare

logging

connect models

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 31 / 38

AgentScriptCC - Internal policy example

(Rule 1) An employee has the duty to perform a risk analysis on the profile of a client
within four weeks of the creation or modification of the profile

Employee

+! interview(Client) :

bank(B) &&

B == #executionContext.sender.name =>

#achieve(Client ,give_info(B)).

+!info(SBI ,Country) :

bank(B) =>

Client = #executionContext.sender.name;

Info = info(SBI ,Country);

+information(Client ,Info);

#achieve(B,interview_complete(Client ,Info)).

+! do_risk_analysis(C,info(SBI ,Country)) =>

B = #executionContext.sender.name;

R = #kyc.algorithms.risk(B,SBI ,Country);

#achieve(B,assign_risk(C,R)).

Client

+! give_info(B) :

my_sbi(S) &&

my_country(C) &&

employee_of (# executionContext.sender.name , B) &&

(applying_to(B) || client_of(B)) =>

#achieve (# executionContext.sender.ref ,info(S,C)).

Bank

+! interview_complete(Client ,Info):

E = #executionContext.sender.name &&

employee(E) &&

not client(Client) =>

#println (" interview done for " + Client);

+information(Client ,Info);

+client(Client);

#achieve(E,do_risk_analysis(Client ,Info)).

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 32 / 38

Example scenario execution

BankAgent2

BankAgent2

EmployeeAgent2

EmployeeAgent2

BankAgent1

BankAgent1

EmployeeAgent1

EmployeeAgent1

ClientAgent1

ClientAgent1

InternalPolicy

InternalPolicy

BrokerAgent

BrokerAgent

SharingAgreement

SharingAgreement

Initialization

hire(Risks2)

hire(Risks1)

Client ClientAgent1 Registration to BankAgent2

application_request(KYC)

interview_client(ClientAgent1)

information_request()

interview_information(Sanchez,Chili,Farming,SanchezEmail)

interview_complete(ClientAgent1,ClientProfile(Sanchez))

application_response(true)

assessment_duty(BankAgent2,EmployeeAgent2,ClientAgent1)

assessment_duty(BankAgent2,EmployeeAgent2,ClientAgent1)

perform_risk_assessment(ClientAgent1)

risk_assessment_completed(ClientProfile(Sanchez),LOW)

Sharing

compute_risk(ClientAgent1,BankAgent1_secret_algorithm)

duty_to_share(ClientAgent1,Country)

duty_to_share(ClientAgent1,SBI)

to_share(ClientAgent1,SBI,Farming)

to_share(ClientAgent1,Country,Chili)

do_compute(BankAgent1,ClientAgent1,BankAgent1_secret_algorithm)

computed_risk(ClientAgent1,LOW)

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 33 / 38

Conclusions

We can produce executable models of regulated systems, by combining

normative actors derived from normative specifications (in eFLINT),
actor implementations derived from agent scripts (in AgentScriptCC),
queries sent to normative actors for dynamic ex-ante enforcement, and
enforcement actors for dynamic ex-post enforcement

enabling experiments with norms, enforcement mechanisms and system set-ups.

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 34 / 38

Future work

Ongoing

DSL development and analysis for behaviour, norm and scenario specification

Complete generation of executable-actor models from high-level specification

Bring modelling to practice;

apply models by deriving (parts of) containerized applications for use cases in our
projects on data exchange: SSPDDP, DL4LD, EPI, and AMDEX
explainable decision making in projects with governmental organizations

Future

Static analysis of (combined) models, e.g. model checking norm specification, and
consistency checking between between behaviour, normative actors and scenarios

Additional execution platforms:

Containerized applications, e.g. Docker and Kubernetes
High-performance cloud (HPC)
Blockchain

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 35 / 38

Takeaways

The complex-cyber infrastructure group of the University of Amsterdam is ex-
perimenting with regulated sytems – in which norms from a variety of sources
are enforced – by deriving executable models from high-level specifications

Such systems require several kinds of enforcement mechanisms for norms,
based on whether compliance can/should be/is checked before or after a vio-
lation occurs and before or after an application runs

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 36 / 38

Reflections on sustainability

The continued ability to leverage software through its execution, i.e. ensuring there are
practical means of running a software product:

Model-driven engineering simplifies adopting new execution platforms

The ability of software to adjust to changing circumstances, e.g. new execution
environments (such as platforms, devices, services), new and updated regulations, and
changing teams of developers/maintainers

Standardisation and service-oriented architectures increase flexibility

Regulatory services derived from independent, explicit formalisations of norms
make it possible to adjust to changes in regulations

The continued ability to leverage the creative value put into software, i.e. can we still
understand the logic of the code / the algorithm? can we extract and reuse it?

Formal languages are technology-independent (maths/funcons as a lingua franca)

Language design based on sound principles, fundamental programming concepts
and insights from human-computer interaction

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 37 / 38

Reflections on sustainability

The continued ability to leverage software through its execution, i.e. ensuring there are
practical means of running a software product:

Model-driven engineering simplifies adopting new execution platforms

The ability of software to adjust to changing circumstances, e.g. new execution
environments (such as platforms, devices, services), new and updated regulations, and
changing teams of developers/maintainers

Standardisation and service-oriented architectures increase flexibility

Regulatory services derived from independent, explicit formalisations of norms
make it possible to adjust to changes in regulations

The continued ability to leverage the creative value put into software, i.e. can we still
understand the logic of the code / the algorithm? can we extract and reuse it?

Formal languages are technology-independent (maths/funcons as a lingua franca)

Language design based on sound principles, fundamental programming concepts
and insights from human-computer interaction

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 37 / 38

Reflections on sustainability

The continued ability to leverage software through its execution, i.e. ensuring there are
practical means of running a software product:

Model-driven engineering simplifies adopting new execution platforms

The ability of software to adjust to changing circumstances, e.g. new execution
environments (such as platforms, devices, services), new and updated regulations, and
changing teams of developers/maintainers

Standardisation and service-oriented architectures increase flexibility

Regulatory services derived from independent, explicit formalisations of norms
make it possible to adjust to changes in regulations

The continued ability to leverage the creative value put into software, i.e. can we still
understand the logic of the code / the algorithm? can we extract and reuse it?

Formal languages are technology-independent (maths/funcons as a lingua franca)

Language design based on sound principles, fundamental programming concepts
and insights from human-computer interaction

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 37 / 38

Reflections on sustainability

The continued ability to leverage software through its execution, i.e. ensuring there are
practical means of running a software product:

Model-driven engineering simplifies adopting new execution platforms

The ability of software to adjust to changing circumstances, e.g. new execution
environments (such as platforms, devices, services), new and updated regulations, and
changing teams of developers/maintainers

Standardisation and service-oriented architectures increase flexibility

Regulatory services derived from independent, explicit formalisations of norms
make it possible to adjust to changes in regulations

The continued ability to leverage the creative value put into software, i.e. can we still
understand the logic of the code / the algorithm? can we extract and reuse it?

Formal languages are technology-independent (maths/funcons as a lingua franca)

Language design based on sound principles, fundamental programming concepts
and insights from human-computer interaction

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 37 / 38

Domain-specific languages, regulated systems and sustainability

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
ltvanbinsbergen@acm.org

February 25, 2021

L. Thomas van Binsbergen Domain-specific languages, regulated systems and sustainability 38 / 38

	Software languages and sustainability
	Regulated systems

