Normative Reasoning in Distributed Systems and GDPR-based Access Control

L. Thomas van Binsbergen, Tom van Engers

Informatics Institute, University of Amsterdam Itvanbinsbergen@acm.org

January 28, 2025

Normative Specification Language eFLINT

- Domain-specific language coupling normative/legal to computational concepts
- Based on logic programming and inference; Captures transitions between Knowledge bases
- Enables modelling and simulation; Enables integration into running systems.

computational

state

parent(A, B) = true
...

computational

state

parent(A, B) = true
...

transitions

parent(A, B) = true... parent(A, B) = false...

computational

state

parent(A, B) = true
...

transitions

parent(A, B) = true... parent(A, B) = false...

Towards regulated systems

Enforcement strategies

• Static, Ex-ante: orchestration and planning

Enforcement strategies

- Static, Ex-ante: orchestration and planning
- Dynamic, Ex-ante: access control

Enforcement strategies

- Static, Ex-ante: orchestration and planning
- Dynamic, Ex-ante: access control
- Dynamic, Ex-post: usage control, runtime verification and adaptation

Enforcement strategies

- Static, Ex-ante: orchestration and planning
- Dynamic, Ex-ante: access control
- Dynamic, Ex-post: usage control, runtime verification and adaptation
- Static, Ex-post: accountability and auditing

AMdEX – neutral data-exchange infrastructure

DMI ECOSYSTEEM

European Union European Regional Development Fund

20 / 65

Normative Reasoning in Distributed Systems and GDPR-based Access Control

L. Thomas van Binsbergen, Tom van Engers

Informatics Institute, University of Amsterdam Itvanbinsbergen@acm.org

January 28, 2025

Goal: Develop a knowledge-based, expert system for reasoning with GDPR-compliance and generating authorisations in distributed access and usage control implementations.

Is a given processing action lawful with respect to claimed legal bases in the GDPR?

Is a given processing action lawful with respect to claimed legal bases in the GDPR?

Is a given processing action lawful with respect to claimed legal bases in the GDPR?

Processing Action

- Identified by actor, asset, and *processing purpose*
- An action is always executed for one purpose

Is a given processing action lawful with respect to claimed legal bases in the GDPR?

Processing Action

- Identified by actor, asset, and *processing purpose*
- An action is always executed for one purpose

Legal basis

- Refers to Art. 6(1)(a-f), e.g., consent, legal obligation, legitimate interest, ...
- Identified by article (member) and *intended purpose*
- One or more legal bases can be *claimed*

Is a given processing action lawful with respect to claimed legal bases in the GDPR?

Processing Action

- Identified by actor, asset, and *processing purpose*
- An action is always executed for one purpose

Legal basis

- Refers to Art. 6(1)(a-f), e.g., consent, legal obligation, legitimate interest, ...
- Identified by article (member) and *intended purpose*
- One or more legal bases can be *claimed*

Is a given <u>collect action</u> lawful with respect to claimed legal bases in the GDPR?

Ontology of lawful processing concepts

Case-generic rules for determining:

- Are the claimed legal bases valid?, e.g.
 - Is the intended purpose considered sufficiently specific?
 - Have the subjects been informed?
 - Have the subjects given consent (if legal basis is 'consent')?

 $\frac{\textit{legitimate-interest}(C,P) \quad \textit{sufficiently-specific}(P) \quad \forall_S(\textit{subject-of}(S,D) \rightarrow \textit{has-been-informed}(S,C,P))}{\textit{legal-basis}(C,P,D)}$

Case-generic rules for determining:

- Are the claimed legal bases valid?, e.g.
 - Is the intended purpose considered sufficiently specific?
 - Have the subjects been informed?
 - Have the subjects given consent (if legal basis is 'consent')?
- Can the processing purpose and the lawful purpose be united? i.e.,
 - The processing purpose is *identical to* or more specific than the intended purpose
 - The processing purpose is not incompatible with the intended purpose

```
\frac{request(U, A, P, D) \quad prerequisite-of(A, P) \quad processor-for(U, C, P')}{specific-of(P, P') \quad legal-basis(C, P', D)}
\frac{lawful-request(U, A, P, D)}{lawful-request(U, A, P, D)}
```

Case-generic rules for determining:

- Are the claimed legal bases valid?, e.g.
 - Is the intended purpose considered sufficiently specific?
 - Have the subjects been informed?
 - Have the subjects given consent (if legal basis is 'consent')?
- Can the processing purpose and the lawful purpose be united? i.e.,
 - The processing purpose is *identical to* or more specific than the intended purpose
 - The processing purpose is not incompatible with the intended purpose

 $\begin{array}{ll} request(U, A, P, D) & prerequisite-of(A, P) & sufficiently-specific(P) & processor-for(U, C, P') \\ compatible-with(P, P') & legal-basis(C, P', D) & \forall_{S}(subject-of(S, D) \rightarrow has-been-informed(S, C, P)) \\ \hline \\ low full request(U, A, P, D) & low full request(U, A, P, D) \\ \hline \end{array}$

lawful-request(U, A, P, D)

Case specific statements

Expert drives the inference process by *claiming*:

- One or more legal bases
- Whether the intended purposes are sufficiently specific
- Whether (all) data subjects have been informed
- ... have given consent...
- etc.

