
1/31

Towards a standardised and efficient implementation of the
normative specification language eFLINT

Olaf Erkemeij Christopher A. Esterhuyse

TimMüller L. Thomas van Binsbergen

September 4, 2023

2/31

Old takeawaymessages (e.g. from ProLaLa 2022)
At the University of Amsterdam, the Complex Cyber Infrastructure group is ex‑
perimenting with approaches to enforcing laws, regulations, agreements and
contracts in (distributed) systems, in particular data exchange systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various as‑
pects of our approach relating to:
1. dynamic compliance: access control, runtime verification, ex‑post enforcement,
2. compliance‑by‑design: static checks, formal verification, compilation
3. accountability: explainability, log analysis and conformance checking

These experiments highlight the importancemodularity, reuse, version control,
and inheritance and resulted in evolution of the language and its tools
A next phase is to improve the practicality and usability of eFLINT(in this paper:)

▶ Standardized syntax and semantics
▶ Efficient reasoners and standardized interaction protocol

2/31

Old takeawaymessages (e.g. from ProLaLa 2022)
At the University of Amsterdam, the Complex Cyber Infrastructure group is ex‑
perimenting with approaches to enforcing laws, regulations, agreements and
contracts in (distributed) systems, in particular data exchange systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various as‑
pects of our approach relating to:
1. dynamic compliance: access control, runtime verification, ex‑post enforcement,
2. compliance‑by‑design: static checks, formal verification, compilation
3. accountability: explainability, log analysis and conformance checking

These experiments highlight the importancemodularity, reuse, version control,
and inheritance and resulted in evolution of the language and its tools
A next phase is to improve the practicality and usability of eFLINT(in this paper:)

▶ Standardized syntax and semantics
▶ Efficient reasoners and standardized interaction protocol

2/31

Old takeawaymessages (e.g. from ProLaLa 2022)
At the University of Amsterdam, the Complex Cyber Infrastructure group is ex‑
perimenting with approaches to enforcing laws, regulations, agreements and
contracts in (distributed) systems, in particular data exchange systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various as‑
pects of our approach relating to:
1. dynamic compliance: access control, runtime verification, ex‑post enforcement,
2. compliance‑by‑design: static checks, formal verification, compilation
3. accountability: explainability, log analysis and conformance checking

These experiments highlight the importancemodularity, reuse, version control,
and inheritance and resulted in evolution of the language and its tools

A next phase is to improve the practicality and usability of eFLINT(in this paper:)

▶ Standardized syntax and semantics
▶ Efficient reasoners and standardized interaction protocol

2/31

Old takeawaymessages (e.g. from ProLaLa 2022)
At the University of Amsterdam, the Complex Cyber Infrastructure group is ex‑
perimenting with approaches to enforcing laws, regulations, agreements and
contracts in (distributed) systems, in particular data exchange systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various as‑
pects of our approach relating to:
1. dynamic compliance: access control, runtime verification, ex‑post enforcement,
2. compliance‑by‑design: static checks, formal verification, compilation
3. accountability: explainability, log analysis and conformance checking

These experiments highlight the importancemodularity, reuse, version control,
and inheritance and resulted in evolution of the language and its tools
A next phase is to improve the practicality and usability of eFLINT

(in this paper:)

▶ Standardized syntax and semantics
▶ Efficient reasoners and standardized interaction protocol

2/31

Old takeawaymessages (e.g. from ProLaLa 2022)
At the University of Amsterdam, the Complex Cyber Infrastructure group is ex‑
perimenting with approaches to enforcing laws, regulations, agreements and
contracts in (distributed) systems, in particular data exchange systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various as‑
pects of our approach relating to:
1. dynamic compliance: access control, runtime verification, ex‑post enforcement,
2. compliance‑by‑design: static checks, formal verification, compilation
3. accountability: explainability, log analysis and conformance checking

These experiments highlight the importancemodularity, reuse, version control,
and inheritance and resulted in evolution of the language and its tools
A next phase is to improve the practicality and usability of eFLINT(in this paper:)

▶ Standardized syntax and semantics
▶ Efficient reasoners and standardized interaction protocol

3/31

Example – knowledge representation

(Toy Article 1) a natural person is a legal parent of another natural person if:
▶ they are a natural parent, or
▶ they are an adoptive parent

Fact person Identified by String
Placeholder parent For person
Placeholder child For person

Fact natural-parent Identified by parent * child
Fact adoptive-parent Identified by parent * child

Fact legal-parent Identified by parent * child
Holds when adoptive-parent(parent,child)

|| natural-parent(parent,child)

L. Thomas van Binsbergen, Lu‑Chi Liu, et al. “EFLINT: A Domain‑Specific Language for
Executable Norm Specifications”. In: GPCE. 2020, pp. 124–136

4/31

Example – powers and duties
(Toy Article 2) a child has the power to ask a legal parent for helpwith their home‑
work, resulting in a duty for the parent to help.

