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Abstract

Software systems that handle personal or otherwise sensitive data are often subject to laws, policies,
regulations or other kinds of norms. The formalisation of these norms can enable automatic compliance
checking of these systems. One method of doing so is through the domain-specific language eflint [1],
which allows for the specification and assessment of normative systems. The current development tools
that are available to interact with eflint specifications can reason over concrete scenarios. However,
there are purposes for which it might be beneficial to reason over abstract properties instead. In this the-
sis, we present eLTL, a temporal logic for specifying these properties and eflint-check, a model checker
to check these properties against their corresponding norm specifications. By extending the eflint lan-
guage with the possibility to express properties in eLTL and by compiling eflint specifications and these
properties into models that can be checked by the symbolic model checker nuXmv, it becomes possible to
exhaustively check the correctness specifications, and provide comprehensive counterexamples in case a
given property is violated. We show that eflint-check can check realistic specifications in a reasonable
amount of time, but also identify cases in which the performance of eflint-check is insufficient. We
evaluate and demonstrate the use of eflint-check for the different purposes where abstract property
specification and model checking might be warranted. Finally, we make recommendations for improving
the ease in which eLTL properties could be specified, identify different ways in which we can improve
the performance of eflint-check and propose how eflint-check may be integrated into the tools that
already exist to interact with eflint specifications.
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Chapter 1

Introduction

Software systems, and the data they collect and process have become unavoidable and indispensable
to our society. In less than a decade, data has become the most valuable resource in the world [2].
However, due to a lack of clear policies and practices, the barrier to combining and exchanging different
data sources (for example, between different academic and medical institutions) may be high [3], therefore
stifling opportunities for collaboration and innovation.

To address these concerns, policies and regulations are being created and used to establish agreements
between providing and receiving parties. A notable example of such a regulation is the General Data
Protection Regulation (GPDR) [4], but they may also be established on a consortium level. An active
area of research is on the formalization of such policies, regulations and other norms in a way that
checking of compliance with these norms can be done automatically and as part of the software systems
that interact with them.

Currently, there exist several projects that allow for the formalization of these norms by writing
them down as specifications using a domain-specific language (DSL). These specifications can be used in
conjunction with different tools that allow for interacting with these specifications and to check and report
on whether these interactions are compliant with the underlying norms [1, 5–7]. Checking compliance
with (the formalization of) a norm can happen offline, by checking complete (hypothetical) interaction
scenarios, or online, by checking interactions as they happen. The first way of checking compliance is
useful for the development of and implementation of these formalizations, whereas the second one enables
the integration of these formalizations in running software systems. Both ways, however, share the fact
that they rely on concrete interactions. This means that in order to be able to gain absolute confidence
in the correctness of a norm specification, every possible combination of interactions should be explored.
As these specifications grow in size (and with that, the number of possible interactions as well), this
becomes increasingly harder to do manually. Additionally, norms are subject to change over time, which
in turn may lead to inaccurate specifications.

Both of these issues could benefit from the idea of using properties that capture the norms that are
formalized in these specifications on a more abstract level. These properties can be used to help guide
the design and implementation of specifications, especially when they are meant to be integrated into a
larger software system. More importantly, however, by expressing these properties in a formal temporal
logic, it becomes possible to apply existing model-checking techniques to verify the specifications that
implement these properties [8]. Doing so could give confidence in the correctness of these specifications
with regard to the norms they formalize, both as they are implemented as well as when these underlying
norms change.

1.1 Research questions
In this thesis, we set out to explore how using abstract properties together with existing model-checking
techniques might benefit the formalization, specification and compliance assessment of norms. To be
able to do so, we have identified the following research questions we want to answer in this thesis:

RQ 1. What kinds of properties are necessary for abstract reasoning about norm specications and being
able to model-check them?
(a) What are the purposes for which model checking of norm specifications would be required?
(b) How can these purposes guide the formalization of properties?

4



CHAPTER 1. INTRODUCTION

RQ 2. How can norm specifications be represented formally, such that counterexamples can be generated
for the properties identified by RQ 1?

RQ 3. How can the results that follow from model checking a norm specification be presented to the user
in an actionable and intuitive way?

RQ 4. What is the practical viability of adopting model checking of norm specifications for the purposes
we identified in RQ 1(a)?

1.2 Research method
We will answer the research questions we identified in the previous section using eflint [1], which is a
DSL for the specification and automatic assessment of norms. We will design and implement an extension
of this language for the declaration of abstract properties and eflint-check, which will serve as a tool
for model-checking specifications using these abstract properties. We will evaluate and demonstrate the
use and expressiveness of this property language and eflint-check through a case study using a subset
of the GPDR, and we will evaluate the viability of our tool in terms of performance and scalability.

1.3 Contributions
With this thesis, we aim to make the following contributions:

1. A theoretic approach to property specification for normative systems. This theoretic
approach will answer RQ 1(a), provide us with the background necessary for answering RQ 1(b),
and serve as the basis for the design, implementation and evaluation of eflint-check.

2. A proof-of-concept extension to eFLINT for the specification of properties. We will
design and implement a language extension to eflint based on our theoretic approach to property
specification for normative systems. This will complete our answer to RQ 1(b).

3. A proof-of-concept tool to model-check eFLINT specifications using abstract proper-
ties specified with our language extension. With the design and implementation of eflint-
check, we will be able to answer both RQ 2 and RQ 3.

4. A case study to evaluate and demonstrate the eFLINT language extension for speci-
fying properties together with eFLINT-check. With this case study, we apply our theoretic
approach to a practical example, thereby completing the answer to RQ 1. Moreover, we use this
case study to reflect and make recommendations on the design of eflint-check.

5. An evaluation of the performance and scalability of eFLINT-check. With this evaluation,
we will answer RQ 4.

1.4 Outline
In Chapter 2, we describe the background of this thesis and explain the concepts that we will use and refer
to throughout the subsequent chapters. In Chapter 3, we will discuss the different purposes for which
we might specify and check abstract properties against eflint specifications. We also use the theory
from the previous chapter to define a formalization for properties over normative systems. Chapter 4
describes the design of the eflint-check. Using the design layed out in this chapter, we discuss the
implementation of our language extension and eflint-check in Chapter 5. In Chapter 6, we perform
a case study based on the GPDR to evaluate the use of abstract properties for the formalization of
norms and demonstrate how eflint-check can be used to check these properties. Additionally, we will
evaluate the performance and scalability of eflint-check. We discuss and reflect on the results of the
GPDR case study and performance evaluation of eflint-check in Chapter 7. Chapter 8 discusses the
work related to this thesis. Finally, we give our concluding remarks in Chapter 9.
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Chapter 2

Background

In this chapter, we will give an introduction to normative systems and how they can be specified using
the domain-specific language eflint [1]. Moreover, we will introduce the concept of and theory behind
model checking.

2.1 Normative systems and their specification
To be able to understand normative systems, we first have to define what norms are. Although this term
has different interpretations across different disciplines, norms can generally be defined as regulations of
interactions between individuals or institutions [9]. While norms can be used to regulate interactions
between physical systems, such as access control policies or firewalls in computer systems, most often
norms are part of the social reality. Social reality, a term introduced by Searle [10], denotes the reality
that only exists through the agreement between institutions and individuals. Norms that exist in the
social reality are often bound by contracts, policies or laws. Because it is not always possible to represent
and enforce these norms in the physical world, it becomes possible to violate them. For example, it is
prohibited to drive a car without having a driver’s license, but there is no physical barrier that prevents
someone without a license from doing so. Using this definition of norms, we can define a normative
system as a collection of individuals or institutions (or in general, actors) and the normative relations
and their consequences between these actors.

We can theoretically reason about norms using the legal framework introduced by Hohfeld [11]. In
this framework, it is observed that the duty or power an actor has with respect to a certain action is
always related to another actor. Here, we make the distinction between power-liability and duty-claim
relations between two actors with respect to some action. In a power-liability relation, one actor has the
power to take a certain action A, while the other actor is liable in the sense that they are bound to the
effects of A. In the case of a duty-claim relation, one actor has a duty to perform A, while the other
actor has a claim to A being done.

2.1.1 Normative systems by example
To illustrate these relations, we use the act of receiving and providing tutoring on a course assignment.
A person (‘Alice’) can ask another person (‘Bob’) to help them with their course assignment (we will call
this action A), thus creating a power-liability relation between Alice (who is in power) and Bob (who
is liable) with respect to A. Provided that Bob accepts this request, this action creates a duty-claim
relation between Alice and Bob, where Bob has the duty to provide the promised tutoring, with Alice
having a claim to this action. Because tutoring is only effective before the assignment is due, this duty
will be violated once the submission deadline of the assignment has passed. The duty for Bob to provide
the requested tutoring to Alice can only be resolved by providing said tutoring (an action which we will
call P ). This introduces yet another power-liability relation between Bob and Alice with respect to P ,
but this time with Bob being in power. These relations are visualized in Figure 2.1. Once Bob has
provided the requested tutoring before the assignment is due, the normative relation between Alice and
Bob is terminated.

6
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Alice

Power

Bob

Liability

1.

Alice

Claim

Bob

Duty

2.

Alice

Liability

Bob

Power

3.

Ask for tutoring

Provide tutoring

Provide tutoring

Figure 2.1: Normative relations between actors in the example of asking for and providing tutoring.

2.1.2 Normative systems in eFLINT
The powers and duties illustrated in the example above can be formally expressed in eflint. An eflint
specification is a collection of type declarations, which are used to describe the normative system it
represents. Such specifications can be built using four types of declarations: facts, acts, events and
duties.

Facts Facts are used to represent knowledge about the system that is specified. Facts can be declared
as atomic string or integer types, and can be unbounded or bounded to a finite domain:

Fact person Identified by String // Unbounded string fact.
Fact grade Identified by 1..10 // Bounded integer fact.

Additionally, record-type facts are facts that are composed of one or more named fields. These fields, in
turn, are (aliases for) other fact types.

Placeholder student For person
Placeholder tutor For person

Fact tutor -of Identified by tutor * student
Fact deadline - passed Identified by student

As mentioned before, facts can be used for knowledge representation. This is done in eflint’s knowl-
edge base, which records the knowledge on instances of the declared types in the specification. This
pertains not only to fact types but to acts, events and duties – which we will introduce in subse-
quent paragraphs – as well. Valid instances of the fact types declared in the examples shown here are
person(Alice), grade(8) (grade(11) would not be a valid instance, since 11 falls outside the speci-
fied domain), tutor-of(person(Alice), person(Bob)), or deadline-passed(person(Chloe)). Note
that for record-type facts, the type of the field can be inferred by the eflint reasoner, so it is also allowed
to write tutor-of(Alice, Bob), for example. The eflint knowledge base can be modified by creating,
terminating or obfuscating fact instances. When a fact instance is created, it is added to the knowledge
base and evaluated to True. When a fact is terminated, it is still part of the knowledge base, but it
will evaluate to False. When a fact is obfuscated, it is removed from the knowledge base altogether,
making it impossible to know whether the fact is true or false. A fact is stated to hold if it is present
in the knowledge base and evaluates to True. Facts may also be added to the knowledge base through

7



CHAPTER 2. BACKGROUND

derivation from other facts:

Fact is - student Identified by student
Holds when ( Exists tutor : tutor -of(tutor , student ))

Furthermore, the domains of all type declarations including facts may be constrained by a Boolean
expression. For example, we could add a constraint to the tutor-of fact declaration that specifies that
a person cannot be their own tutor:

Fact tutor -of Identified by tutor * student
Where tutor != student

Lastly, a special type of fact declaration is the Bool fact declaration. As the name suggests, this fact
type denotes atomic boolean propositions. Bool declarations only have one instance:

Bool course - active

Acts Acts can be used to describe power-liability relation between a performing actor (the one in
power) and a receiving actor (the one liable). Similar to facts, acts can be derived. Additionally, they
may be conditioned by one or more clauses. An act is enabled when at least one of the derivation rules
and all of its conditions hold. Note that for the derivation clause, we use the same condition as for the
domain constraint for the tutor-of fact declaration. This goes to show that there is a high amount of
flexibility in the way norms can be formalized using eflint, and different specifications can be bisimilar.
Facts may be created, terminated or obfuscated as an effect of acts:

Act request - tutoring
Actor student
Recipient tutor
Holds when tutor != student // A student cannot tutor themselves .
Conditioned by Not(tutor -of(tutor , student )), // A student cannot ask their current

// tutor to tutor them.
course - active // A student can only ask for tutoring

// during an active course .
Creates tutor -of(tutor , student ) // A new tutoring relation is created .

Events Events are similar to acts, with the only difference being that they do not have a performing
and receiving actor. Events are used to describe actions that do change the institutional view (i.e., the
eflint knowledge base), but do not have an institutional relation (i.e., no power-liability or duty-claim
relation between two actors):

Event assignment -due
Holds when is - student // This event can only take place when there is at least

// one student .
Creates ( Foreach student : deadline - passed ( student )

When tutor -of(tutor , student ))

8



CHAPTER 2. BACKGROUND

Duties As the name suggests, duties describe the duty-claim relation between a claiming actor and an
actor that holds the duty. They may describe under which conditions the duties hold, and when they
are violated:

Duty tutoring -duty
Holder tutor
Claimant student
Holds when tutor -of(tutor , student )
Violated when deadline - passed ( student ),

Not(course - active )

Like facts, duties can be created, terminated and obfuscated as an effect of acts or events:

Act provide - tutoring
Actor tutor
Recipient student
Holds when tutor -of(tutor , student )
Terminates tutoring -duty(tutor , student ).

