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Definitional interpreters

A language L is a structure (P,T,7°, 1) with:
P a set of programs,
I a set of configurations (containing semantic entities, attributes, algebraic effects, etc..),
7% an initial configuration with 4% € T and

| a definitional interpreter assigning to each program p € P a function /, : I —T.

interpreter : program X config — config

Note that the interpreter can be applied repeatedly, i.e. that effects can be composed
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Deriving REPL /Notebook — commonalities

READ: Identify entry points, i.e. the alternatives in syntactic root
EVAL: Connect entry points with evaluation function in DSL interpreter
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LOOP:

Interpreter | :Statement_Instruction ‘Expression_Instruction

iﬂ’— interpret(self)

execute(turtle, st)
turtle.toString() L( -------------- -

XeC o M interpret(self)

compute(st)

H output
U SRR __outputtostring)___| [€---- P .

Figure 8. Overall Execution Flow for Logo



Deriving REPL /Notebook — commonalities

Iﬁxec >

XEC

interpret(self)

execute(turtle, st)
turtle.toString() L( -------------- -

interpret(self)

READ: Identify entry points, i.e. the alternatives in syntactic root
EVAL: Connect entry points with evaluation function in DSL interpreter
PRINT: Specify function to convert evaluation result to string

LOOP:
Interpreter | :Statement_Instruction ‘Expression_Instruction

How does one execution

output.toString()

S It Lo STREEET.

compute(st) _ | afFeCt the neXt?

output

oo :

Figure 8. Overall Execution Flow for Logo



Distinguish between REPL language and base language (e.g. JShell vs Java)

A Principled Approach to REPL Interpreters

L. Thomas van Binsbergen
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
Itvanbinsbergen@acm.org

Tijs van der Storm
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
University of Groningen
Groningen, The Netherlands
storm@cwi.nl

Mauricio Verano Merino
Eindhoven University of Technology
Eindhoven, The Netherlands
m.verano.merino@tue.nl

Benoit Combemale
University of Rennes, Inria, CNRS,
IRISA
Rennes, France
benoit.combemale@irit.fr

Figure: Onward!2020

Pierre Jeanjean
Inria, University of Rennes, CRNS,
IRISA
Rennes, France
pierre.jeanjean@inria.fr

Olivier Barais
University of Rennes, Inria, CNRS,
IRISA
Rennes, France
olivier.barais@irisa.fr



Observation..!

REPLs with incremental execution implement a language with the following property:



Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which py; ps is a (syntactically) valid program iff p;
and po are valid programs and iff p;; po is equivalent to ‘doing’ p; and then p;



Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which py; ps is a (syntactically) valid program iff p;
and po are valid programs and iff p;; po is equivalent to ‘doing’ p; and then p;

interpreter(p1; p2)(y) == interpreter(py)(interpreter(p1)(7y))



Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which py; ps is a (syntactically) valid program iff p;
and po are valid programs and iff p;; po is equivalent to ‘doing’ p; and then p;

interpreter(p1; p2)(y) == interpreter(py)(interpreter(p1)(7y))

[p1; p2] = [[p2] © [p1]



Observation..!

REPLs with incremental execution implement a language with the following property:

A sequential language is a language in which py; ps is a (syntactically) valid program iff p;
and po are valid programs and iff p;; po is equivalent to ‘doing’ p; and then p;

interpreter(p1; p2)(y) == interpreter(py)(interpreter(p1)(7y))

[p1; p2] = [[p2] © [p1]

A REPL is a monoid homomorphism between programs and their effects
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REPLization in Onward!2020

Replization is: extending a base language to a sequential variant

1. Define the syntax of the extended language (phrases/entry points)
2. Implement definitional interpreter by choosing I and in terms of base interpreter

3. Add phrase composition operator to the language (it is now sequential by definition)

[pr @ p2] = [p2] o [p1]

e The effect of one phrase on the next is determined by its modifications to y € T

e REPL-first: what if we design all our languages as sequential languages?



Onward!2020 (MiniJava case

Config eval((Phrase) ‘<Expression e> ;
= catchExceptions(collectBindings(
setOutput(createBinding(eval(c, e)))));

, Config c)
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Such as suggested for ‘funcons’
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= eval (p2, eval(pl, c©));




PLanCompS project (2011-2015...) — http://plancomps.

e Component-based approach towards formal, dynamic semantics
Main contributions:
e A library of highly reusable, fundamental constructs (funcons)
® The meta-language CBS for defining funcons and object languages!

® A method for translating funcon definitions to executable micro-interpreters?
e Funcons are defined in I-MSOS with a fixed set of entity classes

! Executable Component-Based Semantics. Van Binsbergen, Sculthorpe, Mosses. JLAMP 2019


http://plancomps.org

What is the state of the funcon library?

Verified and available: https://plancomps.github.io/CBS-beta/Funcons-beta/

® Procedural: procedures, references, scoping, iteration

® Functional: functions, bindings, datatypes, pattern matching

Object-oriented: objects, classes, inheritance

Abnormal control: exceptions, break/continue, delimited continuations

Unverified as of yet (i.e. not used in large case studies)

® Concurrency: multi-threading
® | ogical programming: backtracking, unification

® Meta-programming: AST conversions, staged evaluation?