Case specific statements

Expert drives the inference process by *claiming*:

- One or more legal bases
- Whether the intended purposes are sufficiently specific
- Whether (all) data subjects have been informed
- ... have given consent...

• etc.

General approach

- 1. Encode case-generic rules in eFLINT and apply to all processing requests
- 2. Convert input by domain-expert into case-specific eFLINT statements
- 3. Assemble policy per request, make decision, and record inputs and outputs

Operationalisation within AMdEX-DMI

Goal: Develop a knowledge-based, expert system for reasoning with GDPR-compliance and generating authorisations in distributed access and usage control implementations.

Contributions:

- Raising the level of *abstraction* of policy specification to the level of the *domain-expert*. *Before*: System administrator sets (low-level) access policies *After*: Privacy expert submits claims regarding purposes and legal bases
- Authorisations are generated only when processing of legal data is lawful (according to the GDPR) in a *certifiable* and *accountable* manner
- Case-generic specification is *adaptable*, *extensible*, and *transparent*

Normative Reasoning in Distributed Systems and GDPR-based Access Control

L. Thomas van Binsbergen, Tom van Engers

Informatics Institute, University of Amsterdam Itvanbinsbergen@acm.org

January 28, 2025

Joint Controllers Archetype

Delegated Processing Archetype

Subject

Delegated Collection Archetype

Independent Controllers Archetype

System interactions

• Request consists of Actor, Action, Asset

- Request consists of Actor, Action, Asset
- Role-Based AC: *Role*(*Actor*) \in *RolePermitted*(*Action*, *Asset*)

- Request consists of Actor, Action, Asset
- Role-Based AC: *Role*(*Actor*) ∈ *RolePermitted*(*Action*, *Asset*)
- Purpose-Based AC: Purpose(Role(Actor), Action) \in PurposePermitted(Asset)

- Request consists of Actor, Action, Asset
- Role-Based AC: Role(Actor)
 RolePermitted(Action, Asset)
- Purpose-Based AC: *Purpose*(*Role*(*Actor*), *Action*) ∈ *PurposePermitted*(*Asset*)
- GDPR-Based AC: $Purpose(Actor, Action) \leq Purpose(LegalBasis(...))$

- 1. Legal analysis
- 2. Ontology
- 3. Semantic specification (inference rules)
- 4. Semantic implementation (eFLINT)
- 5. Policy specification (purpose details, consent)
- 6. System integration (XACML, AMdEX)
- 7. Reflections

Definition

A <u>controller</u> can claim a *legal basis* for processing for a specific <u>intended purpose</u> if the processing is lawful according to the GDPR (Art. 6), in which case one of the following applies:

- the data subject has given consent (Art. 6(1)(a)), or
- the processing is necessary for:
 - the performance of a contract with the data, or subject (Art. 6(1)(b)), or
 - compliance with a legal obligation (Art. 6(1)(c)), or
 - the vital interest of subject or natural person (Art. 6(1)(d)), or
 - public interest or vested authority (Art. 6(1)(e)), or
 - the controller has a legitimate interest (Art. 6(1)(f)).

And all data subjects involved must be informed about the legal basis and purpose, prior to the processing.

Legal Analysis (2)

Definition

A *purpose-based processing request* connects an <u>actor</u> (a processor or controller) to a processing <u>action</u>, performed on an <u>asset</u> for a prescribed <u>processing purpose</u>. The request is considered lawful if:

- the action is prerequisite of the processing purpose, and
- the processing purpose is *sufficiently specific*, and
- the processing purpose:
 - coincides with a purpose that has a lawful legal basis, or
 - is more specific than a purpose that has a lawful legal basis, or
 - is not incompatible with a purpose that has a lawful legal basis.

Definition

A <u>purpose</u> is a *specific-of* of another <u>purpose</u> if it concretises a more abstract purpose without including elements not contained in the more abstract purpose.

Examples of semantic specification rule

 $\frac{\text{legitimate-interest}(C, P) \quad \text{sufficiently-specific}(P)}{\forall_{S}(\text{subject-of}(S, D) \rightarrow \text{has-been-informed}(S, C, P))}$ $\frac{\forall_{S}(\text{subject-of}(S, D) \rightarrow \text{has-been-informed}(S, C, P))}{\text{legal-basis}(C, P, D)}$

(1)

Examples of semantic specification rule

 $\frac{\text{legitimate-interest}(C, P) \quad \text{sufficiently-specific}(P)}{\forall_{S}(\text{subject-of}(S, D) \rightarrow \text{has-been-informed}(S, C, P))}$ $\frac{\forall_{S}(\text{subject-of}(S, D) \rightarrow \text{has-been-informed}(S, C, P))}{\text{legal-basis}(C, P, D)}$

