
Software languages for data exchange systems

L. Thomas van Binsbergen1

1Centrum Wiskunde & Informatica
l.t.van.binsbergen@cwi.nl

April 2020

Section 1

Norm-aware, distributed software systems

Regulated data exchange:
Data exchange systems governed by regulations, contracts and policies

as an instance of

Regulated systems:
Distributed software systems with embedded regulatory services derived from
norm specifications that monitor and/or enforce compliance

Regulated systems architecture

repository of
reusable norm
specifications

application
specific specs

regulatory
services

application
services

policy construction (offline)

distributed system (online)

N1 N2 N3 N4 N5 N6 N7 N8 N9

C1 C2
composition

extension
composition

S1 S2

concretization concretization

I1 I2 ... I n

initialization initialization

M1 M2

app event policy event request/response event log query

Regulated systems architecture for Know Your Customer case study

repository of
reusable norm
specifications

application
specific specs

regulatory
services

application
services

policy construction (offline)

distributed system (online)

Internal Policy
Sharing
Agreement

Consent Ontology Rectification

GDPR composition

Internal Policy
Sharing
Agreement

GDPR composition

SA G1 ... G nP1 ... P n

initialization initializationinitialization

M0 M1 M2

event request/response event event

Client1

Client n

Employee1

Employee n

Bank1

Bank n
Broker

Desired properties of regulatory services

Regulatory services for: control, enforcement, monitoring and diagnosis

Explicit, formal and reusable interpretations of norms written as normative
specifications in a high-level domain-specific language

– e.g. laws, regulations, organizational policies, contracts, codes of conduct, etc.

Explicit qualification of observations in terms of formalized norms

Multiple normative specifications can apply simultaneously, each having its own
collection of regulatory services

Regulatory services can be dynamically updated to new versions of norms

Desired properties of norm specification language (policy language)

Formalization of norms in terms of deontic and potestative positions

– Deontic positions: Permission, prohibition, obligation
– Potestative positions: Power (ability), liability, immunity

Actors are in normative relations with each other:

– power-liability relations between a performer and a recipient
– duty-claim relations between a holder and a claimant

Queries produce insights into normative positions and institutional facts
Conversely, institutional facts can be validated by external services

Transitions, triggered by input events, modify normative positions, resulting in
output events: e.g. new obligations, violated prohibitions, etc.

Section 2

Policy construction with eFLINT

Example – ontology

Fact subject

Fact data

Fact subject -of I d e n t i f i e d by subject * data

Fact controller

Fact processor

Fact purpose

Fact processes I d e n t i f i e d by processor * data * controller * purpose

Elements of the GDPR ontology

Fact personal -data I d e n t i f i e d by data

Holds when (E x i s t s subject: subject -of(subject ,data))

Article 4(1)

eFLINT: a Domain-Specific Language for Executable Norm Specifications.

L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom van Engers.

Proceedings of GPCE ’20. ACM.

Example – rectification(1)

(Article 16) The data subject shall have the right to obtain from the controller
without undue delay the rectification of inaccurate personal data concerning
him or her. [...]

Fact accurate -for -purpose I d e n t i f i e d by data * purpose

Act demand -rectification

Actor subject

R e c i p i e n t controller

Related to purpose

Creates rectification -duty(controller ,subject ,purpose)

Holds when (E x i s t s data , processor:

subject -of() && !accurate -for -purpose () && processes ())

The data subject has the right to demand rectification of inaccurate data

Example – rectification(2)

(Article 16) The data subject shall have the right to obtain from the controller
without undue delay the rectification of inaccurate personal data concerning
him or her. [...]

Duty rectification -duty

Holder controller

Claimant subject

Related to purpose

V i o l a t e d when undue -rectification -delay() // open -texture term

Fact undue -rectification -delay I d e n t i f i e d by controller * purpose * subject

Event rectification -delay

Related to controller , purpose , subject

Creates undue -rectification -delay()

Holds when rectification -duty()

... rectification without undue delay ...

Example – rectification(3)

(Article 16) The data subject shall have the right to obtain from the controller
without undue delay the rectification of inaccurate personal data concerning
him or her. [...]