2Funcons for Homogeneous Generative Meta-Programming. Van Binsbergen. GPCE 2018


https://plancomps.github.io/CBS-beta/Funcons-beta/

Rule
initialise[[ 'function' Id '(' Ids” ')' Block 1] =
assign(
bound (id[[ Id 11),
function closure(
scope (

match(given,tuple(patts[[ Ids’ 11)),
handle-return(exec[[ Block 11))))

Rule
rvall[l Exp '(' Exps’ *)' 11 = apply(rvalll Exp 11, tuple(rvals[[ Exps’ 11) )
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Modular reusable operators definitions, determining:
® The arity and signature (sorts) of an operator, i.e. abstract syntax
® A semantic function expressing a translation to funcons

® QOptionally: a context-free grammar production rule

Language definition
A language is defined by (in the context of some operator declarations):
® Assigning operators to the ‘top-level’, e.g. the entry-points (coarse-grained composition)

® Assigning operators to operand positions (fine-grained composition)

— Determines the structure of the abstract syntax and a denotational semantics

Incremental? Language experimentation in a REPL/Notebook

Develop the specification as a sequence of operator declarations and sort constraints




Conventional approach (e.g. ADTs or Variants)

Varg : String — Expr
Absg : String x Expr — Expr
Apps : Expr x Expr — Expr




Conventional approach (e.g. ADTs or Variants)

Varg : String — Expr
Absg : String x Expr — Expr
Apps : Expr x Expr — Expr

Alternative approach

Varg : String
Absg : String x AbsBody
Apps : AppAbs x AppArg




Conventional approach (e.g. ADTs or Variants)

Varg : String — Expr
Absg : String x Expr — Expr
Apps : Expr x Expr — Expr

Alternative approach

Varg € Expr

Apps € Expr
Absg € Expr
Expr C AbsBody
Expr C AppAbs
Expr C AppArg

Varg : String
Absg : String x AbsBody
Apps : AppAbs x AppArg




Incremental language development (abstract syntax)

Varg : String
Absg . String x AbsBody
Appy : AppAbs x AppArg

Operator declarations introduce operators, arities and name ‘operand positions’

Varg(lit) = bound string /it
Absz(x, b) = function closure scope(bind(string x, given), b)

Appz(abs, arg) = apply(abs, arg)

Semantic functions translate operator occurrences to funcon terms (semantic domain).



Incremental language development (language construction)

Sort constraints assign (one or more) operators to (possibly new) sorts.

Varg € Expr
Apps € Expr
Absg € Expr
Expr C AbsBody
Expr C AppAbs
Expr C AppArg

Sort constraints determine the precise relations between operators and operands



Glue code (problem)

Varz(lit) = bound string /it
Absz(x, b) = function closure scope(bind(string x, given), b)

Appz(abs, arg) = apply(abs, arg)

What if the body of an abstract can terminate abruply? e.g. due to a return command.

Absz(x, b) = function closure scope(bind(string x, given), handle-return b)



Glue code (possible solution)

Associating ‘wrapper funcon terms' as part of sort constraints

Returny : ReturnVal (Operator declaration

Returngz(val) = return val (Semantic function

)
)
Returns € Command (Sort constraint)
Command C AbsBody (Sort constraint with glue code)

)

— handle-return(Commandz) (glue code



Full paper

Realisation

® Haskell EDSL implementation reflecting our approach
¢ Building on from (Swierstra 2008) and (Bahr & Hvitved 2011)

® Enforce sort constraints and language definedness through Haskell's type system

¢ Optionally: GLL combinators for concrete syntax (Van Binsbergen et al. 2018)

Evaluation

® (Case studies to demonstrate: use of glue code, language variations, etc.

® Positioning within meta-language analysis frameworks of (Erdweg et al. 2012),
(Méndez-Acufia et al. 2016), and/or (Leduc et al. 2019)

® Comparison with related work
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Techniques vary in how effects (entities below) are implicitly propagated:

Monads/Monad transformers: Every entity is an instance of a monad.

The bind operator defines how its values are propagated.

All entities are composed by either defining a monolithic super-monad or by composing
monad-transformers

MSOS: Every entity is an instance of a category C.

The composition operator of the category determines how values are propagated.
All entities together form a product category

I-MSQOS: The formalism chooses certain MSOS categories and provides syntax to
indicate for each entity of which category it is an instance of (entity classes)

CBS & funcons (topic of next slides):

[-MSQOS + monolithic monad implementing the entity classes

Implicit equations in Attribute Grammars (e.g. UUAG): Every entity is an attribute.
Missing attribute equations are generated according to built-in schemes



Language Engineering with Funcons

,,,,,,,,,,,,,,,,,,,,,,,,,

L= e = — =

equations funcon definitions

T
| | |

1 3 N
parser translation interpreter

program ast fct semantics

Can this pipeline support modular, incremental language development?

. a requirement for Agile Language Engineering



e Funcons also have informal semantics (no need to always worry about the details!)

e |-MSOS funcon definitions serve as a reference



Incremental language development (concrete syntax)

Vary (lit) == lit (Syntax declaration)
Apps(abs, arg) ::= abs arg (Syntax declaration)
Absy(param, body) ::= > (> >\’ param "->" body ’)’ (Syntax declaration)

In a syntax declaration, the operands are names for nonterminals, whose productions rules are
determined by sort constraints and (other) syntax declarations.
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