With the examples used above to illustrate the core types1 of eflint, we have created the full specification
for the normative system of asking for and providing tutoring, as introduced in Section 2.1.1. The
complete specification is shown in Listing 2.1. Using an eflint specification, it is possible to check the
compliance of scenarios. Because the execution of an act or event can modify the knowledge base (and
with that, the normative state of a system), they can be seen as transitions in the normative system
described by the given specification. Additionally, individual facts and duties may be created, terminated
or obfuscated through postulation. A scenario is a sequence of acts, events and postulation statements,
and can be either action-compliant, duty-compliant, or both [1]. A scenario is action-compliant when
every transition was enabled in the knowledge base at the time it was taken. A scenario is duty-compliant
when no actions or events have been executed that lead to a duty being violated. A scenario for the
specification from Listing 2.1 could be as follows:

+course - active . // Postulate the fact that the course is active
+ person ( Alice ). // Postulate the creation of person ( Alice )
+ person (Bob). // Postulate the creation of person (Bob)
request - tutoring (Alice , Bob).
provide - tutoring (Bob , Alice ).
+ person ( Chloe ).
~ person (Bob). // Postulate the obfuscation of person (Bob)
request - tutoring (Chloe , Alice ).
assignment -due.
provide - tutoring (Alice , Chloe ).

This scenario is not duty-compliant, because the assignment-due event happens before the
provide-tutoring(Alice, Chloe) act takes place, causing the tutoring-duty(Alice, Chloe) duty
instance to be violated. Contrary to this, it is action-compliant because no disabled actions or events
were taken.

The eflint reasoner for checking compliance of scenarios is implemented as a generic backend [12]
that allows for executing and exploring specifications through these scenarios. Based on this backend,
multiple interfaces to eflint have been developed. For runtime compliance checking within external
software systems, an interface to the eflint backend is made available as a TCP server2. This server
can be used directly, or as a normative actor in an actor-oriented framework such as the Scala-based
Akka3. Additionally, a read-eval-print-loop (REPL)2 and a Jupyter Notebook implementation4 are

1Note that this overview of the language is not exhaustive. A full overview, together with examples, is provided in the
eflint source repository, in the form of Jupyter notebooks. However, the language constructs discussed here can capture
most (essential) normative constructs to understand the essence of eflint. Where necessary, we will introduce other eflint
constructs throughout this thesis.

2https://gitlab.com/eflint/haskell-implementation
3https://akka.io
4https://github.com/leegbestand/eflint-jupyter
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Fact person Identified by String

Placeholder student For person
Placeholder tutor For person

Fact tutor -of Identified by tutor * student
Fact deadline - passed Identified by student

Fact is - student Identified by student
Holds when ( Exists tutor : tutor -of(tutor , student ))

Bool course - active

Act request - tutoring
Actor student
Recipient tutor
Holds when student != tutor
Conditioned by Not(tutor -of(tutor , student )),

course - active
Creates tutor -of(tutor , student )

Act provide - tutoring
Actor tutor
Recipient student
Holds when tutor -of(tutor , student )
Terminates tutor -of(tutor , student )

Duty tutoring -duty
Holder tutor
Claimant student
Holds when tutor -of(tutor , student )
Violated when deadline - passed ( student ),

Not(course - active )

Event assignment -due
Holds when is - student
Creates ( Foreach student : deadline - passed ( student )

When tutor -of(tutor , student ))

Listing 2.1: Example eflint specification that describes the normative relation between a tutor and a
student.

available which allows for manually exploring scenarios – like the one provided in this section – as well
as debugging and prototyping specifications [1]. Checking the correctness of specifications, however,
becomes problematic with these tools. As the number of type declarations in a specification grows,
checking every possible scenario manually becomes difficult, if not impossible. Model checking could be a
solution to this problem, as it would allow users to come up with abstract properties about the normative
system they are specifying in eflint, rather than concrete scenarios. A model checker would then be
able to use these properties to algorithmically determine whether the provided eflint specification is
valid, and come up with counterexamples if this is not the case.

2.2 Model checking
Model checking is a technique for automatically verifying that a given system satisfies one or multiple
desired properties. To be able to do this, both the system and its properties need to be formally
represented. We will discuss these formalisms in detail, but in brief, a general model checking procedure
consists of the following steps [8]:
1. System description The system that needs to be checked needs to be described in a formal representa-

tion (a ‘model’, usually some variation of a transition system). We will discuss this representation
in Section 2.2.1. Depending on the system that needs to be checked, the model might be auto-
matically inferred from the original representation of the system, or it needs to be expressed in a
separate dedicated modelling language.

10
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2. Property specification In addition to the description of the system, a set of properties about this
system. These properties specify the desired behaviour of the possible paths (or ‘traces’) in the
model, and with that, the system itself. This is done by expressing these properties in a (temporal)
logic compatible with the system description. Section 2.2.2 discusses linear temporal logic (LTL),
a popular temporal logic for model checking.

3. Model checking Using a system description and one or more property specifications, the model checker
then algorithmically checks whether the description satisfies the given properties. If this is not the
case, a counterexample may be produced that shows the trace of the model that violated one of
the properties. Section 2.2.3 gives an overview of the model checking techniques we will consider
in this thesis.

2.2.1 System description
As the name suggests, model checking requires the system to be described and represented as a formally
defined model. A typical approach to do this is with transition systems, which describe the behaviour
of a program or system as a set of states and transitions between states. In model checking, Kripke
structures are among some of the most widely used types of transition systems [13].

Definition 1. A Kripke structure is a tuple (S,S0,R,L) [14], where
• S is a set of states;
• S0 ⊆ S is a set of initial states;
• R ⊆ S × S is a transition relation. This relation must be total, i.e., for every state s ∈ S, there

must exist a state s
′ ∈ S such that R(s, s′).

• L ∶ S → 2
P is a labelling function, where P is a finite, nonempty set of atomic propositions.

In a Kripke structure, each possible behaviour of the represented system corresponds to a finite or
infinite trace π = ⟨s0, s1, . . . , sn⟩ such that (si, si+1) ∈ R for all i ≥ 0. An example Kripke structure
with S = {s1, s2, s3, s4}, S0 = {s1}, R = {(s1, s2), (s1, s3), (s2, s3), (s3, s4), (s4, s4)}, P = {p, q} and
L = {s1 ↦ {p, q}, s2 ↦ {p}, s3 ↦ {q}, s4 ↦ ∅} is visualized in Figure 2.2. A valid trace through this
structure, for example, is ⟨s1, s3, s4, s4, . . .⟩.

p, q p

q

Figure 2.2: Example Kripke structure.

Kripke structures are considered to be state-based, in the sense that the states – as opposed to
the transitions – are labelled. Transition-based structures also exist, where the transitions are labelled,
rather than the states. These structures are aptly referred to as labelled transition systems (LTSs).
Both representations have their advantages and disadvantages in terms of expressivity, state space and
applications, and it is possible to translate Kripke structures to labelled transition systems and back [15].
Moreover, formalisms have been proposed that combine both representations to improve expressivity and
to reduce the state space of such models [16, 17], which again can be transformed back into the purely
state-based Kripke Structures. Because in eflint, both the state of the system (in the form of the
knowledge base) and the transitions that modify this state (through acts or events) are highly relevant,
we will give the definition of labelled Kripke structures (LKSs), as introduced by Chaki, Clarke, Ouaknine,
Sharygina, and Sinha [17] and use this representation for the remainder of this thesis.
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Definition 2. A labelled Kripke structure (LKS) is tuple (S,S0,R,L, T ) [17], where
• S is a set of states;
• S0 ⊆ S is a set of initial states;
• R ⊆ S × S is a transition relation. This relation must be total, i.e., for every state s ∈ S, there

must exist a state s
′ ∈ S such that R(s, s′).

• L ∶ S → 2
P is a state-labelling function, where P is a finite, nonempty set of atomic propositions.

• T ∶ R → (2A\{∅}) is a transition-labelling function, where A is a finite set of actions.

Transitions in an LKS are denoted as s
A
−→ s

′, where (s, s′) ∈ R and A ⊆ A. For transitions that are
only labelled with one action a ∈ A, we write s

a
−→ s

′. In LKSs, a trace π = ⟨s1, a1, s2, a2, . . .⟩ is defined
as a sequence alternating between states and actions, where for each i ≥ 0, si ∈ S, ai ∈ A and si

ai−→ si+1.

2.2.2 Property specification
To be able to check if a model satisfies a given property, this property needs to be expressed using some
kind of temporal logic, which allows us to reason about the behaviour of the system. Given a temporal
formula φ and a trace π, we can then check if φ holds at position i of π. This is denoted as π, i ⊨ φ. If
φ holds for the entire trace (i.e., π, 0 ⊨ φ), then we can say that φ holds on π, denoted by π ⊨ φ. If
every trace π of a model M satisfies φ, we can say that M satisfies φ, denoted by M ⊨ φ.

A popular temporal logic often used for model checking Kripke structures is linear temporal logic
(LTL). In LTL, properties are considered as linear sequences over the system, in the sense that for a
given state, only one subsequent state is possible. When the system is non-deterministic, the possible
executions are treated as independent sequences [13]. For example, in the example Kripke structure in
Figure 2.2, the traces ⟨s1, s2, . . .⟩ and ⟨s1, s3, . . .⟩ are independent sequences.

LTL formulas consist of atomic Boolean propositions, the standard Boolean connectives for negation
and disjunction, together with the temporal operators next (denoted as ◯ or X ) and until (denoted as
U):

φ ∶∶= p ∣ ¬φ ∣ φ1 ∨ φ2 ∣ ◯φ ∣ φ1 U φ2.

Here, ◯φ indicates that φ is true in the immediate successor of the current state. φ1 U φ2 indicates that
φ1 holds in all future states, until a state is reached where φ2 holds. Given a trace π = ⟨s0, s1, . . .⟩, the
semantics of these operators are defined inductively as follows [13]:

• π, i ⊨ p iff p ∈ si for p ∈ P, where P is a countable set of Boolean propositions.
• π, i ⊨ ¬φ iff π, i ⊭ φ.
• π, i ⊨ φ1 ∨ π, i ⊨ φ2 iff π, i ⊨ φ1 or π, i ⊨ φ2.
• π, i ⊨ ◯φ iff π, i + 1 ⊨ φ.
• π, i ⊨ φ1 U φ2 iff there exists k ≥ i such that π, k ⊨ φ2 and π, j ⊨ φ1 for all j such that k < j ≤ i.
Similar to how we can define the Boolean connectives for conjunction, implication and equivalence

using negation and disjunction, we can define additional temporal operators, namely future (denoted as
◊ or F), globally (denoted as □ or G) and weak-until (denoted as W) using until. ◊φ indicates that φ
will be true in some future state, while □φ indicates that φ is true in all future states. φ1W φ2 indicates
that φ1 holds in all future states, until a state is reached where φ2 holds, and if that is not the case, φ1

must remain true in all future states. These operators are defined as follows:

◊φ ≡ ⊤ U φ

□φ ≡ ¬◊¬φ
φ1 W φ2 ≡ (φ1 U φ2) ∨ □φ1.

The LTL operators introduced here are referred to as pure future operators because they can only be
used to reason about the future. While LTL also has operators for reasoning about the past (namely ⊝
for previous and S for since), they are not often used in model checking [13] and for this reason, we will
not consider them in this thesis.
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Extension to Labelled Kripke Structures The above definition of LTL assumes we are reasoning
about traces of states. Because traces of LKSs alternate between states and actions, Chaki, Clarke,
Ouaknine, Sharygina, and Sinha [17] introduce state/event linear temporal logic (SE-LTL), which is
highly similar to regular LTL but allows action labels to be included in formulae:

φ ∶∶= p ∣ a ∣ ¬φ ∣ φ1 ∨ φ2 ∣ ◯φ ∣ φ1 U φ2.

The semantics of these operators are extended accordingly:
• π, i ⊨ p iff p ∈ si for p ∈ P, where P is a countable set of Boolean propositions.
• π, i ⊨ a iff a is the first action of π, starting from position i.
• π, i ⊨ ¬φ iff π, i ⊭ φ.
• π, i ⊨ φ1 ∨ π, i ⊨ φ2 iff π, i ⊨ φ1 or π, i ⊨ φ2.
• π, i ⊨ ◯φ iff π, i + 1 ⊨ φ.
• π, i ⊨ φ1 U φ2 iff there exists k ≥ i such that π, k ⊨ φ2 and π, j ⊨ φ1 for all j such that k < j ≤ i.

Types of temporal properties

Temporal can be classified into two types: safety and liveness properties. Simply put, a safety property
specifies that ‘something bad never happens’. A common type of safety property is the invariant, which
are formulas of the form □p, where p is a propositional formula [13]. A safety property of the normative
system of providing and receiving tutotoring that we introduced in Section 2.1.1 could be “a person can
never be their own tutor”, for example. Liveness properties, on the other hand, specify that ‘something
good will eventually happen’ [18]. A liveness property of the same normative system about tutoring
could be “the duty for Bob to tutor Alice is lifted as soon as Bob provides said tutoring”. Formally,
safety and liveness properties are defined as follows:

Definition 3 (Safety). Let Sω be the set of infinite traces of a model and σi the partial trace up to length
i (where i ∈ N) of some trace σ ∈ S

ω. A property φ is a safety property if and only if:(∀σ ∈ S
ω ∶ σ ⊭ φ ⟹ (∃i ∈ N ∶ (∀τ ∶ σiτ ⊭ φ))).

In other words, for every trace σ that violates the property φ, there exists a partial trace σi of length
i ∈ N such that any arbitrary extension τ of this trace will also violate φ [18].