Act rectify -personal -data

Actor controller

R e c i p i e n t subject

Related to purpose

Terminates rectification -duty(), undue -rectification -delay()

Holds when all -processors -accurate ()

Fact all -processors -accurate I d e n t i f i e d by controller * subject * purpose

Holds when (F o r a l l processor , data: accurate -for -purpose ()

When processes () && subject -of())

Rectification

Foundations of eFLINT

(Institutional) facts, actions, events and duties are fluents, changing over time
due to the effects of actions and events

A specification is a sequence of type declarations inducing a transition system.
Transitions in the system are triggered by input events and produce output events.
A script is a sequence of statements describing a trace in the transition system

Normative relations and deontic/potestative positions are inferred:
– An act-type describes a power-liability relation (if it affects normative positions)
– An action is permitted if it is enabled (its instance & pre-conditions hold)
– A duty-type describes a duty-claim relation
– Duty-types are used to describe obligations and prohibitions

There are only implicit references to time, and references are always to “now”.
The effects of actual time (in a running system) are triggered by input events.
If necessary, a clock can be modeled using the clock fact and tick() event

Example script

give -consent(Alice , Bank , KYC).

collect -personal -data(Bank , Alice , A1, Advertisement).// non -compliant action

collect -personal -data(Bank , Alice , A1, KYC). // compliant action

-accurate -for -purpose(A1, KYC). // e.g. Alice relocates

+accurate -for -purpose(A2, KYC).

demand -rectification(Alice , Bank , KYC). // creates duty

?rectification -duty(Bank , Alice , KYC). // query succeeds

stop -processing(BankProcessor , Alice , KYC). // data deleted

rectify -personal -data(Bank , Alice , KYC). // terminate duty

?! rectification -duty(Bank , Alice , KYC). // query succeeds

Applications of eFLINT

Automatic case assessment and dispute resolution

– Present: web interface on top of a command-line tool for running scripts

Policy design through scenario exploration

– Present: assessing sets of concrete scenarios (i.e. test suite of scripts)
– Present: scenario exploration using a command-line REPL (with backtracking)
– Future: exploring sets of scenarios satisfying certain properties (model finding)
– Future: change impact analysis (diffs between sets of scenarios)

Policy verification
– Present: run-time checking of invariants
– In development: model checking safety and liveness properties

Online use in regulated systems:

– Present: TCP REPL to respond to input events and produce output events
– Present: control and enforcement using regulator actors
– In development: monitoring and diagnosis

Regulated systems architecture

repository of
reusable norm
specifications

application
specific specs

regulatory
services

application
services

policy construction (offline)

distributed system (online)

N1 N2 N3 N4 N5 N6 N7 N8 N9

C1 C2
composition

extension
composition

S1 S2

concretization concretization

I1 I2 ... I n

initialization initialization

M1 M2

app event policy event request/response event log query

Policy extension in eFLINT (offline)

Composition

eFLINT specifications are composable sets of declarations; name-conflicts are resolved:

– via encapsulation (e.g. in a module system), or

– via replacement (newer replaces older), or

– via concretization (more specific replaces less specific)

Concretization

A declaration C concretizes a declaration D of the same type name T when:

– C defines a subtype of D, i.e. IC ⊆ ID , or

– C is structured, D is unstructured (data example on next slide)

Concretizations can add derivation clauses, pre-conditions and post-conditions to a type

Example – concretization

Fact data

Fact subject -of I d e n t i f i e d by subject * data

Fact purpose

Original declarations in GDPR ontology

Fact purpose I d e n t i f i e d by KYC , Advertisement , Other

Fact client

Fact property

Fact value

Fact data I d e n t i f i e d by client * property * value

Fact subject -of I d e n t i f i e d by subject * data

Der ived from (Foreach data: subject -of(data.client , data))

// at most one subject is identifiable in every element of data

I n v a r i a n t data -rows -not -sets :

(F o r a l l data , subject , subject ’ : subject == subject ’

When subject -of() && subject -of(subject = subject ’))

Concretizations used in KYC case study

Section 3

Applying eFLINT in regulated systems

Online policy extension using Read Eval Print Loops (REPLs)

Sequential languages (Van Binsbergen 2020c)

In a sequential language, every sequence of valid programs is a valid program.
In other words, the set of programs of a sequential language forms a semi-ring

eFLINT is sequential, enabling online case analysis and policy modification

The paper has a generic exploring interpreter algorithm for sequential languages

Different eFLINT interfaces have been built on top of the exploring interpreter:

– A command-line interface for manual exploration
– A TCP server interface for receiving declarations and statements over a port

A principled approach to REPL interpreters. L. Thomas van Binsbergen, Mauricio Verano

Merino, Pierre Jeanjean, Tijs van der Storm, Benoit Combemale, and Olivier Barais.

