Towards Incremental Language Definition with Reusable

Components

Damian Frolich and L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
{dfrolich,ltvanbinsbergen}@acm.org

September 3, 2021 — IFL 2021

Definitional interpreters

interpreter : program X config — config

Definitional interpreters

A language L is a structure (P,T,7°, 1) with:
P a set of programs,
I a set of configurations (containing semantic entities, attributes, algebraic effects, etc..),
7% an initial configuration with 4% € T and

| a definitional interpreter assigning to each program p € P a function /, : I —T.

interpreter : program X config — config

Definitional interpreters

A language L is a structure (P,T,7°, 1) with:
P a set of programs,
I a set of configurations (containing semantic entities, attributes, algebraic effects, etc..),
7% an initial configuration with 4% € T and

| a definitional interpreter assigning to each program p € P a function /, : I —T.

interpreter : program X config — config

Note that the interpreter can be applied repeatedly, i.e. that effects can be composed

Deriving REPLs and Notebooks for DSLs

From DSL Specification to Interactive Computer
Programming Environment

Pierre Jeanjean Benoit Combemale Olivier Barais
Inria, Univ Rennes, CNRS, IRISA University of Toulouse Univ Rennes, Inria, CNRS, IRISA
Rennes, France Toulouse, France Rennes, France
pierre jeanjean@inria.fr benoit.combemale@irit.fr olivier.barais@irisa.fr

Figure: SLE2019

Bacata: Notebooks for DSLs, Almost for Free

Mauricio Verano Merino®¢, Jurgen Vinju®P, and Tijs van der Storm®<
Eindhoven University of Technology, The Netherlands

Centrum Wiskunde & Informatica, The Netherlands

University of Groningen, The Netherlands

Océ Technologies B.V., The Netherlands

a6 oo

Figure: Art, Science, and Engineering of Programming

Deriving REPL /Notebook — commonalities

READ: Identify entry points, i.e. the alternatives in syntactic root
EVAL: Connect entry points with evaluation function in DSL interpreter
PRINT: Specify function to convert evaluation result to string

LOOP:

Interpreter | :Statement_Instruction ‘Expression_Instruction

iﬂ’— interpret(self)

execute(turtle, st)
turtle.toString() L(-------------- -

XeC o M interpret(self)

compute(st)

H output
U SRR __outputtostring)___| [€---- P .

Figure 8. Overall Execution Flow for Logo

Deriving REPL /Notebook — commonalities

Iﬁxec >

XEC

interpret(self)

execute(turtle, st)
turtle.toString() L(-------------- -

interpret(self)

READ: Identify entry points, i.e. the alternatives in syntactic root
EVAL: Connect entry points with evaluation function in DSL interpreter
PRINT: Specify function to convert evaluation result to string

LOOP:
Interpreter | :Statement_Instruction ‘Expression_Instruction

How does one execution

output.toString()

S It Lo STREEET.

compute(st) _ | afFeCt the neXt?

output

oo :

Figure 8. Overall Execution Flow for Logo

Distinguish between REPL language and base language (e.g. JShell vs Java)

A Principled Approach to REPL Interpreters

L. Thomas van Binsbergen
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
Itvanbinsbergen@acm.org

Tijs van der Storm
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
University of Groningen
Groningen, The Netherlands
storm@cwi.nl

Mauricio Verano Merino
Eindhoven University of Technology
Eindhoven, The Netherlands
m.verano.merino@tue.nl

Benoit Combemale
University of Rennes, Inria, CNRS,
IRISA
Rennes, France
benoit.combemale@irit.fr

Figure: Onward!2020

Pierre Jeanjean
Inria, University of Rennes, CRNS,
IRISA
Rennes, France
pierre.jeanjean@inria.fr

Olivier Barais
University of Rennes, Inria, CNRS,
IRISA
Rennes, France
olivier.barais@irisa.fr

Observation..!

REPLs with incremental execution implement a language with the following property:

Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which py; ps is a (syntactically) valid program iff p;
and po are valid programs and iff p;; po is equivalent to ‘doing’ p; and then p;

Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which py; ps is a (syntactically) valid program iff p;
and po are valid programs and iff p;; po is equivalent to ‘doing’ p; and then p;

interpreter(p1; p2)(y) == interpreter(py)(interpreter(p1)(7y))

Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which py; ps is a (syntactically) valid program iff p;
and po are valid programs and iff p;; po is equivalent to ‘doing’ p; and then p;

interpreter(p1; p2)(y) == interpreter(py)(interpreter(p1)(7y))

[p1; p2] = [[p2] © [p1]

Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which py; ps is a (syntactically) valid program iff p;
and po are valid programs and iff p;; po is equivalent to ‘doing’ p; and then p;

interpreter(p1; p2)(y) == interpreter(py)(interpreter(p1)(7y))

[p1; p2] = [[p2] © [p1]

A REPL is a monoid homomorphism between programs and their effects

REPLization in Onward!2020

Replization is: extending a base language to a sequential variant

REPLization in Onward!2020

Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)

REPLization in Onward!2020

Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)
2. Implement definitional interpreter by choosing I and in terms of base interpreter

REPLization in Onward!2020

Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)
2. Implement definitional interpreter by choosing I and in terms of base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

[pr @ p2] = [p2] o [p1]

REPLization in Onward!2020

Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)
2. Implement definitional interpreter by choosing I and in terms of base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

[pr @ p2] = [p2] o [p1]

e The effect of one phrase on the next is determined by its modifications to y € T

REPLization in Onward!2020

Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)
2. Implement definitional interpreter by choosing I and in terms of base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

[pr @ p2] = [p2] o [p1]

e The effect of one phrase on the next is determined by its modifications to y € T

e REPL-first: what if we design all our languages as sequential languages?

Onward!2020 (MiniJava case

Config eval((Phrase) ‘<Expression e> ;
= catchExceptions(collectBindings(
setOutput(createBinding(eval(c, e)))));

, Config c)

Config eval((Phrase) <Statement s>, Config c)
= catchExceptions(collectBindings(
setOutput(exec(s, c))));

Config eval((Phrase)‘<ClassDecl cd>‘, Config c)
= catchExceptions(collectBindings(
declareClass(cd, c)));

Config eval((Phrase)‘<VarDecl vd>*, Config c)
= catchExceptions(collectBindings(
declareVariables(vd, c)));

Config eval((Phrase)‘*<MethodDecl md>‘, Config ¢)
= catchExceptions(collectBindings(
declareGlobalMethod(md, c)));

Config eval((Phrase)‘*<Phrase p1> <Phrase p2>*, Config c)
= eval (p2, eval(pl, c©));

Onward!2020 (MiniJava case

study)

Config eval((Phrase) ‘<Expression e> ;
= catchExceptions(collectBindings(
setOutput(createBinding(eval(c, e)))));

, Config c)

Config eval((Phrase) <Statement s>, Config c)
= catchExceptions(collectBindings(
setOutput(exec(s, c))));

Config eval((Phrase)‘<ClassDecl cd>‘, Config c)
= catchExceptions(collectBindings(
declareClass(cd, c)));

Config eval((Phrase)‘<VarDecl vd>*, Config c)
= catchExceptions(collectBindings(
declareVariables(vd, c)));

Config eval((Phrase)‘*<MethodDecl md>‘, Config ¢)
= catchExceptions(collectBindings(
declareGlobalMethod(md, c)));

Config eval((Phrase)‘*<Phrase p1> <Phrase p2>*, Config c)
= eval (p2, eval(pl, c©));

® The chosen entry points came from different
languages?

Onward!2020 (MiniJava case study)

Config eval((Phrase) ‘<Expression e> ;
= catchExceptions(collectBindings(
setOutput(createBinding(eval(c, e)))));

, Config c)

What if
Config eval((Phrase) <Statement s>, Config c)

= catchExceptions(collectBindings(® The chosen entry points came from different
setOutput(exec(s, c)))); |anguages?

Config eval((Phrase)‘<ClassDecl cd>‘, Config c) — ‘Coarse_grained' Ianguage Compos|t|0n
= catchExceptions(collectBindings(

declareClass{cd, c)));

Config eval((Phrase)‘<VarDecl vd>*, Config c)
= catchExceptions(collectBindings(
declareVariables(vd, c)));

Config eval((Phrase)‘*<MethodDecl md>‘, Config ¢)
= catchExceptions(collectBindings(
declareGlobalMethod(md, c)));

Config eval((Phrase)‘*<Phrase p1> <Phrase p2>*, Config c)
= eval (p2, eval(pl, c©));

Onward!2020 (MiniJava case study)

Config eval((Phrase) ‘<Expression e> ;
= catchExceptions(collectBindings(
setOutput(createBinding(eval(c, e)))));

, Config c)

hat if?
Config eval((Phrase) <Statement s>, Config c)

= catchExceptions(collectBindings(® The chosen entry points came from different

setOutput(exec(s, c)))); |anguage5?
Config eval((Phrase)‘<ClassDecl cd>‘, Config c) — ‘Coarse_grained' Ianguage Compos|t|0n
= catchExceptions(collectBindings(. . . .
declareClass(cd, ¢))); ® And had different configurations? i.e. other

o e
Config eval((Phrase)‘<VarDecl vd>*, Config c) semantic entities!