Definition 4 (Liveness). Let Sω be the set of infinite traces of a model and S
∗ the set of partial traces

of a model. A property φ is a liveness property if and only if:

∀σ ∈ S
∗ ∶ (∃τ ∈ S

ω ∶ στ ⊨ φ).
In other words, for every partial trace σ, there exists an infinite trace τ such that the concatenation στ
satisfies φ [18].

Alpern and Schneider [18] show that every property φ is the intersection of a safety property and a
liveness property, which means that φ can be either a safety property, a liveness property, or both at
the same time. A practical example to illustrate this intersection is the property φ1 U φ2, which can be
rewritten as (φ1 W φ2) ∧ ◊φ2 [19]. Here, the safety property is φ1 W φ2 and the liveness property is
◊φ2.

2.2.3 Bounded Model Checking
Given a model of a system M and a property φ over this system, a model checker then algorithmically
verifies whether M ⊨ φ. While this can be done explicitly by storing and traversing the entire model,
a generally more efficient and scalable method is by representing the model symbolically, where the
initial state and transition relation are represented using logical formulas [8]. A well-known symbolic
model checking technique is bounded model checking (BMC), which uses SAT solving [20] and, more
recently, satisfiability modulo theories (SMT) solving [21]. In contrast to other common model checking
techniques (be it explicit or symbolic), a core principle of BMC is finding errors in systems rather than
proving the system is correct [22].

The idea behind BMC is to build traces σ1, . . . , σk that incrementally grow in size, up to the length
of the maximum bound k. These traces represent negations of the property φ and are encoded into
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propositional formulas f1, . . . , fk, which are used as input for the selected SAT or SMT solver along
with a propositional encoding of the model. If the solver reports a formula fn (1 ≤ n ≤ k) together
with the encoding for M to be satisfiable, the trace is present in the model, indicating that M does
not satisfy φ and the corresponding trace σn is reported back to the user as a counterexample. If fn
together with the encoding for M is not satisfiable, the procedure is repeated for fn+1. When n > k and
no counterexample has been found, φ is considered to hold and the procedure terminates. A schematic
overview of the BMC procedure is shown in Figure 2.3.

Build formula f for trace
of ¬φ with length n

SAT?

Return f as
counterexample n = n + 1

n ≤ k?

φ holds for bound k

Yes No

Yes No

Figure 2.3: The procedure for bounded model checking (BMC), adapted from Clarke [14].
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Chapter 3

Property specification for normative
systems

In the introduction of this thesis, we briefly touched on some ways in which the formalization and
specification of properties over norms could act as a valuable addition to the existing norm specification
methods. In this chapter, we will make the case for property specification for normative systems more
concrete. Additionally, we will discuss how we can use linear temporal logic (LTL), which we introduced
in the previous chapter, to formalize the properties one might express in this context.

3.1 Purposes for property specification
We identify four different conceptual levels in which these properties, and being able to model-check
may be used, which we will explain in this section: (1) the classic model-checking purpose of identifying
potential mistakes in a system; (2) being able to capture the temporal nature of some norms; (3) being
able to give guarantees about the correctness of a specification if the norms on which it is based change;
and (4) being able to relate specifications that represent actions in the physical world to those that
represent actions in the social reality.

3.1.1 Mistakes in norm specifications
At its origin, model checking is a technique for verifying and identifying potential mistakes in both
hardware and software systems. As such, we can apply this same principle to norm specifications.
Especially as specifications grow larger and become more and more interdependent, the potential for
bugs to appear increases. In eflint, mistakes may occur in the preconditions (derivation, condition and
violation clauses and domain constraints) of any declaration or postconditions (creating, terminating
and obfuscating clauses) of act and event declarations, leading to a mismatch between the specification
and the norms they formalize. By expressing the norms as abstract (temporal) properties, we can use
model checking to verify whether the specification indeed models the behaviour that is prescribed by the
corresponding norms.

3.1.2 Temporal norms
Norms may include notions of temporality that may be difficult to capture by normative relations alone.
For example, they might say something about the order in which certain actions may be taken. On the
other hand, the notion of temporality is an important aspect of model checking. By formalizing norms
as temporal properties, we can use model checking to verify that the actions defined in a specification
indeed satisfy the temporal requirements of the norms they represent.

3.1.3 Changing norms
Norms are not static. Laws, regulations and policies might be added, changed or removed over time,
which might require the specifications that formalize them to be changed as well. However, the impact
that a norm change might have on the implementation of a specification not be immediately apparent.
In the best-case scenario, none or only minimal changes to the specification would be required, but it
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might also be the case that large portions of the scenario need to be rewritten. By first formalizing norms
as abstract properties related to the specification, it becomes possible to check whether this specification
complies with these norms. When one of these norms changes, updating the set of properties accordingly
and model checking the original specification against these updated properties should provide immediate
insight into the changes that would be required to the specification.

3.1.4 The physical world and its relation to social reality
As we discussed in Section 2.1.1, there exists a relation between actions in the physical world and their
(normative) consequences in the social reality [10]. To illustrate this, we can use the tutoring example
we introduced in the previous chapter. Here, walking up to someone and verbally asking them to become
one’s tutor is an action in the physical world that relates to the action that exists in the social reality of
requesting tutoring which, as a consequence creates the duty to perform this tutoring. In eflint, it is
possible to relate acts and events to one another with synchronization clauses, which are declared using
the Syncs with keyword [23]. With the fact in mind that eflint is designed for compliance checking
running software systems, we can use these clauses to create specifications where these running systems
only need to communicate with the eflint reasoner through actions pertaining to physical interactions
with these systems and have the eflint reasoner synchronize them internally with actions that pertain
to the social reality. This way, it becomes possible to reuse these last kinds of actions in multiple
specifications representing different physical systems. The tutoring specification from Listing 2.1, for
example, could be reused in different educational institutions, each implementing its own set of physical
actions (for example, the act of submitting an online form on a website) that synchronise with the actions
in this specification. To ensure that physical actions synchronise correctly with the norms of the social
reality, we could specify properties that relate these physical actions to the consequences of their internal
institutional counterparts.

3.2 Formalizing properties
In Section 2.2.2, we presented the distinction between safety and liveness properties. The purposes we
identified in this chapter could potentially benefit from both types. Safety properties may be used to,
among others, ensure that certain actions are only enabled under specific conditions or that certain
(combinations of) facts can never exist. Examples where liveness properties may be used, are to ensure
that the correct duties are lifted or violated after certain actions, or that the eflint knowledge base is
updated correctly after executing certain actions.

As we saw in Section 2.2.2, LTL formulae are expressed solely over Boolean propositions, whereas
SE-LTL formulae can also capture actions. For expressing properties over norms, we propose a variation
of SE-LTL which we will refer to as eLTL (“eflint-LTL”) for the remainder of this thesis. The operators
for eLTL are defined as follows:

φ ∶∶= Hp ∣ Vd ∣ Ea ∣ T a ∣ ¬φ ∣ φ1 ∨ φ2 ∣ ◯φ ∣ φ1 U φ2.

Here, Hp denotes that a proposition p (which is either a fact or duty) holds, Vd denotes that a duty d is
violated, Ea denotes that an action a (which is either an act or event) is enabled, and T a denotes that
an action a (which is either an act or event) has been taken. The semantics are defined as follows:

• π, i ⊨ p iff p ∈ si for p ∈ P, where P is a countable set of Boolean propositions.
• π, i ⊨ Hp iff p ∈ si for p ∈ P, where P is the set of all facts and duties in the given specification.
• π, i ⊨ Vd iff d ∈ si for d ∈ D, where D is the set of all duties in the given specification.
• π, i ⊨ Ea iff a (which can either be an act or event) is the first action of π, starting from position

i.
• π, i ⊨ T a iff a (which can either be an act or event) is the action of π, starting from position i,

that was most recently taken.
• π, i ⊨ ¬φ iff π, i ⊭ φ.
• π, i ⊨ φ1 ∨ π, i ⊨ φ2 iff π, i ⊨ φ1 or π, i ⊨ φ2.
• π, i ⊨ ◯φ iff π, i + 1 ⊨ φ.
• π, i ⊨ φ1 U φ2 iff there exists k ≥ i such that π, k ⊨ φ2 and π, j ⊨ φ1 for all j such that k < j ≤ i.

The main difference between these semantics and those of SE-LTL is that while SE-LTL only reasons
about outgoing actions (i.e., actions that have yet to be taken), we reason about incoming actions
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(i.e., actions that have been taken) as well. We do this with the notion of action compliance in mind.
With these semantics, users can specify under which conditions an action may happen as well as reason
over what the effects are when an action has happened. It should be noted that this distinction does
lead to a subtle difference in when the next operator should be used, which is best illustrated with an
example. Consider a property that states that when a certain action a is enabled in the current state,
the proposition p should hold in the next state:

□(Ea ⟹ ◯Hp).
This property warrants the use of the next operator. However, a property that states that if an action
a has been taken, then the proposition p should be true does not:

□(T a ⟹ Hp).
It should also be noted that these properties are not equivalent. The first property is a liveness property
that states that the fact that a is enabled must lead to some change in the state (most likely by executing
a, although that is not required) whereas the second property is a safety property that states that p
always holds as an effect of the execution of a.

Because we want to be able to use eLTL properties in practice for the purposes we discussed in this
chapter, we need a way to model-check them. This requires eflint specifications to be represented in
such a way that they can be encoded into a suitable model checker input language. This also requires an
extension to the eflint syntax for specifying eLTL properties. We will discuss both in the next chapter.
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Design of eFLINT-check

To allow users of eflint to model check their specifications, we have designed and implemented eflint-
check, which takes a specification, a set of properties and optionally a (partial) scenario as input and
translates it into a labelled Kripke structure (LKS) where the knowledge base resulting from the provided
scenario serves as an initial state. It then encodes this model into a representation accepted by a model-
checking backend that is suitable for our purposes. Finally, if any counterexamples are found, they will be
reported back to the user in a way that allows them to understand and fix the errors in the specification.
The design of eflint-check is shown in Figure 4.1. In this chapter, we will explain and discuss the
design considerations behind these different steps.

eflint
specification

eflint
(partial) scenario

eflint
properties

Labelled Kripke structure

Model encoding

eflint-check

no counterexample counterexample

Figure 4.1: Design of eflint-check.

4.1 Design scope
Taking into account the scope of this thesis subject and the available time, we will not be able to include
every language construct in the design and subsequent implementation of eflint-check. Ultimately,
we want eflint-check to be feature complete, but our main priority right is to create a functional tool
that can demonstrate the usefulness of abstract property specification and model checking for normative
systems. As such we omit, among others, the Syncs with clause. This decision might seem counterin-
tuitive given the fact that it closely relates to the last purpose for model-checking norm specifications
we discussed in Section 3.1.4. However, we believe that we could sufficiently demonstrate the potential
of eflint-check using only the first three purposes we identified.
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4.2 Representing eFLINT specifications as labelled Kripke struc-
tures

To be able to check properties of eflint specifications, the specification first needs to be transformed
into a suitable representation. As we discussed in Section 2.2.2, acts and events can be regarded as
transitions that modify the state of the normative system represented by the eflint specification. Here,
the Holds when and Conditioned by clauses act as preconditions, and the Creates, Terminates and
Obfuscates clauses act as postconditions, which in turn can be used to define the transition relation
between states. However, the current (internal) representation of these specifications is not yet suitable
for model checking. In Section 2.2.1 we introduced labelled Kripke structures (LKSs) as a formal rep-
resentation for model checking. In the following sections, we will explain how we construct LKSs from
eflint specifications.

4.2.1 Propositions and actions
In eflint, the state of the normative system is represented by the knowledge base. While this is highly
similar to the way a state is represented in an LKS in the sense that it represents which fact and duty
instances hold, one issue with the design and implementation of eflint is that the domains of atomic
fact types can be unbounded, which in turn leads to an infinite state space. While different methods have
been proposed for model checking infinite systems [24–26], eflint-check will only accept specifications
in which the facts are bounded, making the state space finite and representable by an LKS. The reason
we do this instead of using another way to represent eflint specifications is that the majority (if not all)
state-of-the-art model checking tools are designed for (mostly) finite models. There do exist BMC-based
tools that use SMT solving and are therefore able to handle infinite integer domains which we could
potentially leverage for unbounded atomic integer fact declarations, but then the question remains how
unbounded atomic string fact declarations, and by extension and record-type fact declarations should be
represented. Moreover, we expect that most (if not all) properties over the normative systems expressed
by eflint specifications can be checked using only bounded domains. Therefore, at least for the proof
of concept version of eflint-check introduced in this thesis, we will only consider eflint specifications
that are fully bounded.