Act ask-for-help
Actor child
Recipient parent
Creates help-with-homework(parent,child)
Holds when legal-parent(parent,child)

Duty help-with-homework
Holder parent
Claimant child
Violated when homework-due(child)

Fact homework-due Identified by child

Act help
Actor parent
Recipient child
Terminates help-with-homework(parent,child)
Holds when help-with-homework(parent,child)

5/31

Example – scenario
Fact person Identified by Alice, Bob, Chloe, David

Domain specification

+natural-parent(Alice, Bob).
+adoptive-parent(Chloe, David).

Initial state

ask-for-help(Bob, Alice). // action permitted, creates duty
+homework-due(Bob). // homework deadline passed
?Violated(help-with-homework(Alice,Bob)). // query confirms duty is violated
help(Alice,Bob). // action terminates duty

Scenario

6/31

Foundational, normative & computational concepts

parent(A, B) = true
…

state

computational

parent(A, B) = true
…

parent(A, B) = false
…

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first‑class

6/31

Foundational, normative & computational concepts

parent(A, B) = true
…

state

computational

parent(A, B) = true
…

parent(A, B) = false
…

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first‑class

6/31

Foundational, normative & computational concepts

parent(A, B) = true
…

state

computational

parent(A, B) = true
…

parent(A, B) = false
…

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first‑class

6/31

Foundational, normative & computational concepts

parent(A, B) = true
…

state

computational

parent(A, B) = true
…

parent(A, B) = false
…

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first‑class

6/31

Foundational, normative & computational concepts

parent(A, B) = true
…

state

computational

parent(A, B) = true
…

parent(A, B) = false
…

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first‑class

6/31

Foundational, normative & computational concepts

parent(A, B) = true
…

state

computational

parent(A, B) = true
…

parent(A, B) = false
…

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first‑class

6/31

Foundational, normative & computational concepts

parent(A, B) = true
…

state

computational

parent(A, B) = true
…

parent(A, B) = false
…

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first‑class

6/31

Foundational, normative & computational concepts

parent(A, B) = true
…

state

computational

parent(A, B) = true
…

parent(A, B) = false
…

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first‑class

6/31

Foundational, normative & computational concepts

parent(A, B) = true
…

state

computational

parent(A, B) = true
…

parent(A, B) = false
…

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first‑class

6/31

Foundational, normative & computational concepts

parent(A, B) = true
…

state

computational

parent(A, B) = true
…

parent(A, B) = false
…

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first‑class

7/31

Incremental program development

General approach:
▶ Identify the top‑level ‘phrases’ of your language (syntax)
▶ Define your interpreter as a (pure) transition function (semantics)

interpreter :: Phrase ->
Input ->
(Spec, State) -> -- current `configuration'
(Spec -- holds type decl info
,State -- holds truth assignments
,Output) -- triggered transitions, violations, ...

Top‑level function of Haskell reference interpreter

L. Thomas van Binsbergen, Mauricio Verano Merino, et al. “A Principled Approach to
REPL Interpreters”. In: Onwards! 2020

8/31

Actor‑oriented programming and simulations

inference

eFLINT actor

Actor

changes in norms

query (e.g. permission?)

query (e.g. verification)

notification
(e.g. violation / new duty)

notification
(e.g. of action)

Goals: Dynamic extensions to norms and scenario assessment

9/31

Normative multi‑agent systems

An internal architecture for normative BDI agents

Mostafa Mohajeri Parizi et al. “A Modular Architecture for Integrating Normative Advisors
in MAS”. In: EUMAS. 2022

10/31

Specification of qualification rules

Extend Act make-data-available Syncs with (Foreach donor:
collect-personal-data(controller = member

,subject = donor
,data = dataset
,processor = "DCOG"
,purpose = "DIPGResearch")

When subject-of(donor, dataset))

Extend Act write Syncs with
make-data-available(member, DCOG, asset) When affiliated(actor, member)

L. Thomas van Binsbergen et al. “Dynamic generation of access control policies from
social policies”. In: ICTH (2022)

11/31

Ongoing/unpublished work
▶ Model checking abstract properties (Florine de Geus, MSc)
▶ Compilation to Solidity and other smart contract languages
▶ ...