Proceedings of Onward! ’20. ACM.

From eFLINT specifications to Regulators

idea: let special ‘regulator actors’ execute eFLINT specifications

Incoming messages trigger input events

Creating/terminating facts and triggering actions and events (statements)
Dynamic scenario (case) construction with automated assessment

Creating, modifying or removing fact-, act-, event- and duty-types (declarations)
Dynamic policy construction

Queries, e.g. for checking for permissions, powers and (violated) duties

Output events trigger outgoing messages

Notifications of new permissions and powers

Notifications of executed (and perhaps non-compliant) actions

Notifications of new duties and newly violated duties

Querying an actor to determine or validate the truth of a fact

Regulator overview

Regulated systems architecture

repository of
reusable norm
specifications

application
specific specs

regulatory
services

application
services

policy construction (offline)

distributed system (online)

N1 N2 N3 N4 N5 N6 N7 N8 N9

C1 C2
composition

extension
composition

S1 S2

concretization concretization

I1 I2 ... I n

initialization initialization

M1 M2

app event policy event request/response event log query

Monitoring services

Create and maintain Regulators in response to certain application-level events:

– create Regulators by loading and initializing an eFLINT specification (e.g. contracts)
– maintain addresses of Regulators

Translate application-level events to policy-level events within correct Regulator.
Translate policy-level events from Regulators to application- or policy-level events

– Requires an intermediate or shared ontology

Request/response interactions from application- to policy-layer (and vice versa):

– A timeout value to ensure timely response
– A default response in case of timeout

Query event logs by constructing a report over past events (i.e. CloudLens DSL)

KYC – shared event ontology (GDPR compliance)

Declaration of data types, e.g. using JSON schemas to define object types

{

"title" : "ClientProfile",

"type" : "object",

"required" : ["id", "country -code", "sbi -code"]

"properties ": {

"id" : {

"type" : "number",

"description" : "the client for which this profile collects info"

}

...

}

}

Declaration of events as data types

APP message/timestamp:number/from:Client/to:Bank

/{" name ":" apply_for_account "," KYC_consent ":boolean , ...}

APP insertDB/timestamp:number/bank:Bank/contents:ClientProfile

KYC – monitoring GDPR compliance

WHEN
message/time/client/bank

/{" name ":" apply_for_account "," KYC_consent ":consent ,...}

NEW gdpr -contract(client , bank)

TRIGGER IN gdpr -contract(client.id,bank.id) WHEN consent == "true"

give -consent($client.id,$bank.id,KYC). // eFLINT input event (statement)

INIT gdpr -contract(client:Client , bank:Bank) FROM "gdpr_composition.eflint"

IDENTIFIED BY client.id, bank.id

TRIGGER
+subject($client.id). // eFLINT initialization statements

+controller($bank.id).

+processor($bank.id).

WHEN
insertDB/time/bank /{"id":id, "country -code":country , "SBI -code":sbi , ...}

TRIGGER IN gdpr -contract(id , bank.id)

collect -personal -data($bank.id,$id ,data($id ," country",$country),KYC).

collect -personal -data($bank.id,$id ,data($id ,"sbi",$sbi),KYC).

KYC – shared event ontology (2)

POLICY
illegalAction /"collect -personal -data"

/by:Bank.id/to:Client.id/purpose:string

APP-REQUEST
permission /"collect -personal -data"

/by:Bank.id/client:Client.id/purpose:string

RESPONSE
value:boolean/motivation:object

WITHIN
20. MILLISECONDS

DEFAULT
"false "/{" reason ":" request failed "}

KYC – monitoring GDPR compliance (2)

WHEN
ACTION-VIOLATION collect -personal -data(bank ,client ,purpose)

IN gdpr -contract(client , bank)