In the LKS representing the eflint specification, the set of atomic propositions P will consist of all
possible instances for each fact and duty declaration. For the tutoring specification from Listing 2.1, P
is constructed as follows:

P = {person(Alice), person(Bob),

tutor-of(Alice, Alice), tutor-of(Alice, Bob),

tutor-of(Bob, Alice), tutor-of(Bob, Bob),

tutoring-duty(Alice, Alice), tutoring-duty(Alice, Bob),

tutoring-duty(Bob, Alice), tutoring-duty(Bob, Bob),

is-student(Alice), is-student(Bob),

deadline-passed(Alice), deadline-passed(Bob)}
Each of these atomic propositions denotes whether that fact or duty instance holds in the knowledge

base. Additionally, for each duty instance, we need to keep track of whether it has been violated or
not. Because this is derived by the Violated when clause and is determined by other facts, in theory, it
is not necessary to turn this into an atomic proposition. However, depending on the underlying model
checker we use, we might need to do this explicitly in order to be able to reason about violated duties in
property specifications.
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Similar to the construction of the set of atomic propositions P, the set of actions A of the LKS
consists of all possible instances for each act and event. For the tutoring example, this set is constructed
as follows:

A = {request-tutoring(Alice, Alice), request-tutoring(Alice, Bob),

request-tutoring(Bob, Alice), request-tutoring(Bob, Bob),

provide-tutoring(Alice, Alice), provide-tutoring(Alice, Bob),

provide-tutoring(Bob, Alice), provide-tutoring(Bob, Bob),

assignment-due}
We should note that due to the derivation clause of request-tutoring, the instances

request-tutoring(Alice, Alice) and request-tutoring(Bob, Bob) will never be enabled. This
means that technically, they could be removed from the model altogether. However, we will leave this
optimization (among others that will be discussed in later chapters) out of scope for now.

Ideally, the domains for each fact declaration should be small enough, such that the number of
equivalent traces with different instances is as small as possible. For example, considering the tutoring
specification from Listing 2.1, and the following eLTL property:

□(T (request-tutoring(student, tutor)) ⟹ ◯H(tutoring-duty(tutor, student))),
which states that at any point in a scenario, if the act request-tutoring is executed for any student and
tutor (which are aliases for the person fact type), the duty tutoring-duty(tutor, student) holds in
the next step. To check this property, it is sufficient to have the domain of the person fact type be just
two elements. On the other hand, the domains should not be so small that they lead to false positives.
For example, if we want to check that it is never possible for a person to be the tutor of more than three
other people, the domain of person should at least contain five elements: one for the person instance
that serves as the tutor, and the other four serving as student instances, thus opening up the possibility
of having a counterexample be present in the model in case the specification does not sufficiently capture
this property. In terms of gaining confidence in the correctness of the specification, it is desirable to
have the bounds be larger rather than smaller than necessary. However, the larger the bounds are, the
larger the state space of the model will be, which in turn will increase the time and memory required
to check the model. Finding the optimal domains for each fact type is difficult, especially because the
eflint specifications that need to be checked are written with compliance checking of real systems in
mind, where it might be desirable to have unbounded fact declarations as much as possible because the
domains it might not be known in advance. In the design presented here, we will leave the responsibility
of finding sensible bounds to the user. Because eflint is designed with modularity in mind [23], it
is possible to override fact-type declarations. This allows users to create a mock specification for the
specific purposes of model checking.

Terminated and obfuscated facts

As discussed in Section 2.1.2, eflint makes a distinction between terminated and obfuscated facts,
where terminated facts are present in the knowledge base but evaluate to False, whereas obfuscated facts
are absent from the knowledge base altogether, technically making it impossible to know whether the
fact holds or not. While methods for model checking three-valued Kripke structures [27–29] have been
proposed, for now, we will only make a distinction between facts that hold (i.e., that evaluate to True),
and facts that do not hold (i.e., facts that evaluate to False or are absent from the knowledge base).

The closed-world assumption

The eflint reasoner supports so-called open facts to handle information that is required from an external
source not represented by the eflint specification. To be able to represent eflint specifications as
LKSs, they need to be closed, meaning that external input is not allowed. This means that open facts
cannot be represented in the system. Similar to how mock specifications can be created to add finite
domains to otherwise unbounded fact declarations, it is possible for users to temporarily override open
fact declarations to make them closed instead.
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Types of actions allowed in eFLINT-check

With the eflint reasoner, it is possible to postulate facts. This means that it is possible to create,
terminate or obfuscate a fact or duty manually, without it being the effect of an act or event. Including
postulation in the LKS is not feasible as doing so would significantly increase the state space and with
that, increase the time and memory required to check the generated model. More importantly, we argue
that it would be undesirable to consider the postulation of facts in the generated LKS. By allowing
postulation in the LKS it will become possible to reach any state from any other state, effectively
nullifying the pre- and postconditions of any specified transition (i.e., acts and events). For this reason,
we will not include postulation in the LKS. If there is a reason that warrants the inclusion of postulation
for certain facts, this might instead be achieved by (temporarily) adding one or more events that modify
the knowledge base as desired.

Similarly, the eflint reasoner allows for the execution of disabled actions, therefore creating a scenario
that is not action-compliant. For the same reasons regarding the postulation of facts, we will not consider
these kinds of actions as transitions in our model. This means that eflint-check will only be able to
model-check duty-compliance.

Finally, with the eflint reasoner it is possible to modify specifications on-the-fly by adding or
updating type declarations at runtime [23]. Doing so changes the underlying (normative) transition
system of eflint, and with that, the LKS representing this system. While being able to do so is
desirable in the existing tools based on the eflint reasoner because it allows users to create highly
dynamic systems that can be modified and extended over time, for eflint-check we only want to
consider fixed systems. In a practical sense, it is not possible to arbitrarily change the transition relation
of the model during a model-checking run, as this would cause the procedure to never halt. Moreover,
on a more abstract level, this would defeat the purpose of model checking, because we want to check the
specification as it exists now and get feedback on potential mistakes in this specification. Therefore, we
will not consider these statements as well. All in all, this means that the only types of actions considered
in eflint-check are acts and events.

4.2.2 Initial state
The initial state of the LKSs representing eflint specifications can be constructed using the knowledge
base that follows from the provided partial scenario. Given the tutoring specification from Listing 2.1,
we can, for example, specify that the course-active fact holds in the initial state in this way. In case no
scenario is provided, we assume that all atomic type fact instances hold, and all other facts and duties do
not hold (unless they are derived from these atomic facts). We do this because it mirrors the behaviour
of the eflint REPL. The knowledge base of eflint also contains the labels of enabled act and event
instances, so to comply with the definition of LKSs, we need to filter them from the knowledge base
before we can use it as our initial state.

4.2.3 The transition relation
The transition relation of an eflint specification is determined by the pre- and postconditions of acts
and events. The precondition of an act or event is composed of its derivation clause, its condition clauses
and its domain constraint. Multiple derivation and condition clauses may be defined for one act or event.
In that case, they are combined by taking the disjunction of all derivation clauses and the conjunction of
all condition clauses. In turn, those are combined using conjunction. For example, consider the following
act declaration:

Act request - tutoring
Actor student
Recipient tutor
Holds when student != tutor
Conditioned by Not(tutor -of(tutor , student )),

course - active
Creates tutor -of(tutor , student ),

tutoring -duty(tutor , student )
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This act has one derivation clause, namely student != tutor and two condition clauses, namely
Not(tutor-of(tutor, student)) and course-active. The full precondition for this act then becomes

student ≠ tutor ∧ !tutor-of(tutor, student) ∧ !course-active.

The postcondition of an act or event is determined by the creation, termination and obfuscation
clauses. Again, multiple clauses may be defined. In this case, they are combined using conjunction. For
the above example, the postcondition becomes

tutor-of(tutor, student) = True ∧ tutoring-duty(tutor, student) = True.

It follows from the discussion in Section 4.2.1 that both termination and obfuscation clauses will cause
these facts and duties to evaluate to False.

4.2.4 Putting it all together
If we put design considerations discussed here together, we can represent the eflint tutoring specification
from Listing 2.1 as the LKS visualized in Figure 4.2. This visualization goes to show that even for small
specifications with a minimal amount of fact instances, it will be cumbersome to manually check every
possible scenario, and the risk of missing a scenario only grows as the specification and number of
instances increase.

4.3 Property specification
eflint already supports the specification of invariant properties (i.e., Boolean propositions that have
to hold in every state) through the Invariant keyword. For example, for the tutoring example we can
specify the invariant “no one person can be their own tutor” as follows:

Invariant not -own - tutor Where Not( Exists person : tutor -of(person , person ))

The eflint reasoner evaluates these invariants every time the knowledge base is modified, either through
transitions or postulation, but we can use them in eflint-check to verify a priori if these invariants will
be violated in the given specification. However, as we discussed in Section 3.2, we also want to be able
to capture other safety properties as well as liveness properties, which is possible with eLTL. To do so,
we will extend eflint with the Property declaration that allows users to specify eLTL properties. The
concrete syntax of this declaration is given in Figure 4.3. Fact, duty and transition labels may contain
either concrete or abstract fields, where a concrete field contains an actual instance whereas an abstract
field contains the name of the field. This allows users to write properties over both specific instances as
well as more abstract scenarios.

Note that while we use the keyword Until, this operator will have the semantics of the weak until (W)
operator. In our initial design, we did use the until (U) operator, but during a preliminary evaluation of
this language extension and its expressivity concerning (abstract) eflint scenarios, we almost exclusively
found properties where the use of W was warranted over U . This leads us to use W instead of U . In
the rare case that the semantics of U are needed instead of W, it is possible to do so by combining the
syntax for the future (◊) operator with W.

Properties are defined similarly to invariants, where every property consists of an identifier and the
formula itself. In contrast to the eflint formulae that are used in various clauses, it is not necessary to
use quantifiers. Instead, the field names of each fact, act, event or duty can be used directly. Similar to
how we create concrete instances for each type declaration to represent atomic propositions and actions
in the LKS, we create concrete instances for each abstract proposition or action that is present in the
property. For example, the following property over the tutoring specification:

Property become - tutor Where
Always If Taken (request - tutoring (student , tutor ))

Then Holds (tutor -of(tutor , student ))
Until Taken (provide - tutoring (tutor , student ))

will be expanded into four separate formulae where the fields for student and tutor are replaced by
Alice and Bob, Alice and Alice, Bob and Alice, and Bob and Bob, respectively.
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person(Alice)
person(Bob)

course-active

person(Alice)
person(Bob)

tutor-of(Alice, Bob)
tutoring-duty(Alice, Bob)

is-student(Bob)
course-active

person(Alice)
person(Bob)

tutor-of(Bob, Alice)
tutoring-duty(Bob, Alice)

is-student(Bob)
course-active

person(Alice)
person(Bob)

tutor-of(Alice, Bob)
tutoring-duty(Alice, Bob)

is-student(Bob)
tutor-of(Bob, Alice)

tutoring-duty(Bob, Alice)
is-student(Alice)

course-activeperson(Alice)
person(Bob)

tutor-of(Alice, Bob)
tutoring-duty(Alice, Bob)

is-student(Bob)
deadline-passed(Bob)

course-active

person(Alice)
person(Bob)

tutor-of(Bob, Alice)
tutoring-duty(Bob, Alice)

is-student(Alice)
deadline-passed(Alice)

course-active

person(Alice)
person(Bob)

tutor-of(Alice, Bob)
tutoring-duty(Alice, Bob)

is-student(Bob)
deadline-passed(Bob)
tutor-of(Bob, Alice)

tutoring-duty(Bob, Alice)
is-student(Alice)

deadline-passed(Alice)
course-active

person(Alice)
person(Bob)

tutor-of(Alice, Bob)
tutoring-duty(Alice, Bob)

is-student(Bob)
tutor-of(Bob, Alice)

tutoring-duty(Bob, Alice)
is-student(Alice)

deadline-passed(Bob)
course-active

person(Alice)
person(Bob)

tutor-of(Alice, Bob)
tutoring-duty(Alice, Bob)

is-student(Alice)
tutor-of(Bob, Alice)

tutoring-duty(Bob, Alice)
is-student(Alice)

deadline-passed(Alice)
course-active

request-tutoring(Bob, Alice)

provide-tutoring(Alice, Bob)

request-tutoring(Alice, Bob)

provide-tutoring(Bob, Alice)

request-tutoring
(Alice, Bob)

provide-tutoring(Bob, Alice)

request-tutoring
(Bob, Alice)

provide-tutoring(Alice, Bob)

assignment-due

assignment-due

assignment-due

assignment-due

assignment-due

assignment-due

assignment-due

provide-tutoring(Bob, Alice)

request-tutoring
(Alice, Bob)

request-tutoring
(Bob, Alice)

provide-tutoring(Alice, Bob)

assignment-due assignment-due

provide-tutoring(Alice, Bob) provide-tutoring(Bob, Alice)

provide-tutoring(Bob, Alice) provide-tutoring(Alice, Bob)

provide-tutoring(Alice, Bob)provide-tutoring(Bob, Alice)

Figure 4.2: Kripke structure based on the tutoring specification from Listing 2.1. Violated duties are
shown in red.
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⟨ltl_prop⟩ ::= ‘Property’ ⟨name⟩ ‘Where’ ⟨ltl_term⟩
⟨ltl_term⟩ ::= ⟨proposition⟩

| ⟨action⟩
| ‘(’ ⟨ltl_term⟩ ‘)’
| ‘Not’ ⟨ltl_term⟩ (¬φ)
| ⟨ltl_term⟩ ‘And’ ⟨ltl_term⟩ (φ1 ∧ φ2)
| ⟨ltl_term⟩ ‘Or’ ⟨ltl_term⟩ (φ1 ∨ φ2)
| ‘If’ ⟨ltl_term⟩ ‘Then’ ⟨ltl_term⟩ (φ1 ⟹ φ2)
| ⟨ltl_term⟩ ‘Iff’ ⟨ltl_term⟩ (φ1 ⟺ φ2)
| ‘Always’ ⟨ltl_term⟩ (□φ)
| ‘Eventually’ ⟨ltl_term⟩ (◊φ)
| ‘Next’ ⟨ltl_term⟩ (◯φ)
| ⟨ltl_term⟩ ‘Until’ ⟨ltl_term⟩ (φ1 W φ2)

⟨proposition⟩ ::= ‘Enabled(’ ⟨transition_label⟩ ‘)’ (Ea)
| ‘Holds(’ ⟨fact_label⟩ ‘)’ (Hp)
| ‘Holds(’ ⟨duty_label⟩ ‘)’ (Hp)
| ‘Violated(’ ⟨duty_label⟩ ‘)’ (Vd)

⟨action⟩ ::= ‘Taken(’ ⟨transition_label⟩ ‘)’ (T a)

Figure 4.3: Concrete syntax definition of eLTL

4.4 Reporting counterexamples
An important part of the design is the reporting of counterexamples in case the model constructed from
eflint specifications does not satisfy the provided properties. These counterexamples should provide
users with enough information to be able to debug and fix the provided specification, but at the same
time should not be cluttered with unnecessary internal details about the model. To achieve this, we can
make use of the tools that already have been implemented to interact with eflint scenarios. The eflint
REPL shows users how the knowledge base is affected by every transition that is taken. Because of this,
in principle, it should be sufficient to only report the transitions that are necessary to violate the specified
property. Using the REPL, the user would then be able to explore these transitions step-by-step, up to
the point where they can identify what changes are necessary to satisfy the property.

