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Damian Frölich and L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
{dfrolich,ltvanbinsbergen}@acm.org

September 3, 2021 – IFL 2021



Definitional interpreters

A language L is a structure 〈P, Γ, γ0, I 〉 with:

P a set of programs,

Γ a set of configurations (containing semantic entities, attributes, algebraic effects, etc..),

γ0 an initial configuration with γ0 ∈ Γ and

I a definitional interpreter assigning to each program p ∈ P a function Ip : Γ→ Γ.

interpreter : program × config → config

Note that the interpreter can be applied repeatedly, i.e. that effects can be composed
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Deriving REPLs and Notebooks for DSLs

Figure: SLE2019

Figure: Art, Science, and Engineering of Programming



Deriving REPL/Notebook – commonalities

• READ: Identify entry points, i.e. the alternatives in syntactic root
• EVAL: Connect entry points with evaluation function in DSL interpreter
• PRINT: Specify function to convert evaluation result to string
• LOOP:

How does one execution
affect the next?
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Idea..!

Distinguish between REPL language and base language (e.g. JShell vs Java)

Figure: Onward!2020



Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which p1; p2 is a (syntactically) valid program iff p1
and p2 are valid programs and iff p1; p2 is equivalent to ‘doing’ p1 and then p2

interpreter(p1; p2)(γ) == interpreter(p2)(interpreter(p1)(γ))

Jp1; p2K = Jp2K ◦ Jp1K

A REPL is a monoid homomorphism between programs and their effects
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REPLization in Onward!2020

Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)

2. Implement definitional interpreter by choosing Γ and in terms of base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

Jp1 ⊗ p2K = Jp2K ◦ Jp1K

• The effect of one phrase on the next is determined by its modifications to γ ∈ Γ

• REPL-first: what if we design all our languages as sequential languages?
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Onward!2020 (MiniJava case study)

What if?
• The chosen entry points came from different

languages?

↪→ ‘coarse-grained’ language composition

• And had different configurations? i.e. other
semantic entities?

↪→ We need modular interpreters

• We had a shared notion of configuration for
all languages?

↪→ Such as suggested for ‘funcons’
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PLanCompS project (2011-2015...) – http://plancomps.org

• Component-based approach towards formal, dynamic semantics

Main contributions:

• A library of highly reusable, fundamental constructs (funcons)

• The meta-language CBS for defining funcons and object languages1

• A method for translating funcon definitions to executable micro-interpreters1

• Funcons are defined in I-MSOS with a fixed set of entity classes

1Executable Component-Based Semantics. Van Binsbergen, Sculthorpe, Mosses. JLAMP 2019

http://plancomps.org


What is the state of the funcon library?

Verified and available: https://plancomps.github.io/CBS-beta/Funcons-beta/

• Procedural: procedures, references, scoping, iteration

• Functional: functions, bindings, datatypes, pattern matching

• Object-oriented: objects, classes, inheritance

• Abnormal control: exceptions, break/continue, delimited continuations

Unverified as of yet (i.e. not used in large case studies)

• Concurrency: multi-threading

• Logical programming: backtracking, unification

• Meta-programming: AST conversions, staged evaluation2

2Funcons for Homogeneous Generative Meta-Programming. Van Binsbergen. GPCE 2018

https://plancomps.github.io/CBS-beta/Funcons-beta/




Incremental language definition with reusable components

Modular reusable operators definitions, determining:

• The arity and signature (sorts) of an operator, i.e. abstract syntax

• A semantic function expressing a translation to funcons

• Optionally: a context-free grammar production rule

Language definition

A language is defined by (in the context of some operator declarations):

• Assigning operators to the ‘top-level’, e.g. the entry-points (coarse-grained composition)

• Assigning operators to operand positions (fine-grained composition)

↪→ Determines the structure of the abstract syntax and a denotational semantics

Incremental? Language experimentation in a REPL/Notebook

Develop the specification as a sequence of operator declarations and sort constraints
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Example