= catchExceptions(collectBindings(
declareVariables(vd, c)));

Config eval((Phrase)‘*<MethodDecl md>‘, Config ¢)
= catchExceptions(collectBindings(
declareGlobalMethod(md, c)));

Config eval((Phrase)‘*<Phrase p1> <Phrase p2>*, Config c)
= eval (p2, eval(pl, c©));

Onward!2020 (MiniJava case study)

Config eval((Phrase) ‘<Expression e> ;
= catchExceptions(collectBindings(
setOutput(createBinding(eval(c, e)))));

, Config c)

hat if?
Config eval((Phrase) <Statement s>, Config c)

= catchExceptions(collectBindings(® The chosen entry points came from different

setOutput(exec(s, c)))); |anguage5?
Config eval((Phrase)‘<ClassDecl cd>‘, Config c) — ‘Coarse_grained' Ianguage Compos|t|0n
= catchExceptions(collectBindings(. . . .
declareClass(cd, ¢))); ® And had different configurations? i.e. other

o e
Config eval((Phrase)‘<VarDecl vd>*, Config c) semantic entities!

= catchExceptions(collectBindings([N We need modular interpreters
declareVariables(vd, c)));

Config eval((Phrase)‘*<MethodDecl md>‘, Config ¢)
= catchExceptions(collectBindings(
declareGlobalMethod(md, c)));

Config eval((Phrase)‘*<Phrase p1> <Phrase p2>*, Config c)
= eval (p2, eval(pl, c©));

Onward!2020 (MiniJava case study)

Config eval((Phrase) ‘<Expression e> ;
= catchExceptions(collectBindings(
setOutput(createBinding(eval(c, e)))));

, Config c)

hat if?
Config eval((Phrase) <Statement s>, Config c)

= catchExceptions(collectBindings(® The chosen entry points came from different

setOutput(exec(s, c)))); |anguage5?
Config eval((Phrase)‘<ClassDecl cd>‘, Config c) — ‘Coarse_grained' Ianguage Compos|t|0n
= catchExceptions(collectBindings(. . . .
declareClass(cd, ¢))); ® And had different configurations? i.e. other

o e
Config eval((Phrase)‘<VarDecl vd>*, Config c) semantic entities!

= catchExceptions(collectBindings([N We need modular interpreters
declareVariables(vd, c)));

® We had a shared notion of configuration for

Config eval((Phrase)‘*<MethodDecl md>‘, Config ¢)
all languages?

= catchExceptions(collectBindings(
declareGlobalMethod(md, c)));

Config eval((Phrase)‘*<Phrase p1> <Phrase p2>*, Config c)
= eval (p2, eval(pl, c©));

Onward!2020 (MiniJava case study)

Config eval((Phrase) ‘<Expression e> ;
= catchExceptions(collectBindings(
setOutput(createBinding(eval(c, e)))));

, Config c)

hat if?
Config eval((Phrase) <Statement s>, Config c)

= catchExceptions(collectBindings(® The chosen entry points came from different

setOutput(exec(s, c)))); |anguage5?
Config eval((Phrase)‘<ClassDecl cd>‘, Config c) — ‘Coarse_grained' Ianguage Compos|t|0n
= catchExceptions(collectBindings(. . . .
declareClass(cd, ¢))); ® And had different configurations? i.e. other

o e
Config eval((Phrase)‘<VarDecl vd>*, Config c) semantic entities!

= catchExceptions(collectBindings([N We need modular interpreters
declareVariables(vd, c)));

® We had a shared notion of configuration for

Config eval((Phrase)‘*<MethodDecl md>‘, Config ¢)
all languages?

= catchExceptions(collectBindings(
declareGlobalMethod(md, c))); TN

Such as suggested for ‘funcons’

Config eval((Phrase)‘*<Phrase p1> <Phrase p2>*, Config c)
= eval (p2, eval(pl, c©));

PLanCompS project (2011-2015...) — http://plancomps.

e Component-based approach towards formal, dynamic semantics
Main contributions:
e A library of highly reusable, fundamental constructs (funcons)
® The meta-language CBS for defining funcons and object languages!

® A method for translating funcon definitions to executable micro-interpreters?
e Funcons are defined in I-MSOS with a fixed set of entity classes

! Executable Component-Based Semantics. Van Binsbergen, Sculthorpe, Mosses. JLAMP 2019

http://plancomps.org

What is the state of the funcon library?