4.5 The model-checking backend
The implementation of eflint-check is largely dependent on the model-checking backend we use because
this will determine how the LKSs based on the eflint specifications should be encoded. Currently, a
wide range of tools and accompanying model specification languages exist, each with specific purposes
and domains in mind. To be able to select an appropriate model checker to use for our backend, we need
to create a set of requirements this model checker should satisfy. Seshia, Sharygina, and Tripakis [30]
identify the following factors to consider when selecting a model checking tool and language:

1. Type of system;
2. Type of properties;
3. Relevant information about the environment;
4. Level of abstraction;
5. Clarity and modularity;
6. Form of composition;
7. Computational engines;
8. Practical ease of modelling and expressiveness.
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For each of these factors, we will give a brief explanation and discuss what requirements and consider-
ations are relevant for model checking eflint specifications. Some of these considerations have already
been touched upon previously, but we will repeat them here for the sake of completeness.

Type of system The type of system that needs to be modelled and checked largely dictates the tool
to use. For example, systems with a lot of concurrent and communicating processes warrant a different
formalism (and in turn model checker) than discrete, synchronous systems. eflint specifications describe
discrete systems, which is why we use LKSs as our modelling formalism. Ideally, the tool we select
would be able to handle this formalism directly, but because LKSs can be translated into classic Kripke
structures [17], which in turn can be translated into other discrete formalisms such as LTSs [15], our
main requirement is that it must be able to handle discrete systems in general.

Type of properties The type of properties that the model checker should be able to check is deter-
mined in part by the type of system that is being checked. In Section 2.2.2 and Section 4.3, we established
that for checking eflint specifications, we want to use SE-LTL and be able to check both safety and
liveness properties. Similar to how LKSs can be translated to Kripke structures, SE-LTL formulae can
also be translated to corresponding LTL formulae. Therefore, the model checker we select should (at
least) support LTL model checking for both safety and liveness properties.

Relevant information about the environment Some systems, especially software systems, may
depend on external systems such as other software libraries or user input. Although eflint is de-
signed to be integrated with other software systems, under the closed-world assumption (as discussed
in Section 4.2.1) and by not including postulation in our model (as discussed in Section 4.2.1), eflint
specifications can be checked independently from their target environment.

Level of abstraction The level of abstraction of the model that is created to represent a system
determines the state space of the model and, with that, the memory and time required to check the
provided properties. The goal of eflint-check is to automatically model check eflint specifications
and in order to prevent running into the problem of getting ‘lost in translation’ (i.e., counterexamples that
cannot be retranslated back into eflint scenarios), the conversion of these specifications into checkable
model representations should have as few hidden abstractions as possible. Specifications that are too
large to reasonably check can be turned into more abstract specifications at the eflint specification level
instead. Therefore, we do not require the model checker and input language we will use to have any
particular abstraction features.

Clarity and modularity This factor is mainly relevant for models that are defined and written by
humans. Because eflint-check is designed to create these models automatically, in principle it is not
required for the input language of our model checker to have a high level of clarity and modularity.
However, for the development of eflint-check, it might be beneficial to use a language with some level
of clarity. This will allow us to manually create and verify models based on eflint specifications, which
we can then use to base the automatic translation on. Moreover, while we want the translation and
checking of specifications to be automatic, we do want this process to be transparent by giving users
the option to inspect and use the model encodings eflint-check generates. For this purpose, it would
also be useful if the model-checking input is human-readable. The point of modularity also pertains to
the reusability of models, and whether different models can be composed together to form new models.
Because we will only consider one eflint specification at a time, we are not concerned with this factor.

Form of composition The form of composition of a model is related to the modularity factor discussed
in the previous paragraph and depends on whether the components in the system that is being checked
are synchronous or asynchronous. Since we only consider one eflint specification at a time, we are only
concerned with synchronous model checking.

Computational engines In Section 2.2.3, we briefly touched upon the fact that multiple computa-
tional approaches to model checking exist, and we introduced the notion of bounded model checking
(BMC). One of the key requirements to eflint-check is to provide actionable feedback to the users
in the form of counterexamples. Because BMC can find counterexamples better than other (symbolic)
model checkers and in most cases finds the shortest (and therefore usually the most comprehensible)
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counterexample [20], the model checker we use should support this technique. Additionally, because
eflint supports integers and largely depends on record data types, it would be highly beneficial if the
model checker supports SMT solving instead of SAT solving. However because for now, we will only
consider bounded domains, this is not a hard requirement.

Practical ease of modelling and expressiveness We partly touched on this factor when we dis-
cussed the clarity of the models. In addition to the arguments made previously, an additional requirement
of the input language to the selected model checker is that it should support the same logical and arith-
metic operators as eflint. Additionally, we would like it to offer the ability to define expressions as
macros, to allow us to succinctly define derivation clauses, preconditions of acts and events and violation
clauses of duties, without having to add them to the state space. This is not a hard requirement, be-
cause, in the absence of such functionality, we could express these clauses explicitly. However, this would
(unnecessarily) increase the size of the model encoding of the provided specification and could make it
harder to understand the generated model encodings in the event a user wants to refer to them. Lastly,
in terms of interacting with the actual tool, it should be possible to programmatically interact with the
model checker. Ideally, this would be through bindings to an API, but it should at least be configurable
and executable through a shell command. That way, we run it from within the eflint-check program
and interact with it using common shell operations.

4.6 Interaction with eFLINT-check
For this thesis, we will implement eflint-check as a standalone executable that takes a .eflint file
containing the specification, initial state and properties as input, checks it and reports any counterexam-
ples that may be found. This way, users can provide a specification (or mocked version thereof) and get
immediate feedback, which they can then use to further develop or refine the provided specification. It
also allows us to validate and evaluate our implementation of the tool. Future versions of eflint-check
may become more closely integrated with the existing eflint tooling, such as the REPL. We will discuss
these possibilities in more depth in Chapter 7.
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Chapter 5

Implementation of eFLINT-check

In this chapter, we will discuss the implementation of eflint-check, according to the design we discussed
in the previous chapter. The existing eflint backend is implemented in Haskell. Because we need to
be able to access and manipulate the internal representation of eflint specifications, we have developed
eflint-check in Haskell as well, as a fork1 of the original repository. We will start this chapter by
explaining how we transform eflint specifications into labelled Kripke structures (LKSs). Then, we
discuss which model checker we selected for our backend, and how we encode the LKSs and the properties
provided by the user into valid input for the selected model checker. Finally, we discuss how, in the case
counterexamples are found, we report them back to the user.

5.1 From eFLINT specifications to labelled Kripke structures
and properties

The first step in the eflint-check pipeline is to parse and interpret the provided .eflint file, so that
we can transform it into an LKS. Because we are implementing eflint-check on top of the existing
eflint source code, we can use the parser and interpreter that are already available and use the resulting
internal representation. An interpreted eflint specification results in a configuration data structure that
stores all type declarations, the current knowledge base, the set of transitions that are allowed according
to this knowledge and the set of duties that are active in this knowledge base. For eflint-check, we
are only interested in the type declarations and the current knowledge base, because this allows us to
define the LKS and compute the initial state.

For practical reasons which we will explain throughout this chapter, we do not use the exact repre-
sentation of LKSs as given in Definition 2. Instead, we define a new data type Model2:

data Model = Model
{ modelSymbolTable :: MSymbolTable
, modelPropositions :: MDeclarations
, modelActions :: MDeclarations
, modelInitialState :: MAssignments
, modelProperties :: MProperties
} deriving (Ord , Eq , Show)

The modelSymbolTable is a utility field that allows us to translate back and forth between eflint
identifiers and (sanitized) identifiers we use in the model checker encoding of the LKS. We discuss this
topic in more detail in Section 5.3.1. The modelPropositions, modelActions and modelInitialState
are used to represent the LKS itself. As we discussed in Section 4.2.1, the set of propositions (and by
extension, the initial state) in the LKS that follows from an eflint specification consists of all fact and
duty instances of that specification, and the set of actions consists of the act and event instances. We
discuss the implementation of the propositions and transitions in Section 5.1.1 and the implementation
of the initial state in Section 5.1.2. Lastly, the invariants and properties that have been declared in the
eflint specification are stored in the modelProperties field, which we will discuss in Section 5.1.3.

1https://gitlab.com/enirolf/haskell-implementation/
2To avoid name clashes with existing internal eflint data types, we prefix every data type related to the eflint-check

LKS representation with M, for ‘model’.
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5.1.1 Propositions and actions
To represent both the atomic propositions that are present in the states as well as the actions that make
up each transition, we define the MDeclaration data type:

data MDeclaration = MDeclaration
{ declLabel :: DomId
, declAttrs :: MDeclarationAttrs
} deriving (Ord , Eq , Show , Read)

Here, declLabel denotes the name of the type declaration. The structure of the declAttrs fields depends
on the kind of declaration, where we distinguish fact declarations, duty declarations and transition
declarations that can be both acts and events. The structure of each of these data types is highly similar
but contains subtle differences.

Fact declarations In the LKS, fact declarations are represented as follows:

data MFactDecl = MFactDecl
{ factType :: MFactType
, factFieldNames :: [ DomId ]
, factInstances :: [ MFactInstance ]
} deriving (Ord , Eq , Show , Read)

The factType field denotes the domain of the fact, and can be AtomicInt, AtomicString, Bool or
RecordType. The factFieldNames field contains a list with the field identifiers. In the case of an
AtomicInt or AtomicString type, due to implementation reasons, this is a singleton list with the name
of the fact itself. For Bool facts, this list is empty. As discussed in Section 4.2.1, we need to consider
all possible instances of each eflint type declaration in the LKS. For facts, these are represented by the
MFactInstance data type:

data MFactInstance = MFactInstance
{ factInstanceFields :: MFields
, factInstanceDerivation :: ITerm
} deriving (Ord , Eq , Show , Read)

Here MFields is a data type that maps the field parameters of a type to an instance. For atomic fact
types, we use the name of the type itself instead of any field name. The derivation expression of a fact
instance is represented by an ITerm (‘instantiated term’).

Duty declarations Duty declarations are structured similarly to fact declarations:

data MDutyDecl = MDutyDecl
{ dutyInstances :: [ MDutyInstance ]
, dutyFieldNames :: [ DomId ]
} deriving (Ord , Eq , Show , Read)

Next to the fields from the MFactInstance data type, the MDutyInstance also contains a field that
represents the violation condition:

data MDutyInstance = MDutyInstance
{ dutyInstanceFields :: MFields
, dutyInstanceDerivation :: ITerm
, dutyInstanceViolation :: ITerm
} deriving (Ord , Eq , Show , Read)
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Transition declarations Act and event declarations are both represented by the MTransInstance,
which due to the underlying model checker encoding we will explain in the next sections only stores their
instances:

newtype MTransDecl = MTransDecl
{ transInstances :: [ MTransInstance ] } deriving (Ord , Eq , Show , Read)

The MTransInstance data type stores the fields of the transitions and their pre- and postconditions:

data MTransInstance = MTransInstance
{ transInstanceFields :: MFields
, transInstancePrecon :: ITerm
, transInstancePostcons :: MAssignments
} deriving (Ord , Eq , Show , Read)

Because the postconditions do nothing more than creating, terminating and obfuscating facts and duties,
we can store them as a mapping between the identifier of the relevant fact or duty instance and their
new assignment. With this representation, we do not need to represent the transition relation separately,
which will be helpful during the encoding of the LKS to the model checker input.

5.1.2 Initial state
As mentioned in Section 4.2.2, we can use the eflint knowledge base to determine the initial state of
the LKS. Following the definition of LKSs, states (including the initial state) are labelled with only the
propositions (i.e., all possible fact and duty instances) that hold in that state. However, for practical
reasons related to the encoding of the LKS into the model checker input language, we need to represent
the propositions that do not hold as well. The knowledge base may already contain some of these
propositions, namely the facts and duties that have been terminated and therefore evaluate to False. We
add the remaining obfuscated facts and duties to the initial state by taking the difference between the
set of all propositions and the set of propositions already present in the knowledge base, assigning every
property in this resulting set to False, and adding it to the initial state.

5.1.3 Properties
Similar to derivation clauses, condition clauses and domain constraints, property declarations need to be
instantiated. As we discussed in Section 4.3, abstract fields will be replaced by every possible instance
for that field, creating a temporal property for every possible combination between fields.