TRIGGER
illegalAction /"collect -personal -data"/$bank/$client/$purpose

REQUEST
permission /"collect -personal -data"/bank/client/purpose

TRIGGER IN gdpr -contract(client.id, bank.id)

?Enabled(collect -personal -data($bank.id ,$client.id,$purpose))

Regulated systems architecture

repository of
reusable norm
specifications

application
specific specs

regulatory
services

application
services

policy construction (offline)

distributed system (online)

N1 N2 N3 N4 N5 N6 N7 N8 N9

C1 C2
composition

extension
composition

S1 S2

concretization concretization

I1 I2 ... I n

initialization initialization

M1 M2

app event policy event request/response event log query

Reflections and limitations

Regulatory services can be generated from specifications

– Regulators generated from norm specifications (e.g. written in eFLINT), and
– Monitors generated from reactive interface specifications
– Verified using eFLINT TCP servers and handwritten Scala Akka code for KYC case

eFLINT practical and relatively easy to use for programmers, however:
– Higher-level version for domain-experts (e.g. legal experts, policy makers):

Language constructs for reusable, high-level patterns (design patterns)
Specifications directly in terms of normative positions, rather than inferred

– More restrictive version as a target for natural language processing

Limitations to presented approach for regulatory services:

– Regulators are not ‘strongly reactive’, handle one input event at a time
– Consequences: long computations and external validation decrease throughput
– Stateless or multi-state design as possible solutions
– Further considerations regarding the structure of policy-level events required,

i.e. provide intuitive reports about current trace (explainability and diagnosis)

Reflections and limitations

Regulatory services can be generated from specifications

– Regulators generated from norm specifications (e.g. written in eFLINT), and
– Monitors generated from reactive interface specifications
– Verified using eFLINT TCP servers and handwritten Scala Akka code for KYC case

eFLINT practical and relatively easy to use for programmers, however:
– Higher-level version for domain-experts (e.g. legal experts, policy makers):

Language constructs for reusable, high-level patterns (design patterns)
Specifications directly in terms of normative positions, rather than inferred

– More restrictive version as a target for natural language processing

Limitations to presented approach for regulatory services:

– Regulators are not ‘strongly reactive’, handle one input event at a time
– Consequences: long computations and external validation decrease throughput
– Stateless or multi-state design as possible solutions
– Further considerations regarding the structure of policy-level events required,

i.e. provide intuitive reports about current trace (explainability and diagnosis)

Reflections and limitations

Regulatory services can be generated from specifications

– Regulators generated from norm specifications (e.g. written in eFLINT), and
– Monitors generated from reactive interface specifications
– Verified using eFLINT TCP servers and handwritten Scala Akka code for KYC case

eFLINT practical and relatively easy to use for programmers, however:
– Higher-level version for domain-experts (e.g. legal experts, policy makers):

Language constructs for reusable, high-level patterns (design patterns)
Specifications directly in terms of normative positions, rather than inferred

– More restrictive version as a target for natural language processing

Limitations to presented approach for regulatory services:

– Regulators are not ‘strongly reactive’, handle one input event at a time
– Consequences: long computations and external validation decrease throughput
– Stateless or multi-state design as possible solutions
– Further considerations regarding the structure of policy-level events required,

i.e. provide intuitive reports about current trace (explainability and diagnosis)

Section 4

Agile Software Language Engineering

Some terminology

software languages: general-purpose programming languages, specification
languages, modeling languages, scripting languages, domain-specific languages,
meta-languages, etc...

domain-specific languages (DSLs) specialized to an application domain,
ideally usable by domain experts without prior programming experience

embedded DSLs (EDSLs) borrow syntax and tooling from a host language

meta-languages: (domain-specific) languages for constructing object languages

Language development – practice

formal syntax parser
generated/handwritten

informal semantics static analyzer
handwritten

compiler

interpreter
handwritten

handwritten

programdocumentation implementation

Language development – ideal

formal syntax parser
generated

static semantics static analyzer
generated

compiler

operational semantics

denotational semantics

interpreter
generated

generated

programdocumentation implementation

Agile Software Language Engineering

To make language specifications easier to develop, to maintain and to enable
rapid prototyping, the declarations of meta-languages should be:

modular
– A specification consists of smaller components that can be understood in isolation

compositional
– The ability to compose components and retain desirable properties

reusable
– The ability to reuse components across specifications
– Common pattern: reuse through abstraction
– Rapid prototyping requires separate compilation, i.e.