Plans for IFL paper
▶ Standardise syntax and semantics for dynamic compliance

▶ By releasing the Haskell reference interpreter
▶ Standardise interaction protocol for various usage scenarios

▶ By releasing JSON API specification
▶ Experiment with alternative derivation semantics for negative antecedents
▶ Experiment with implementation strategies to improve runtime

12/31

Towards a standardised and efficient implementation of the
normative specification language eFLINT

Olaf Erkemeij Christopher A. Esterhuyse

TimMüller L. Thomas van Binsbergen

September 4, 2023

13/31

Research questions

What approaches can be taken to develop a scalable server‑based implementation of
the eFLINT language, and how does its performance compare to the existing reference
interpreter?

▶ What are the key challenges in implementing eFLINT in a scalable server‑based
environment?

▶ What are the important design choices regarding the semantics of the eFLINT
language?

▶ What implementation choices can bemade within the eFLINT language, allowing
optimizations in runtime andmemory usage?

13/31

Research questions

What approaches can be taken to develop a scalable server‑based implementation of
the eFLINT language, and how does its performance compare to the existing reference
interpreter?
▶ What are the key challenges in implementing eFLINT in a scalable server‑based

environment?

▶ What are the important design choices regarding the semantics of the eFLINT
language?

▶ What implementation choices can bemade within the eFLINT language, allowing
optimizations in runtime andmemory usage?

13/31

Research questions

What approaches can be taken to develop a scalable server‑based implementation of
the eFLINT language, and how does its performance compare to the existing reference
interpreter?
▶ What are the key challenges in implementing eFLINT in a scalable server‑based

environment?
▶ What are the important design choices regarding the semantics of the eFLINT

language?

▶ What implementation choices can bemade within the eFLINT language, allowing
optimizations in runtime andmemory usage?

13/31

Research questions

What approaches can be taken to develop a scalable server‑based implementation of
the eFLINT language, and how does its performance compare to the existing reference
interpreter?
▶ What are the key challenges in implementing eFLINT in a scalable server‑based

environment?
▶ What are the important design choices regarding the semantics of the eFLINT

language?
▶ What implementation choices can bemade within the eFLINT language, allowing

optimizations in runtime andmemory usage?

14/31

Technology stack

▶ HTTPS server through Golang
▶ Chosen for ease of development

▶ Built‑in HTTPS handler library
▶ Built‑in JSON library
▶ Prior experience :)

▶ eFLINT to JSON parser in Golang

15/31

Intermediate representation

▶ Closely resembles JSON specification
▶ Automatic conversion from JSON to IR
▶ Store instances of facts in twomaps

▶ Map of instances known to be true
▶ Map of instances known to be false
▶ Instances are unknown if in neither map
▶ Hashed instance as key, instance as value of map
▶ Amortized O(1) lookup, addition, and removal

16/31

Interpreter control flow

Phrases
▶ Interpret each phrase sequentially
▶ After each phrase:

▶ store state changes for instances
▶ store violations
▶ store triggers

▶ After interpreting all phrases:
▶ Combine stored data into output

format
▶ Serialize output and send to the user

Expressions
▶ Treat each unbound variable as an

implicit for‑loop
▶ As long as a variable is present:

1. Iterate over the instances for the
variable

2. Fill in the value for all occurrences of
the variable

3. Interpret the new expression

17/31

Expression evaluation
Derivation algorithm requires evaluation
of expressions
1. Go over all derivation rules
2. Evaluate each rule and gather all

results
3. Modify the program state using the

results
4. Repeat until stable

This approach often requires many
iterations
▶ Can take a long time
▶ Inefficient

Fact name Identified by Alice,
Bob, Charlie.

Fact person Identified by String
Derived from name.

18/31

Expression evaluation

The new interpreter supports on‑the‑fly state modifications
▶ During derivation process, each evaluation result can immediately be used to

modify the state
▶ Can only be used during derivation process
▶ Cuts down on iterations needed

Fact name Identified by Alice, Bob, Charlie.
Fact person Identified by String

Derived from name.

19/31

Derivation logic

1. p← q
2. q← r
3. r← s
4. s← ⊤

A set of derivation rules.

Haskell eFLINT interpreter supports
derivation logic
▶ Greedily tries to apply rules
▶ Repeatedly considers each rule until

stable
▶ However, eFLINT syntax also supports

negative literals

20/31

Derivation logic

1. p← ¬q
2. q← p
3. a← ¬b

A set of derivation rules containing a circular
dependency.

▶ Derivations involving negated literals
▶ eFLINT takes a greedy approach
▶ Could end up with {p, q, a} as

knowledge base
▶ What is the desired behaviour?

21/31

Derivation logic

Property (Satisfaction)
Each given rule is satisfied, i.e., if each of its
conditions are true in the model, then its
consequent is true in the model.

Property (Explainability)
Each true fact was either postulated true, or
is derived by a given rule which is satisfied.

Property (Consistency)
Each model attributes a unique, Boolean
truth value to each fact.