5.2 The model-checking backend
The model-checking tool that we will use as the backend to eflint-check will be selected using the
criteria discussed in Section 4.5. We selected the initial set of potential candidates based on the following
criteria:

1. It should be possible to directly express the transition relation of the LKS representing the eflint
specification in the input language of the selected model checker;

2. The selected model checker should support the specification of LTL properties;
3. The selected model checker should be able to check both safety and liveness properties;
4. The selected model checker should be able to provide counterexamples;
5. It should be able to invoke and interact with the selected model checker programmatically.

Based on these criteria, we considered ITS-Tools [31], Apalache [32] and nuXmv [33] as candidates.
A systematic evaluation of each of these tools is outside the scope of this thesis. Instead, we manually
created a model representation for the tutoring specification from Listing 2.1 in the modelling language of
each of the tools, along with a small set of correct and incorrect properties. Using these manually defined
models, we were able to evaluate (1) the expressiveness of the language, including the LTL properties;
(2) the potential for automatic encoding of eflint specifications into this language; (3) (roughly) how
long it takes to check a property; and (4) the way counterexamples are reported. Based on these points,
we determined that nuXmv would be the best fit for eflint-check. The language is extensive enough
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to be able to express LKSs based on eflint specifications. Moreover, in this limited evaluation, it
significantly outperformed the other tools in terms of the time required for checking the provided model,
even when we increased the domains (and therefore state space) of the person fact type. nuXmv
supports a large number of symbolic model checking strategies, including BMC based on both SAT and
SMT solving. Lastly, the output format and verbosity of counterexamples are configurable, which will
be useful in the interpretation and reporting of counterexamples to eflint-check end-users. It can
be run as an interactive command line tool, as well as in batch mode where all relevant commands
are provided as an input script. This makes it possible to directly integrate it into the eflint-check
implementation. The only downside of nuXmv is that the expressiveness for composite data structures
such as record-types is more limited for our purposes than the other tools. However, we will still be
able to capture all language constructs of eflint and we argue that the advantages nuXmv has over
ITS-Tools and Apalache outweigh this disadvantage.

5.2.1 The SMV language
The modelling language used by nuXmv is based on, and still closely resembles the SMV language
introduced by McMillan [34]. The main difference between the nuXmv language and SMV is the fact
that the nuXmv language allows for the use of unbounded Integer and Real data types for SMT-based
BMC [33]. nuXmv models consist of MODULE declarations, where at least a main module should be defined
for each model. Within each module, variables that make up the state of a system are specified using
the VAR keyword. Additionally, macros may be defined using the DEFINE keyword. These declarations
can be used to concisely store common expressions and have no influence on the size of the state space.
nuXmv supports the specification and checking of different kinds of properties, including LTL properties
using the LTLSPEC keyword and invariants using the INVARSPEC [35].

There are two ways in which the transition relation of a model can be expressed in the nuXmv
language. The first way is through the ASSIGN block, where for each VAR, the initial value and the value
in every next state are expressed. The latter can be expressed using case expressions, allowing the user
to specify different assignments based on the current state. The other way is by direct specification of the
transition relation, using the INIT keyword to specify the initial state and TRANS keyword to specify the
transition relation using Boolean expressions. In general, the use of the ASSIGN keyword is preferred over
the use over INIT and TRANS. As McMillan [34] states: “The use of TRANS and INIT is not recommended,
since logical absurdities in these declarations can lead to unimplementable descriptions. [. . .] However,
the flexibility of these mechanisms may be useful for those writing translators from other languages to
SMV” ([34]). This applies to our implementation as well. In Section 4.2.3, we discussed how both the
preconditions and postconditions for each act and event can be expressed as Boolean formulae, we can
(almost) directly encode them into TRANS declarations. In the next section, we will describe in more
detail how we encode the LKSs generated from eflint specifications into nuXmv specifications.

5.3 From LKSs and properties to nuXmv
The internal representation of the LKS that is generated from a given eflint specification needs to be
encoded into the nuXmv input language to be able to check the properties present in this specification.
In this section, we discuss the implementation details of this encoding step.

5.3.1 Identifier sanitation and instance representation
The syntax rules for eflint type identifiers are more permissive than those of nuXmv. For example,
spaces and square brackets are valid characters for eflint identifiers (and are conventially used as
well), but not for nuXmv identifiers. Therefore, we substitute each character that is not accepted for
nuXmv identifiers with an underscore. Because we want to present counterexamples as executable eflint
scenarios, we need to be able to translate these sanitized identifiers back into their original representation.
To be able to do this, we store a symbol table alongside the LKS (represented by the MSymbolTable data
type shown in Section 5.1).

Moreover, we need a way to distinguish different type instances in a representation that is both
accepted as valid nuXmv syntax, and that enables us to translate them back into eflint instance
identifiers. To do this, we concatenate the fields of the instance to the sanitized identifier, where the
fields are separated by an underscore and a dollar sign character is used as a delimiter. For example, the
fact instance tutor-of(Alice, Bob) will be encoded as tutor_of$Alice_Bob.
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5.3.2 Aggregator unfolding
Derivation clauses, conditions and invariants in eflint may contain quantifier (Exists, Forall and
Foreach) and aggregator expressions (Sum and Count3). These types of operators iterate over possible
type instances to produce a single result. An example of an expression using a quantifier based on the
tutoring example from Listing 2.1 is Exists tutor: tutor-of(tutor, Alice) returns True if there
is at least one person that is the tutor of Alice. An example of an expression using an aggregator
is Count(Foreach student: deadline-passed(student)), which counts for how many students the
assignment deadline has passed. nuXmv does not support direct encoding of these types of operators.
However, because we only consider bounded facts, all instances are known upfront. This allows us to
unfold these expressions with these operators into quantifier-free expressions. For example, consider the
Exists example and suppose that the domain of the person fact type is {Alice, Bob, Chloe}. Then, we
can unfold this quantified expression into the following non-quantified expression:

tutor-of(Alice, Alice) ∨ tutor-of(Bob, Alice) ∨ tutor-of(Chloe, Alice).

Because nuXmv supports the conversion from Boolean types to Integers, we can unfold the aggregated
expression from the example above as follows, using the same domain for the person type as before:

int(deadline-passed(Alice)) + int(deadline-passed(Bob)) + int(deadline-passed(Chloe)).
5.3.3 Encoding propositions
The encoding in nuXmv of a proposition depends on its type. Here, we distinguish between atomic
integer- and string-type facts, record-type facts, boolean facts, and duties. We will explain the encoding
for each of these propositions below.

Atomic integer- and string-type facts

For each atomic integer- and string-type fact, we define a separate nuXmv module. This module is used
to store the instances for these facts and keeps track of the value of each instance and whether it holds
or not. Because the value of the instance is not relevant to the state of the LKS itself, we declare it
using a DEFINE statement rather than a state variable. By storing the value of the fact, it can be used
in derivation clauses and conditions for other facts, duties, acts and events. In the main module, each
fact instance is declared using these modules.

For the derivation clauses of facts, we use DEFINE statements as well, because their value can, as
the name suggests, be derived from other facts. This way, we can succinctly reference them without
increasing the state space. The encoding of the person fact in the tutoring specification from Listing 2.1
is shown in Figure 5.1. Because this fact is not derived, the derivation clause for each instance evaluates
False. This is necessary for the encoding of the transition relation of each act and event, which we will
explain in more depth in 5.3.4.

For string-type facts, we must additionally declare the domain values as symbolic constants using the
CONSTANTS statement. This is not necessary for integer-type facts.

Record-type facts

The encoding of record-type facts is similar to the encoding of atomic integer- and string-type facts. The
main difference is that we do not store the value of each field because they have already been instantiated
in every expression they appear in. The (abbreviated) encoding of the tutor-of fact in the tutoring
specification from Listing 2.1 is shown in Figure 5.2.

3eflint also supports the Min and Max aggregator operators, but since they are rarely used in real-life cases and are
not as trivial to unfold, we will not consider them here.
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Fact person Identified by Alice , Bob

(a) eflint declaration.

MODULE person ( person )
DEFINE val := person ;
VAR holds : boolean ;

MODULE main
CONSTANTS

" Alice ", " Bob ";
VAR

person$Alice : person (" Alice ");
person$Bob : person (" Bob ");

DEFINE person$Alice . derivation := FALSE ;
DEFINE person$Bob . derivation := FALSE ;
INIT person$Alice . holds := TRUE ;
INIT person$Bob . holds := TRUE ;
TRANS

<...>

(b) nuXmv translation.

Figure 5.1: eflint declaration and corresponding nuXmv translation of the atomic string-type person
fact.

Fact tutor -of Identified by tutor * student

(a) eflint declaration.

MODULE tutor_of (student , tutor )
VAR holds : boolean ;

MODULE main
CONSTANTS

" Alice ", " Bob ";
VAR

tutor_of$Alice_Alice : tutor_of (" Alice ", " Alice ");
tutor_of$Alice_Bob : tutor_of (" Alice ", " Bob ");
tutor_of$Bob_Alice : tutor_of (" Bob ", " Alice ");
tutor_of$Bob_Bob : tutor_of (" Bob ", " Bob ");

DEFINE tutor_of$Bob_Alice . derivation := FALSE ;
DEFINE tutor_of$Alice_Alice . derivation := FALSE ;
<...>
INIT tutor_of$Alice_Alice . holds := FALSE ;
INIT tutor_of$Alice_Bob . holds := FALSE ;
<...>
TRANS

<...>

(b) nuXmv translation.

Figure 5.2: eflint declaration and corresponding nuXmv translation of the record-type is-tutor fact.
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Boolean-type facts

Because Boolean-type facts only ever have one instance, they can directly be encoded as nuXmv state
variables, without defining additional modules. To preserve consistency in the way the state of a property
is referred to, we add .holds as a suffix to the identifier of the fact. The encoding of the Boolean-type
course-active fact in the tutoring specification from Listing 2.1 is shown in Figure 5.3.

Bool course - active

(a) eflint declaration.

MODULE main
VAR

course_active . holds := boolean ;
DEFINE course_active . derivation := FALSE ;
INIT course_active . holds := FALSE ;
TRANS

<...>

(b) nuXmv translation.

Figure 5.3: eflint declaration and corresponding nuXmv translation of the Boolean-type
course-active fact.

Duties

Similar to atomic integer- and string-type facts and record-type facts, duties are encoded by defining a
separate module for each duty. The violation clause of a duty declaration is derived from the valuation
of other declared types. This means we can encode them as DEFINE macros instead of state variables.
The (abbreviated) encoding of the tutoring-duty duty declaration in the tutoring specification from
Listing 2.1 is shown in Figure 5.4.
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Duty tutoring -duty
Holder tutor
Claimant student
Holds when tutor -of(tutor , student )
Violated when assignment -deadline - passed ( student ),

Not(course - active )

(a) eflint declaration.

MODULE tutoring_duty (tutor , student )
VAR holds : boolean ;

MODULE main
CONSTANTS

" Alice ", " Bob ";
VAR

tutoring_duty$Alice_Bob : tutoring_duty (" Alice ", " Bob ");
tutoring_duty$Alice_Alice : tutoring_duty (" Alice ", " Alice ");
<...>

DEFINE tutoring_duty$Alice_Bob . derivation := tutor_of$Alice_Bob . holds ;
DEFINE tutoring_duty$Alice_Bob . violated := assignment_deadline_passed$Bob . holds

| !( course_active . holds );
DEFINE tutoring_duty$Alice_Alice . derivation := tutor_of$Alice_Alice . holds ;
DEFINE tutoring_duty$Alice_Alice . violated := assignment_deadline_passed$Alice . holds

| !( course_active . holds );
<...>
INIT tutoring_duty$Alice_Bob . holds := FALSE ;
INIT tutoring_duty$Alice_Alice . holds := FALSE ;
<...>
TRANS

<...>

(b) nuXmv translation.

Figure 5.4: eflint declaration and corresponding nuXmv translation of the record-type tutoring-duty
fact.

5.3.4 Encoding actions
nuXmv is not specifically designed for representing LKSs, or transition-based model representations for
that matter. However, the nuXmv language is flexible enough to allow us to encode the LKSs that
represent eflint specifications. As we discussed in Section 4.2.3, the precondition of an act or event,
which determined whether this action is enabled, is composed using its derivation and condition clauses.
Similar to the derivation clauses of facts and duties, they can be represented as DEFINE statements as
they are evaluated using other propositions and do not influence the state of the model.

As discussed in Section 5.2.1, TRANS declarations allow for the direct specification of the the transition
relation. We encode the transition of an act or event as the conjunction between their pre- and post-
conditions, where the preconditions are represented by the DEFINED statements we just described. The
postconditions in turn are represented by the conjunction of the updated assignments for each proposi-
tion, using nuXmv’s next operator. The updated assignment for each proposition may on the one hand
be directly determined by the Creates, Terminates or Obfuscates clauses of the action, but can also
indirectly be determined by its derivation clause, which valuation may have changed after a transition.
Because of this, we need to not only consider the propositions that are directly affected by an action in
the postcondition but all propositions. If a proposition is directly affected by an action, it is assigned the
updated value. If not, its updated value is determined by the disjunction between its current assignment
and its derivation clause. In Section 5.3.3, we mentioned that in the nuXmv encoding, the derivation
clause of facts that are not derived are assigned False. Because we take the disjunction between the
current assignment and the derivation clause, this means that facts that are not derived will always be
assigned to their current assignment. Figure 5.5 shows an (abbreviated version) of the encoding of the
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request_tutoring act in the tutoring specification of Listing 2.1 and illustrates the difference between
the encoding of propositions that are and are not affected by this action. To ensure that our transition
relation is total (as is required by both the nuXmv language as well as the definition of LKSs), when no
act or event is enabled, each proposition gets updated with its current state, creating a loop to the same
state.