changing one components requires only regenerating the code for that component

Contributions to generalized parsing technology

CFGs
(Chomsky)

– compositional

LL parsing

– modular

– separate compilation

LR parsing
GLR parsing
(Tomita 1985)

– compositional

GLL parsing
(Johnstone, Scott 2010,2013)

– compositional

– separate compilation

FUN-GLL
(Van Binsbergen, Scott 2018,2019)

– compositional

– separate compilation

GLL Parser Combinators
(Van Binsbergen 2018,2020)

– compositional

– reuse through abstraction

– embedded

Happy GLL back-end
(Van Binsbergen 2020)

– compositional

– reuse through abstraction

– separate compilation

Contributions to modular operational semantics

SOS
(Plotkin 1981)

M-SOS
(Mosses 2004)

– compositional

IM-SOS
(Mosses 2009)

– compositional

FunCons
(Mosses 2010-2015)

– compositional

– reuse

FunCons EDSL
(Van Binsbergen, Sculthorpe 2016,2019)

– compositional

– reuse

– embedded

Component-Based Semantics
(Van Binsbergen, Sculthorpe, Mosses 2016,2019)

– compositional

– reuse

– separate compilation

Contributions to attribute grammar scheduling

Attribute Grammars (AGs)
(Knuth 1968)

(L)OAGs
(Kastens 1980)

HO-AGs
(Swierstra, Vogt 1989)

LOAG scheduling
(Van Binsbergen 2015a,2015b)

UUAG formalism
(Swierstra et al. 1999-)

– modular

UUAG compiler
(Van Binsbergen, Bransen, Dijkstra et al.)

– compositional

Personal toolkit of Agile Language Engineering

Generic and provably sound algorithms based on solid theory with implemen-
tations that inherit nice properties from theory

Royal Holloway, University of London & Swansea university:

– Executable, compositional syntax specification based on the FUN-GLL algorithm
– CBS meta-language for operational semantics with reusable FunCons
– Modular FunCon implementations generated from CBS specifications

Utrecht University:

– UUAG formalism for modular attribute grammar specifications of static analyses
– Pure interpreter definitions with monads or attributes for ‘algebraic effects’

Centrum Wiskunde & Informatica (CWI):

– Rascal meta-language1 for extensible syntax, interpretation,
– denotational semantics in terms of rewrite rules, and
– generated IDE support

1Developed by CWI and taught at UvA

Software languages for data exchange systems

L. Thomas van Binsbergen1

1Centrum Wiskunde & Informatica
l.t.van.binsbergen@cwi.nl

April 2020

Software languages for data exchange systems

L. Thomas van Binsbergen1

1Centrum Wiskunde & Informatica
l.t.van.binsbergen@cwi.nl

April 2020

Realities

sources of norms understanding of norms

narrative (scenario)actions, events, data

physical reality institutional reality

interpretation

assessment

qualification

Producing normative actors

Legal analyst / policy expert

Produces a semi-formal interpretation of relevant sources (e.g. using the FLINT language) in
terms of (Hohfeldian) power-liability and duty-claim relations between actor roles, possibly
aided by natural language processing and/or editorial software.

Software engineer

Formalizes the semi-formal interpretation produced by the legal analyst in a high-level,
domain-specific language (e.g. using the eFLINT language). The resulting interpretation can
be analyzed with formal verification techniques (e.g. consistency and safety checks) and can be
used to assess and compare concrete scenarios.

All interpretations are stored modularly, with references to sources, and under version control.

Application as normative actors

A specific version of a formal interpretation is concretized based on configuration options.
The concrete interpretation is compiled to the source code of a normative actor.
The normative actor is dynamic in that it can receive policy updates.

Producing normative actors

Legal analyst / policy expert

Produces a semi-formal interpretation of relevant sources (e.g. using the FLINT language) in
terms of (Hohfeldian) power-liability and duty-claim relations between actor roles, possibly
aided by natural language processing and/or editorial software.

Software engineer

Formalizes the semi-formal interpretation produced by the legal analyst in a high-level,
domain-specific language (e.g. using the eFLINT language). The resulting interpretation can
be analyzed with formal verification techniques (e.g. consistency and safety checks) and can be
used to assess and compare concrete scenarios.