Verified and available: https://plancomps.github.io/CBS-beta/Funcons-beta/

® Procedural: procedures, references, scoping, iteration

® Functional: functions, bindings, datatypes, pattern matching

Object-oriented: objects, classes, inheritance

Abnormal control: exceptions, break/continue, delimited continuations

Unverified as of yet (i.e. not used in large case studies)

® Concurrency: multi-threading
® | ogical programming: backtracking, unification

® Meta-programming: AST conversions, staged evaluation?

2Funcons for Homogeneous Generative Meta-Programming. Van Binsbergen. GPCE 2018

https://plancomps.github.io/CBS-beta/Funcons-beta/

Rule
initialise[['function' Id '(' Ids” ')' Block 1] =
assign(
bound (id[[Id 11),
function closure(
scope (

match(given,tuple(patts[[Ids’ 11)),
handle-return(exec[[Block 11))))

Rule
rvall[l Exp '(' Exps’ *)' 11 = apply(rvalll Exp 11, tuple(rvals[[Exps’ 11))

Incremental language definition with reusable components

Modular reusable operators definitions, determining:
® The arity and signature (sorts) of an operator, i.e. abstract syntax
® A semantic function expressing a translation to funcons

® QOptionally: a context-free grammar production rule

Incremental language definition with reusable components

Modular reusable operators definitions, determining:

® The arity and signature (sorts) of an operator, i.e. abstract syntax
® A semantic function expressing a translation to funcons

® QOptionally: a context-free grammar production rule

Language definition
A language is defined by (in the context of some operator declarations):
® Assigning operators to the ‘top-level’, e.g. the entry-points (coarse-grained composition)

® Assigning operators to operand positions (fine-grained composition)

— Determines the structure of the abstract syntax and a denotational semantics

Incremental language definition with reusable components

Modular reusable operators definitions, determining:
® The arity and signature (sorts) of an operator, i.e. abstract syntax
® A semantic function expressing a translation to funcons

® QOptionally: a context-free grammar production rule

Language definition
A language is defined by (in the context of some operator declarations):
® Assigning operators to the ‘top-level’, e.g. the entry-points (coarse-grained composition)

® Assigning operators to operand positions (fine-grained composition)

— Determines the structure of the abstract syntax and a denotational semantics

Incremental? Language experimentation in a REPL/Notebook

Develop the specification as a sequence of operator declarations and sort constraints

Conventional approach (e.g. ADTs or Variants)

Varg : String — Expr
Absg : String x Expr — Expr
Apps : Expr x Expr — Expr

Conventional approach (e.g. ADTs or Variants)

Varg : String — Expr
Absg : String x Expr — Expr
Apps : Expr x Expr — Expr

Alternative approach

Varg : String
Absg : String x AbsBody
Apps : AppAbs x AppArg

Conventional approach (e.g. ADTs or Variants)

Varg : String — Expr
Absg : String x Expr — Expr
Apps : Expr x Expr — Expr

Alternative approach

Varg € Expr

Apps € Expr
Absg € Expr
Expr C AbsBody
Expr C AppAbs
Expr C AppArg

Varg : String
Absg : String x AbsBody
Apps : AppAbs x AppArg

Incremental language development (abstract syntax)

Varg : String
Absg . String x AbsBody
Appy : AppAbs x AppArg

Operator declarations introduce operators, arities and name ‘operand positions’

Varg(lit) = bound string /it
Absz(x, b) = function closure scope(bind(string x, given), b)

Appz(abs, arg) = apply(abs, arg)

Semantic functions translate operator occurrences to funcon terms (semantic domain).

Incremental language development (language construction)

Sort constraints assign (one or more) operators to (possibly new) sorts.

Varg € Expr
Apps € Expr
Absg € Expr
Expr C AbsBody
Expr C AppAbs
Expr C AppArg

Sort constraints determine the precise relations between operators and operands

Glue code (problem)

Varz(lit) = bound string /it
Absz(x, b) = function closure scope(bind(string x, given), b)

Appz(abs, arg) = apply(abs, arg)

What if the body of an abstract can terminate abruply? e.g. due to a return command.

Absz(x, b) = function closure scope(bind(string x, given), handle-return b)

Glue code (possible solution)

Associating ‘wrapper funcon terms' as part of sort constraints

Returny : ReturnVal (Operator declaration

Returngz(val) = return val (Semantic function

)
)
Returns € Command (Sort constraint)
Command C AbsBody (Sort constraint with glue code)

)

— handle-return(Commandz) (glue code

Full paper

Realisation

® Haskell EDSL implementation reflecting our approach
¢ Building on from (Swierstra 2008) and (Bahr & Hvitved 2011)

® Enforce sort constraints and language definedness through Haskell's type system

¢ Optionally: GLL combinators for concrete syntax (Van Binsbergen et al. 2018)

Evaluation

® (Case studies to demonstrate: use of glue code, language variations, etc.