▶ Derivation model can conform to 3
properties

▶ Current approach breaches property 2
▶ Other approaches fulfil other

properties
▶ Stable model semantics
▶ Well founded semantics
▶ Simply don’t allow negative literals

22/31

Modified derivation logic
dependency graph

Store dependencies between derivation rules in a dependency graph

1. p← ¬q, r
2. q← p
3. a← ¬b, p

A set of derivation rules containing a circular
dependency.

p

q

r

a

b

22/31

Modified derivation logic
dependency graph

Store dependencies between derivation rules in a dependency graph

1. p← ¬q, r
2. q← p
3. a← ¬b, p

A set of derivation rules containing a circular
dependency.

p

q

r

a

b

22/31

Modified derivation logic
dependency graph

Store dependencies between derivation rules in a dependency graph

1. p← ¬q, r
2. q← p
3. a← ¬b, p

A set of derivation rules containing a circular
dependency.

p

q

r

a

b

23/31

Modified derivation logic

Keep track of ‘assumptions’
▶ Assume any unknown negated literal to be false
▶ Store assumption alongside current state of the algorithm
▶ Backtrack to stored state when contradicting the assumption

Weakens property 1, preserves the others

Property (Satisfaction)
Each given rule is satisfied, i.e., if each of its conditions are true in the model, then its
consequent is true in the model.

23/31

Modified derivation logic

Keep track of ‘assumptions’
▶ Assume any unknown negated literal to be false
▶ Store assumption alongside current state of the algorithm
▶ Backtrack to stored state when contradicting the assumption

Weakens property 1, preserves the others

Property (Satisfaction)
Each given rule is satisfied, i.e., if each of its conditions are true in the model, then its
consequent is true in the model.

24/31

Modified derivation logic

1. r← ⊤
2. p← ¬q, r
3. q← p
4. a← ¬b, p

A set of derivation rules containing a circular
dependency.

1. Derive r: {r}
2. Assume ¬q, derive p: {r, p}
3. Know p, derive q
4. Assumption violated, backtrack
5. Do not assume ¬q: {r}

25/31

Correctness

▶ 42 files tested
▶ 41 passes, 1 failure
▶ 97.6% success rate

Event a
Syncs with b().

Event b
Syncs with a().

a().

The failing test case: infinite loop

26/31

Performance (1 / 2)
Derivation rules

Fact x Identified by 1..<size> Holds when x(x - 1).
+x(1).

1 10 100 1000 10000
Domain Size

1.0 seconds

10.0 seconds

100.0 seconds

1000.0 seconds

10000.0 seconds

Ti
m
e(

se
co
nd

s)

Reference interpreter
Our work

1 10 100 1000 10000
Domain Size

9.8 KB

97.7 KB

976.6 KB

9.5 MB

95.4 MB

M
em

or
y(
by

te
s)

Reference interpreter
Our work

27/31

Performance (2 / 2)
Composite type dimensionality size

Fact parameter Identified by 1..10
Fact combined Identified by parameter1 * parameter2 * ...
?-combined.

1 10 100 1000 10000
Parameter Size

1.0 seconds

10.0 seconds

100.0 seconds

1000.0 seconds

Ti
m
e(

se
co
nd

s)

Reference interpreter
Our work

1 10 100 1000 10000
Parameter Size

97.7 KB

9.5 MB

953.7 MB

M
em

or
y(
by

te
s)

Reference interpreter
Our work

28/31

Contributions

▶ Created a new interpreter for the eFLINT language
▶ Implemented amodified, modular derivation procedure

▶ Can test different derivation procedures
▶ Server can easily switch between procedures

▶ Achieved execution time speed‑up in the new interpreter
▶ Worked on releasing a stable version of the JSON specification

29/31

Conclusions

Research questions
▶ Challenges:

▶ Conversion of eFLINT code to JSON and IR and back
▶ Derivation procedure implementation
▶ Unbound variables

▶ Important design choices:
▶ Internal representation
▶ Allowing negative literals
▶ Allowing unknown values

▶ Optimizations performed by:
▶ Using hashing for efficient storage
▶ Optimizing derivation process through dependency graphs

30/31

NWO‑funded: SSPDDP – Secure and scalable, policy‑driven data exchange

NWO‑funded: DL4LD – Data Logistics for Logistics Data

EFRO‑funded: AMDEX Fieldlab – neutral data‑exchange infrastructure

31/31

Towards a standardised and efficient implementation of the
normative specification language eFLINT

Olaf Erkemeij Christopher A. Esterhuyse

TimMüller L. Thomas van Binsbergen

September 4, 2023

	Context
	Plans Before Final Paper
	Previous work
	Implementation
	Evaluation
	Conclusion