All interpretations are stored modularly, with references to sources, and under version control.

Application as normative actors

A specific version of a formal interpretation is concretized based on configuration options.
The concrete interpretation is compiled to the source code of a normative actor.
The normative actor is dynamic in that it can receive policy updates.

Producing normative actors

Legal analyst / policy expert

Produces a semi-formal interpretation of relevant sources (e.g. using the FLINT language) in
terms of (Hohfeldian) power-liability and duty-claim relations between actor roles, possibly
aided by natural language processing and/or editorial software.

Software engineer

Formalizes the semi-formal interpretation produced by the legal analyst in a high-level,
domain-specific language (e.g. using the eFLINT language). The resulting interpretation can
be analyzed with formal verification techniques (e.g. consistency and safety checks) and can be
used to assess and compare concrete scenarios.

All interpretations are stored modularly, with references to sources, and under version control.

Application as normative actors

A specific version of a formal interpretation is concretized based on configuration options.
The concrete interpretation is compiled to the source code of a normative actor.
The normative actor is dynamic in that it can receive policy updates.

Producing normative actors

Legal analyst / policy expert

Produces a semi-formal interpretation of relevant sources (e.g. using the FLINT language) in
terms of (Hohfeldian) power-liability and duty-claim relations between actor roles, possibly
aided by natural language processing and/or editorial software.

Software engineer

Formalizes the semi-formal interpretation produced by the legal analyst in a high-level,
domain-specific language (e.g. using the eFLINT language). The resulting interpretation can
be analyzed with formal verification techniques (e.g. consistency and safety checks) and can be
used to assess and compare concrete scenarios.

All interpretations are stored modularly, with references to sources, and under version control.

Application as normative actors

A specific version of a formal interpretation is concretized based on configuration options.
The concrete interpretation is compiled to the source code of a normative actor.
The normative actor is dynamic in that it can receive policy updates.

Actor-role abstraction

object-oriented programming:
Class abstractions (types) are instantiated to objects. Objects have a private state and
communicate information through method calls. An object relinquishes execution control when
calling a method of another object.

actor-oriented programming:
Actor-role abstractions (types) are instantiated by actors. Actors have a private state and
communicate through message-passing. Actors execute concurrently, always in response to an
incoming message.

Akka is a toolkit for building highly concurrent, distributed, and resilient message-driven
applications for Java and Scala – https://akka.io

agent-oriented programming:
Actor-oriented programming in which the actors (called agents) have mental qualities, such as
beliefs, desires and intentions, and in which only certain kinds of messages are used, such as
requests, offers, declines and promises

https://akka.io

Actor-role abstraction

object-oriented programming:
Class abstractions (types) are instantiated to objects. Objects have a private state and
communicate information through method calls. An object relinquishes execution control when
calling a method of another object.

actor-oriented programming:
Actor-role abstractions (types) are instantiated by actors. Actors have a private state and
communicate through message-passing. Actors execute concurrently, always in response to an
incoming message.

Akka is a toolkit for building highly concurrent, distributed, and resilient message-driven
applications for Java and Scala – https://akka.io

agent-oriented programming:
Actor-oriented programming in which the actors (called agents) have mental qualities, such as
beliefs, desires and intentions, and in which only certain kinds of messages are used, such as
requests, offers, declines and promises

https://akka.io

Actor-role abstraction

object-oriented programming:
Class abstractions (types) are instantiated to objects. Objects have a private state and
communicate information through method calls. An object relinquishes execution control when
calling a method of another object.

actor-oriented programming:
Actor-role abstractions (types) are instantiated by actors. Actors have a private state and
communicate through message-passing. Actors execute concurrently, always in response to an
incoming message.

Akka is a toolkit for building highly concurrent, distributed, and resilient message-driven
applications for Java and Scala – https://akka.io

agent-oriented programming:
Actor-oriented programming in which the actors (called agents) have mental qualities, such as
beliefs, desires and intentions, and in which only certain kinds of messages are used, such as
requests, offers, declines and promises

https://akka.io

	Norm-aware, distributed software systems
	Policy construction with eFLINT
	Applying eFLINT in regulated systems
	Agile Software Language Engineering
	Teaching & Research vision