® Positioning within meta-language analysis frameworks of (Erdweg et al. 2012),
(Méndez-Acufia et al. 2016), and/or (Leduc et al. 2019)

® Comparison with related work

Towards Incremental Language Definition with Reusable

Components

Damian Frolich and L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
{dfrolich,ltvanbinsbergen}@acm.org

September 3, 2021 — IFL 2021

Techniques vary in how effects (entities below) are implicitly propagated:

Techniques vary in how effects (entities below) are implicitly propagated:

® Monads/Monad transformers: Every entity is an instance of a monad.

The bind operator defines how its values are propagated.
All entities are composed by either defining a monolithic super-monad or by composing

monad-transformers

Techniques vary in how effects (entities below) are implicitly propagated:

® Monads/Monad transformers: Every entity is an instance of a monad.
The bind operator defines how its values are propagated.
All entities are composed by either defining a monolithic super-monad or by composing
monad-transformers
® MSOS: Every entity is an instance of a category C.
The composition operator of the category determines how values are propagated.
All entities together form a product category

Techniques vary in how effects (entities below) are implicitly propagated:

® Monads/Monad transformers: Every entity is an instance of a monad.
The bind operator defines how its values are propagated.
All entities are composed by either defining a monolithic super-monad or by composing
monad-transformers

® MSOS: Every entity is an instance of a category C.
The composition operator of the category determines how values are propagated.
All entities together form a product category

® |-MSOS: The formalism chooses certain MSOS categories and provides syntax to
indicate for each entity of which category it is an instance of (entity classes)

Techniques vary in how effects (entities below) are implicitly propagated:

® Monads/Monad transformers: Every entity is an instance of a monad.
The bind operator defines how its values are propagated.
All entities are composed by either defining a monolithic super-monad or by composing
monad-transformers
® MSOS: Every entity is an instance of a category C.
The composition operator of the category determines how values are propagated.
All entities together form a product category

® |-MSOS: The formalism chooses certain MSOS categories and provides syntax to
indicate for each entity of which category it is an instance of (entity classes)

® CBS & funcons (topic of next slides):
[-MSQOS + monolithic monad implementing the entity classes

Techniques vary in how effects (entities below) are implicitly propagated:

Monads/Monad transformers: Every entity is an instance of a monad.

The bind operator defines how its values are propagated.

All entities are composed by either defining a monolithic super-monad or by composing
monad-transformers

MSOS: Every entity is an instance of a category C.

The composition operator of the category determines how values are propagated.
All entities together form a product category

I-MSQOS: The formalism chooses certain MSOS categories and provides syntax to
indicate for each entity of which category it is an instance of (entity classes)

CBS & funcons (topic of next slides):

[-MSQOS + monolithic monad implementing the entity classes

Implicit equations in Attribute Grammars (e.g. UUAG): Every entity is an attribute.
Missing attribute equations are generated according to built-in schemes

Language Engineering with Funcons

,,,,,,,,,,,,,,,,,,,,,,,,,

L= e = — =

equations funcon definitions

T
| | |

1 3 N
parser translation interpreter

program ast fct semantics

Can this pipeline support modular, incremental language development?

. a requirement for Agile Language Engineering

e Funcons also have informal semantics (no need to always worry about the details!)

e |-MSOS funcon definitions serve as a reference

Incremental language development (concrete syntax)

Vary (lit) == lit (Syntax declaration)
Apps(abs, arg) ::= abs arg (Syntax declaration)
Absy(param, body) ::= > (> >\’ param "->" body ’)’ (Syntax declaration)

In a syntax declaration, the operands are names for nonterminals, whose productions rules are
determined by sort constraints and (other) syntax declarations.

REPL feature

model

— — _e— | T —— — _
Snippet Snippet /! Save an Summar Summary
Com- Execution Load of Current | | of Snippet
pletion <™ Session State Effects
= = 1 i) ? R @
Keywords | Identifiers Full Incremental Undo Current Valid REPL code | | Access to
state program snippets Previous
/ Results
Syntax- Hierarchy- Type- Mulfiple | \ Access Access
aware aware aware Input / \ to all to last
Legend: All Last]—félp Command Definition
Abstract Feature outputs output Command History Mofhﬁf
> cation
Concrete Feature - -
® Mandatory Language REPL User Ope.n & Redefine
use commands access. Extend

() Optional
A Or Group

/\ Alternative Group

‘ Arbitrary ‘ Search Sequential