Act request - tutoring
Actor student
Recipient tutor
Holds when student != tutor
Conditioned by Not(tutor -of(tutor , student ))
Creates tutor -of(tutor , student )

(a) eflint declaration.

MODULE main
VAR
<...>
last_trans : {none , request_tutoring$Alice_Bob , request_tutoring$Alice_Alice ,

request_tutoring$Bob_Bob , request_tutoring$Bob_Alice };
DEFINE request_tutoring$Alice_Bob . enabled :=

(( person$Alice .val) != ( person$Bob .val)) & (!( tutor_of$Bob_Alice . holds ));
DEFINE request_tutoring$Alice_Alice . enabled :=

(( person$Alice .val) != ( person$Alice .val)) & (!( tutor_of$Alice_Alice . holds ));
<...>
INIT last_trans := none;
<...>
TRANS

( request_tutoring$Alice_Bob . enabled & (
next( last_trans ) = request_tutoring$Alice_Bob
& next( tutor_of$Alice_Bob . holds ) = TRUE
& next( is_student$Bob . holds ) = ( is_student$Bob . holds | is_student$Bob . derivation )
& <...>
)

)
xor ( request_tutoring$Alice_Alice . enabled & (

next( last_trans ) = request_tutoring$Alice_Alice
& next( tutor_of$Alice_Alice . holds ) = TRUE
& next( is_student$Bob . holds ) = ( is_student$Bob . holds | is_student$Bob . derivation )
& <...>
)

)
<...>
xor ((! request_tutoring$Alice_Bob . enabled & ! request_tutoring$Alice_Alice . enabled

& ! request_tutoring$Bob_Bob . enabled & ! request_tutoring$Bob_Alice . enabled ) & (
next( last_trans ) = none
& <...>
)

)

(b) nuXmv translation.

Figure 5.5: eflint declaration and corresponding nuXmv translation of the request-tutoring act.

Both for checking properties that use the Taken operator, as well as to be able to construct eflint
scenarios from the counterexamples that nuXmv reports, in each state we need to have access to the
transition that was taken last. We do so by defining an auxiliary last_trans state variable, which is a
nuXmv enumeration type with the identifiers of each action instance in the specification, as well as the
symbol none. This variable gets updated in the postcondition for each transition with the value of the
action taken in that transition, or none if no actions were enabled for that transition.

When specifying different transitions through multiple TRANS statements, nuXmv will define the
transition relation by taking the conjunction between these statements [35]. This means, however, that
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when multiple actions are enabled at a time, they will all be taken. This is not desired, because eflint
only allows for action to be taken at a time4. To solve this, we encode the different transitions as one
TRANS statement that represents the exclusive disjunction (⊕) between each transition. This ensures
that each new state will only reflect the effects of one action at a time.

5.3.5 Encoding properties
In Section 4.3, we explained that we will check both invariants using the already implemented Invariant
declaration as well as eLTL properties using the newly introduced Property declaration. nuXmv also
distinguishes between these two kinds of properties with the INVARSPEC and LTLSPEC keywords. The
nuXmv identifiers for propositions and actions allow us to convert the eLTL formulae directly into LTL
formulae. Similar to expressions in derivation and condition clauses, when a property contains one or
more abstract field names, we expand the property into multiple properties for each possible combination
of field instances. Figure 5.6 shows an example translation of a property into nuXmv input.

Property become - tutor Where
Always If Taken (request - tutoring (student , tutor ))

Then Holds (tutor -of(tutor , student ))
Until Taken (provide - tutoring (tutor , student ))

(a) eflint declaration.

LTLSPEC NAME become_tutor$Bob_Bob :=
G ( last_trans = request_tutoring$Bob_Bob ->

tutor_of$Bob_Bob . holds U last_trans = provide_tutoring$Bob_Bob )
LTLSPEC NAME become_tutor$Bob_Alice :=

G ( last_trans = request_tutoring$Bob_Alice ->
tutor_of$Alice_Bob . holds U last_trans = provide_tutoring$Alice_Bob )

LTLSPEC NAME become_tutor$Alice_Bob :=
G ( last_trans = request_tutoring$Alice_Bob ->

tutor_of$Bob_Alice . holds U last_trans = provide_tutoring$Bob_Alice )
LTLSPEC NAME become_tutor$Alice_Alice :=

G ( last_trans = request_tutoring$Alice_Alice ->
tutor_of$Alice_Alice . holds U last_trans = provide_tutoring$Alice_Alice )

(b) nuXmv translation.

Figure 5.6: eflint declaration and corresponding nuXmv translation of the become-tutor property.

5.3.6 nuXmv input generation
For the automatic generation of nuXmv input files that declare the necessary modules that makeup facts
and duties, state variables, declarations, initial state assignments and the transition relation, we have
created a template according to the Mustache template specification [36]. With Mustache, it is possible
to render files from a template by providing the content this file should contain in a structured format
such as YAML or JSON. For example, the following template snippet enables us to declare a nuXmv
module for every record-type fact:

{{# recordFacts }}
MODULE {{ rfName }}({{ rfFields }})

VAR holds : boolean ;
{{/ recordFacts }}

Template tags are delimited by two curly brackets. The body of that is opened by a tag containing a

4Acts and events with Syncs with statements are an exception to this rule, but as we discussed in Section 4.2.3, we
consider this out of scope for now.
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pound symbol and closed by a tag containing a forward slash symbol denotes a section that is repeated
for each item in the list assigned to the identifier of the tag. For example, consider the following structure
representing the identifiers of all record-type facts of the tutoring specification from Listing 2.1:

{
" recordFacts ": [

{
" rfName ": " tutor_of ",
" rfFields ": [" tutor ", " student "]

},
{

" rfName ": " deadline_passed ",
" rfFields ": [" student "]

},
{

" rfName ": " is_student ",
" rfFields ": [" student "]

},
]

}

Using the template snippet and this data structure, we can render a nuXmv module for each record-type
fact. The full template is available online and included in Appendix B.

We use the Haskell package stache [37] to handle the compilation and rendering of the template.
The data structure necessary for this template is created from the Model data type we introduced in
Section 5.1. Instances of this data type get transformed into ModelOutput objects, which is a Haskell
data type that closely resembles the structure of a JSON object and is accepted by the rendering engine
stache. The stache package uses Template Haskell [38] to allow for the compilation of Mustache during
the compilation of the Haskell code. This makes it possible to render templates without having access
to the template at runtime, which is ideal for our purposes.

5.4 nuXmv configuration and invocation
nuXmv can be run both interactively and as a batch command [35]. For eflint-check, we will use the
latter as that allows us to easily call and get the results from nuXmv within our Haskell implementation.
The batch command can be controlled with a number of command-line options (for example, -bmc will
invoke their default BMC-based model checking engine), but for more fine-grained configuration options,
it is also possible to provide a source file. This source file accepts nuXmv commands that are available in
the interactive interface, which are more specific and configurable than the command-line options. Both
for checking invariants and temporal properties, we use nuXmv’s IC3 engine [39]. This BMC engine uses
the MathSAT [40] SMT solver and can efficiently check models with a large number of state variables,
as well as model check infinite models.

We generate a source file based on the specification that is provided by the user and the following
two options that may be specified by the user as well:
Property to check The given specification may contain multiple properties, whereas the user might

only be interested in checking one of them (for example, if that specific property was violated in a
previous run). If no property is specified, all properties in the specification will be checked.

Bound size The maximum trace length of a counterexample (k in Figure 2.3).
An example source file is shown in Listing 5.1. We save the generated source file in a directory in
the working directory called .eflint-check. Here, we will also save the generated nuXmv input files,
the raw output of nuXmv and the uninterpreted counterexamples provided by nuXmv as well as the
interpreted eflint counterexamples.

From within our main Check.hs file, we spawn a subprocess that executes nuXmv given the source
file and the generated input, and we capture both its standard output and standard error. The contents
of the standard output get written directly to a file in the .eflint-check and may be used to provide
the users with extra information regarding the model checker run. Because nuXmv throws an error if
traces are requested that are not there (which is the case if no counterexample has been found), we read
the contents of the standard error to determine whether we should report a counterexample or not. If
this is the case, we need to reinterpret the counterexample reported by nuXmv back into a valid eflint
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set on_failure_script_quits - - Do n o t e x e c u t e t h e r e s t of t h i s f i l e if
- - o n e of t h e c o m m a n d s f a i l s .

set traces_regexp last_trans - - O n l y s h o w t h e ‘ ‘ l a s t _ t r a n s ’ ’ s t a t e v a r i a b l e
- - in t h e g e n e r a t e d c o u n t e r e x a m p l e s .

set default_trace_plugin 6 - - G e n e r a t e c o u n t e r e x a m p l e s in X M L f o r m a t .
go_msat - - I n i t i a l i z e t h e s y s t e m .
build_boolean_model - - C o m p i l e t h e p r o v i d e d i n p u t to an S M T

- - p r o b l e m .
check_invar_ic3 -k 10 - - C h e c k t h e i n v a r i a n t p r o p e r t i e s w i t h a

- - b o u n d of 1 0 .
check_ltl_spec_ic3 -k 10 - - C h e c k t h e t e m p o r a l p r o p e r t i e s w i t h a

- - b o u n d of 1 0 .
show_traces -o .eflint - check / tutoring .xml - - If p r e s e n t , s a v e t h e c o u n t e r e x a m p l e to

- - an X M L f i l e .
quit - - Q u i t n u X m v .

Listing 5.1: Example nuXmv configuration file for the eflint specification from Listing 2.1.

scenario, such that the user can execute this scenario themselves and identify the issues that caused the
relevant property to be violated. In the next section, we discuss how we implemented the interpretation
of nuXmv counterexamples.

5.5 Counterexample interpretation
In the previous section, we briefly touched upon the fact that up to a certain extent, the way in which
nuXmv reports counterexamples can be configured. There are two configuration options we use. The
first option, configured by setting the traces_regexp variable in the source file, allows for stating which
state variables are shown in the trace, by providing a regular expression that the identifiers of these
variables have to match. For our purposes, we are only interested in the last_trans variable, since
this provides us with the transitions that make up the scenario. Therefore, we directly provide this
identifier. The second option, configured by setting the default_trace_plugin variable in the source
file, determines the format in which the trace of the counterexample is presented. One of the available
formats is XML, which enables us to use the Haskell tagsoup [41] package to parse these traces and
extract the information we need. Using the symbol table discussed Section 5.3.1, we can translate the
identifiers used in the nuXmv input back into identifiers that can be parsed and interpreted by the
eflint reasoner. This way, we can provide the users with intuitive and executable counterexamples. In
the next section, we will show what these counterexamples may look like.

5.6 The eFLINT-check executable
As discussed in Section 4.6, we initially implement eflint-check as a standalone executable. This
executable can be invoked with the following command:

$ eflint - check <SPECIFICATION >

where <SPECIFICATION> is the path of the eflint specification to check. The tool furthermore provides
the user with the following options:
-p, --prop PROPNAME The invariant or LTL property that needs to be checked. If this option is omitted,

all properties and invariants present in the provided specification are checked.
-s, --max-steps INT The maximum trace length of each counterexample. If omitted, a default value

of 10 is used.
-P, --print-model Print the generated nuXmv input to the standard output.
-x, --dont-check Generate nuXmv input, but do not check it.
-d, --debug Show the internal representation of the eflint specification and the LKS based on this

specification.
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5.6.1 Example use
To illustrate the use of eflint-check, we once again consider the tutoring specification from Listing 2.1.
Furthermore, we use the become-tutor property we introduced earlier in this chapter:

Property become - tutor Where
Always If Taken (request - tutoring (student , tutor ))

Then Holds (tutor -of(tutor , student ))
Until Taken (provide - tutoring (tutor , student ))

Additionally, suppose that we want to verify that a deadline cannot pass after a course has ended (i.e.,
is not active anymore). As we discussed, the postulation of facts is not supported by eflint-check, so
we add two events that toggle the Boolean course-active fact to the specification:

Event course - starts
Creates course - active

Event course -ends
Terminates course - active

This way, we can specify the following property:

Property no -deadlines -before -course - starts Where
Always If Holds (is - student ( student )) And Taken (course -ends ())

Then Not Enabled ( assignment -due ())

We can check the first property as follows:

$ eflint - check tutoring . eflint -p become - tutor
No counterexamples found !

Indeed, this property holds in the provided specification. However, running eflint-check for the second
property results in a counterexample:

$ eflint - check tutoring . eflint -p no -deadlines -before -course - starts
Counterexample found ! Property or invariant ‘no - deadlines -before -course -starts ’
was violated .
The following scenario violates the above property or invariant :

course - starts .
request - tutoring (Alice , Bob).
course - starts .
course - starts .
course -ends.
course - starts .

Counterexample written to .eflint - check / tutoring . counterexample . eflint

We can execute the actions that are reported by eflint-check step-by-step in the eflint REPL to
identify that indeed, the assignment-due event remains enabled after the course-ends fact has been
terminated. We note that the counterexample that nuXmv (and therefore eflint-check) produces is
not the shortest possible counterexample to violate this property. This is most likely due to the internal
mechanisms of nuXmv’s model checking engine. However, it is still short enough to be able to aid the
debugging of the specification in this case.