Conventional approach (e.g. ADTs or Variants)

VarO : String → Expr

AbsO : String × Expr → Expr

AppO : Expr × Expr → Expr

Alternative approach

VarO : String

AbsO : String × AbsBody

AppO : AppAbs × AppArg

VarO ∈ Expr

AppO ∈ Expr

AbsO ∈ Expr

Expr ⊆ AbsBody

Expr ⊆ AppAbs

Expr ⊆ AppArg
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Incremental language development (abstract syntax)

VarO : String

AbsO : String × AbsBody

AppO : AppAbs × AppArg

Operator declarations introduce operators, arities and name ‘operand positions’

VarF (lit) = bound string lit

AbsF (x , b) = function closure scope(bind(string x , given), b)

AppF (abs, arg) = apply(abs, arg)

Semantic functions translate operator occurrences to funcon terms (semantic domain).



Incremental language development (language construction)

Sort constraints assign (one or more) operators to (possibly new) sorts.

VarO ∈ Expr

AppO ∈ Expr

AbsO ∈ Expr

Expr ⊆ AbsBody

Expr ⊆ AppAbs

Expr ⊆ AppArg

Sort constraints determine the precise relations between operators and operands



Glue code (problem)

VarF (lit) = bound string lit

AbsF (x , b) = function closure scope(bind(string x , given), b)

AppF (abs, arg) = apply(abs, arg)

What if the body of an abstract can terminate abruply? e.g. due to a return command.

AbsF (x , b) = function closure scope(bind(string x , given),handle-return b)



Glue code (possible solution)

Associating ‘wrapper funcon terms’ as part of sort constraints

ReturnO : ReturnVal (Operator declaration)

ReturnF (val) = return val (Semantic function)

ReturnO ∈ Command (Sort constraint)

Command ⊆ AbsBody (Sort constraint with glue code)

↪→ handle-return(CommandF ) (glue code)



Full paper

Realisation
• Haskell EDSL implementation reflecting our approach

• Building on from (Swierstra 2008) and (Bahr & Hvitved 2011)

• Enforce sort constraints and language definedness through Haskell’s type system

• Optionally: GLL combinators for concrete syntax (Van Binsbergen et al. 2018)

Evaluation
• Case studies to demonstrate: use of glue code, language variations, etc.

• Positioning within meta-language analysis frameworks of (Erdweg et al. 2012),
(Méndez-Acuña et al. 2016), and/or (Leduc et al. 2019)

• Comparison with related work
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Techniques vary in how effects (entities below) are implicitly propagated:

• Monads/Monad transformers: Every entity is an instance of a monad.
The bind operator defines how its values are propagated.
All entities are composed by either defining a monolithic super-monad or by composing
monad-transformers

• MSOS: Every entity is an instance of a category C.
The composition operator of the category determines how values are propagated.
All entities together form a product category

• I-MSOS: The formalism chooses certain MSOS categories and provides syntax to
indicate for each entity of which category it is an instance of (entity classes)

• CBS & funcons (topic of next slides):
I-MSOS + monolithic monad implementing the entity classes

• Implicit equations in Attribute Grammars (e.g. UUAG): Every entity is an attribute.
Missing attribute equations are generated according to built-in schemes
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Language Engineering with Funcons

program ast fct semantics

parser translation interpreter

syntax equations funcon definitions

I-MSOSDenotationalBNF

Can this pipeline support modular, incremental language development?

... a requirement for Agile Language Engineering



• Funcons also have informal semantics (no need to always worry about the details!)

• I-MSOS funcon definitions serve as a reference



Incremental language development (concrete syntax)

VarS (lit) ::= lit (Syntax declaration)

AppS (abs, arg) ::= abs arg (Syntax declaration)

AbsS (param, body) ::= ’(’ ’\’ param "->" body ’)’ (Syntax declaration)

In a syntax declaration, the operands are names for nonterminals, whose productions rules are
determined by sort constraints and (other) syntax declarations.



REPL feature model