 $\frac{request(U, A, P, D) \quad prerequisite-of(A, P)}{specific-of(P, P') \quad legal-basis(C, P', D) \quad processor-for(U, C, P')}{lawful-request(U, A, P, D)}$

(2)

(1)

 $\frac{\text{legitimate-interest}(C, P) \quad \text{sufficiently-specific}(P)}{\forall_{S}(\text{subject-of}(S, D) \rightarrow \text{has-been-informed}(S, C, P))}$ $\frac{\forall_{S}(\text{subject-of}(S, D) \rightarrow \text{has-been-informed}(S, C, P))}{\text{legal-basis}(C, P, D)}$

 $\frac{request(U, A, P, D) \quad prerequisite-of(A, P)}{specific-of(P, P') \quad legal-basis(C, P', D) \quad processor-for(U, C, P')}{lawful-request(U, A, P, D)}$

 $\begin{array}{l} \textit{request}(U, A, P, D) \quad \textit{prerequisite-of}(A, P) \quad \textit{sufficiently-specific}(P) \\ \textit{compatible-with}(P, P') \quad \textit{legal-basis}(C, P', D) \quad \textit{processor-for}(U, C, P') \\ \forall_{S}(\textit{subject-of}(S, D) \rightarrow \textit{has-been-informed}(S, C, P)) \end{array}$

lawful-request(U, A, P, D)

(1)

(2)

(3)

Example eFLINT fragments implementing semantics

```
Fact lawful-request
   Identified by actor * processing-action * purpose * asset
   Conditioned by request() // only considers created requests
```

Example purpose graph and scenarios

- (a.) The processing actions that are prerequisites of delivering goods are lawful, for each individual subject, if a contract exists with that subject and for that purpose.
- (b.) The further processing of the data to print and include a personal offer may be lawful depending on whether this purpose is considered to be incompatible with the delivery.
- (c.) If, instead, the company asks for consent as a legal basis, the consent needs to state 'making a personal offer' and not 'marketing' as the latter is not deemed to be sufficiently specific.

- 1. Legal analysis
- 2. Ontology
- 3. Semantic specification (inference rules)
- 4. Semantic implementation (eFLINT)
- 5. Policy specification (purpose details, consent)
- 6. System integration (XACML, AMdEX)
- 7. Reflections

Archetypical patterns of processing activities

Independent Controllers Archetype

Capability	Policy (purpose-graph) contributions	Assigned to
Control	legal-basis, dpa, has-been-informed, contract(s) (if applicable)	Controller,
		Authority
Qualify	prerequisite-of, compatible-with, specific-of, sufficiently-specific	Controller,
		Authority
Collect	asset(s), subject-of	Collector
Perform	request	Performer
		Collector
Consent	consent-given (including withdrawal of consent)	Subject

Policy administration capabilities and roles

Processing Archetype	Organisation	Policy Administration Roles
No Delegation	Controller	Controller, Collector, Performer
Delegated Action	Controller	Controller, Collector
	Performer	Performer
Delegated Processing	Controller	Controller
	Performer	Collector, Performer
Delegated Collection	Controller	Controller, Performer
	Collector	Collector
Distributed	Controller	Controller
	Collector	Collector
	Performer	Performer
Independent Controllers	Controller A	Controller, Collector
	Controller B	Controller, Performer

Example case: KPN and wiretapping

Scenario 2 checks:

- Upon sending: KPN's PEP confers with KPN PDP for collecting
- Upon receiving: Agency's PEP confers with Agency PDP for performing

Example case: industry benchmarking

Scenario 1 checks:

 Company's PEP confers with local PDP for both collecting and performing (e.g., 'pay salary')

Scenario 2 checks:

 Company's PEP confers with Association's PDP for both collecting and performing (e.g., 'total salary, employee count')

Simplified XACML architecture (technical roles)

Simplified XACML architecture with PBAC policy administration

Mapping roles unto data exchange systems

Mapping roles unto data exchange systems

Self-governed peer-to-peer system (distribution archetype)

Peer-to-peer system governed by intermediary (AMdEX)

Example case: KPN and wiretapping

Scenario 2 checks:

- Upon sending: KPN's PEP confers with KPN PDP for collecting
- Upon receiving: Agency's PEP confers with Agency PDP for performing

Example case: industry benchmarking

Scenario 1 checks:

 Company's PEP confers with local PDP for both collecting and performing (e.g., 'pay salary')

Scenario 2 checks:

 Company's PEP confers with Association's PDP for both collecting and performing (e.g., 'total salary, employee count')

Reflections on accountability and explainability

Figure: Different reasoning scenarios with different stakeholders.

Reflected in current solution

- Original and further processing purposes need to be *sufficiently specific*
- Requirement to *inform subjects* of legal bases, prior to processing \hookrightarrow which in some cases can be inferred
- Requirement to specify processing purpose

Necessary updates to be made

- Cases with two or more independent controllers (Control vs Perform capability)
- Cases with joint controllership

We aim to show feasibility within the current AMdEX-DMI project.