5.7 Validation
It should go without saying that it is important that the transition system that arises from a nuXmv
encoding of an eflint specification is bisimilar to the transitions system represented by the specification
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itself. To gain confidence that this is indeed the case, we have created a set a set of small specifications
that capture different behaviours of scenarios. For each of these specifications, we have implemented
properties that we are certain should hold, and properties that should not hold. These specifications
and their properties are provided in Appendix C. Furthermore, we have created an automation script
(available here) to automatically execute eflint-check with these specifications and assess whether the
specified properties indeed give us the expected results.
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Chapter 6

Evaluation

In this chapter, we will evaluate our language extension to eflint for the specification of abstract
properties, together with our implementation of eflint-check. First, we will perform a case study using
the GPDR to evaluate and demonstrate the eflint language extension we designed and implemented
and how eflint-check can be used for the purposes we identified in Chapter 3. Second, we will evaluate
the performance and scalability of eflint-check.

6.1 Case study: GDPR
In the paper that introduces eflint, van Binsbergen, Liu, van Doesburg, and van Engers [1] perform a
case study on the General Data Protection Regulation (GPDR) [4] pertaining to consent. In this case
study, the specification shown in Listing 6.1 is created to formalize Article 6(1), point (a) on consent
regarding the processing of personal data. As we explained in Section 4.2.1, eflint-check requires
the domains of each atomic-type fact to be bounded. For the purposes of this case study, we bind the
subject, controller, processor and purpose fact declarations to a domain with one element, and the
data fact declaration to a domain with two elements. For eflint acts, events and duties, the Related
to fields are used to add additional parameters to these declarations, which enable the addition of extra
domain constraints using the Where clause. We will use and, where necessary, extend this specification
as a basis to demonstrate the purposes for property specification that we identified in Chapter 3 and the
role eflint-check can play here. In Section 5.6.1, we already demonstrate how eflint-check can be
used to find mistakes in eflint specifications, so in this section, we will focus on the remaining purposes
of (1) being able to capture the temporal nature of some norms; (2) being able to give guarantees about
the correctness of a specification if the norms on which it is based change; and (3) being able to relate
specifications that represent actions in the physical world to those that represent actions in the social
reality.

6.1.1 Lawfulness of processing
Article 6(1) of the GPDR states:

Processing shall be lawful only if and to the extent that at least one of the following applies:

(a) the data subject has given consent to the processing of his or her personal data for one
or more specific purposes;

[. . .] (Publications Office of the European Union [4])

As stated in the article, it contains multiple conditions of which at least one needs to hold. However,
for the sake of this evaluation, we will assume that point (a) always has to hold, regardless of any of the
other conditions. Because of the flexibility of eflint, this article can be formalized in different ways, of
which Listing 6.1 is one example. To ensure that any formalization of the article accurately captures the
norm that arises from this, we can express them as an abstract property using the property declaration
we introduced in this thesis.

We identify two ways in which properties can be declared: from a state-based perspective or an
action-based perspective. If it is purely declared from a state-based perspective, the implementation
of the acts and events responsible for achieving this state is left to the responsibility of the eflint
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Fact subject Identified by Subject
Fact data Identified by Data1 , Data2

Fact subject -of Identified by subject * data

Fact controller Identified by Controller
Fact processor Identified by Processor
Fact purpose Identified by Purpose

Fact processes Identified by
processor * data * controller * purpose

Fact accurate -for - purpose Identified by
data * purpose

Fact consent Identified by
subject * controller * purpose

Act give - consent
Actor subject
Recipient controller
Related to purpose
Holds when ! consent (subject , controller , purpose )
Creates consent (subject , controller , purpose )

Act collect -personal -data
Actor controller
Recipient subject
Related to data , processor , purpose

When subject -of(subject , data)
Holds when consent (subject , controller , purpose )

&& accurate -for - purpose (data , purpose )
Creates processes (processor , data , controller , purpose )

Listing 6.1: eflint specification formalizing Article 6(1)(a) of the GPDR [4], as presented by van
Binsbergen, Liu, van Doesburg, and van Engers [1].

developer. On the other hand, properties from an action-based perspective are mostly agnostic of the
pre- and postconditions necessary to enable these actions. Of course, it is also possible to declare
properties that are both state- and action-based, and the desired way of declaring them will most likely
largely be dictated by their intended use.

We can formalize Article 6(1)(a) from a state-based perspective using the fact type declarations from
Listing 6.1 as follows:

Property lawful - processing Where
Always If Holds (subject -of(subject , data))

And Holds ( processes (processor , data , controller , purpose ))
Then Holds ( consent (subject , controller , purpose ))

Because the processes and consent fact types do not explicitly relate a subject to their data, and there
might exist a many-to-many relationship between subject and data instances, we add the expression
that states that the data that is being processed must always be that of the subject that gave consent
for processing. Using the acts defined in Listing 6.1, we can also write this article as an action-based
property. Because the expression of this property already links the subject with their data through the
collect-personal-data act, we don’t have to use subject-of anymore:

Property lawful - processing Where
Not Enabled (collect -personal -data( controller , subject , data , processor , purpose ))

Until Taken (give - consent (subject , controller , purpose ))

These property declarations are bound to the specification that implements the norms by the type
identifiers that appear in the property expression. However, apart from their type declaration, they do
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not contain any details about how their underlying implementation in the specification. In this sense,
these properties specify how the specification should behave, without specifically prescribing how the
specification should be implemented. This is useful because, in this sense, a set of one or more properties
can be envisioned as an extra abstraction layer between norms as they are written down in regulatory
documents and the specifications that formalize them. This also relates to the purpose we identified
in Section 3.1.3, which stated that properties might be used to ensure the correctness of specifications
as norms change over time. For example, suppose we have formalized every condition of Article 6(1)
as an eflint specification and as an eLTL property. Because the article states that at least one of the
conditions of this article should hold, we can formalize this article as an eLTL property by writing it as
the conjunction between each separate condition. Then, in the hypothetical event that the article gets
updated to state that not at least one, but all of the conditions should hold for the processing of data to
be lawful, we can rewrite the property as a disjunction between the conditions and run eflint-check
to identify which portions of the specification need to be changed to accurately model the article again.

6.1.2 Conditions for consent
Article 7(3) of the GPDR states:

The data subject shall have the right to withdraw his or her consent at any time. The
withdrawal of consent shall not affect the lawfulness of processing based on consent before
its withdrawal. Prior to giving consent, the data subject shall be informed thereof. It shall
be as easy to withdraw as to give consent. (Publications Office of the European Union [4])

This article states multiple properties that could be captured using eflint-check, but we will focus
specifically on the second sentence: “The withdrawal of consent shall not affect the lawfulness of processing
based on consent before its withdrawal”. In plain language, this sentence states that if someone (the ‘data
subject’) withdraws their consent on the processing of their personal data, this does not remove the fact
that prior to the withdrawal, the act of processing their data was allowed if they gave consent to do so.
We can extend the specification from Listing 6.1 to also represent the withdrawal of consent as follows:

Act withdraw - consent
Actor subject
Recipient controller
Related to purpose
Holds when consent (subject , controller , purpose )
Creates consent - withdrawn (subject , controller , purpose )
Terminates consent (subject , controller , purpose )

Fact consent - withdrawn Identified by subject * controller * purpose

When we only consider the eflint specification, we cannot accurately reason about the lawfulness of
the processing of personal data before and after withdrawing consent, due to the temporal nature of this
article fragment. However, eLTL makes this fairly trivial. We can simply extend the state-based variant
of the lawful-processing as follows:

Property lawful - processing Where
Always If Holds (subject -of(subject , data))

And Holds ( processes (processor , data , controller , purpose ))
Then Holds ( consent (subject , controller , purpose ))

Until Holds (consent - withdrawn (subject , controller , purpose ))

Or similarly for the event-based variant:

Property lawful - processing Where
Not Enabled (collect -personal -data( controller , subject , data , processor , purpose ))

Until Taken (give - consent (subject , controller , purpose ))
And Enabled (collect -personal -data( controller , subject , data , processor , purpose ))

Until Taken (withdraw - consent (subject , controller , purpose ))

Running eflint-check with one or both of these properties will reveal that the specification indeed
faithfully formalizes this norm.
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6.2 Relating the GPDR to actions the physical world
The GPDR specification from Listing 6.1 describes actions related to norms in the social reality. van
Binsbergen, Kebede, Baugh, van Engers, and van Vuurden [23] show how such specifications may be
connected to specifications that describe actions in the physical world by synchronising them, which
relates to the fourth and last purpose we identified in Chapter 3. As we discussed in Section 4.1, the
design and implementation of synchronising actions in eflint-check was out of scope for this thesis.
However, we can demonstrate how we can use eLTL for this purpose. In our physical world, consent
for the collection of data is commonly given by accepting cookies when visiting a website. We could
model this behaviour in eflint by declaring an accept-cookies act type. To ensure that this action
that exists in the physical world indeed leads to the desired normative state in the social reality, we can
write the following property:

Property accept -cookies -to -give - consent Where
Always If Taken (accept - cookies (subject , controller , purpose ))

Then Holds ( consent (subject , controller , purpose ))

Using properties in this way further supports the idea of being able to reuse specifications that pertain
to the social reality in different physical situations, where they can act as the link that ensures that the
consequences of actions in the physical world are accurately reflected in the social reality.

6.3 Scalability
Because the LKSs and corresponding nuXmv encodings require an explicit enumeration of all possible
domain instances for each type declaration, the scalability of eflint-check both in the dimensions of
space and time is a significant concern. The most important issue here is the combinatorial explosion
that can occur with record-type facts, acts, events and duties. For example, in the tutoring specification
from Listing 2.1, the number of tutor-of fact is dictated by the domain size of the person fact, which
is the type of both fields in this record-type fact. This means that the domain size of tutor-of grows
quadratically with the domain size of person. The number of instances for a fact with three person-type
fields would grow cubically, and so on. To illustrate this issue, we perform a small set of experiments
where we measure the performance of eflint-check both as the domain of atomic-type facts increases
and as the number of fields for record-type facts increases. We perform these experiments by generating
specifications using the Mustache template specification [36] that we also used for the generation of the
nuXmv input. Using these templates, we generate eflint specifications that grow either in the dimension
of domain size or field size and measure the file size of the nuXmv input file that was generated from
these specifications, the time it takes for eflint-check to generate these nuXmv input files and the time
it takes for nuXmv to model check these specifications. The results for the scalability of eflint-check
concerning the domain size of atomic-type facts are shown in Figure 6.1. The results for the scalability
of eflint-check concerning the number of fields of record-type facts are shown in Figure 6.2.

These results indicate that as of now, eflint-check is not yet fit to check properties that require
the corresponding specification to have a large number of type instances. For example, for the tutoring
specification from Listing 2.1, it would currently not be feasible to check the invariant property that
states that a person can never be a tutor for more than five other persons at any moment in time, as
that would require the domain of the person fact type to have at least six elements, which, given the
combinatorial nature of the declarations in the specification cannot be checked by eflint-check in a
reasonable amount of time.

However, we should also note that this is an extreme case and that there still exists a large category of
properties and corresponding specifications that could benefit from using eflint-check. For example,
we were able to check the lawful-processing property in the GPDR case study from the previous
section in a little over half a second (6.42 × 10

−1 ± 4.60 × 10
−3 s, measured over ten runs), which we

consider to be a reasonable amount of time.
In the next chapter, we will further discuss the implications of the results of this evaluation, as well

as make suggestions for optimizations to the compilation of eflint specifications into nuXmv input that
could potentially significantly reduce the generated output and improve the time it takes for nuXmv to
model-check these specifications.
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Figure 6.1: Relation between the domain size of an atomic-type fact declaration and the nuXmv input
size, eflint-check encoding time and nuXmv model check time.
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Figure 6.2: Relation between the number of fields of a record-type fact declaration and the nuXmv input
size, eflint-check encoding time and nuXmv model check time.
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Chapter 7

Discussion

In this chapter, we answer the research questions presented in our introduction. Next to that, we will
identify possible threats to the validity of our work, and discuss which measures we have taken to mitigate
these threats. Lastly, we will reflect on the current shortcomings of our work and make suggestions for
future work.

7.1 Research Questions
In the introduction of this thesis, we identified four research questions that were central to this thesis,
which we will answer in this section.

7.1.1 Research Question 1
Our first research question was: What kinds of properties are necessary for abstract reasoning about norm
specifications and being able to model-check them? where we identified the following subquestions:

(a) What are the purposes for which model checking of norm specications would be required?
(b) How can these purposes guide the formalization of properties?

In Chapter 3, we distinguished four purposes where the use of property specification and model checking
is warranted, namely for (1) the classic model-checking purpose of identifying potential mistakes in a
system; (2) being able to capture the temporal nature of some norms; (3) being able to give guarantees
about the correctness of a specification if the norms on which it is based change; and (4) being able to
relate specifications that represent actions in the physical world to those that represent actions in the
social reality. With these purposes and the underlying theory of model checking in mind, we defined
eLTL, which is a variation on state/event linear temporal logic (SE-LTL) with domain-specific operators
and semantics for formalizing properties over norms.

7.1.2 Research Question 2
Our second research question was: How can norm specifications be represented formally, such that coun-
terexamples can be generated for the properties identified by RQ 1?

With eflint-check, we can represent eflint specifications as labelled Kripke structures (LKSs) and
subsequently encode these representations into the input language of the nuXmv model checker. Sim-
ilarly, we can represent properties defined in eLTL as LTL formulae and encode them together with
eflint invariant declarations as nuXmv input. We use the SMT-based bounded model checking (BMC)
engine of nuXmv to check these properties and invariants against the encoded eflint specifications.
The idea behind BMC is to generate counterexamples that incrementally grow in size (up to a certain
bound k) from the provided properties and check if they are present in the specification. Because of this
approach, the counterexamples that are found to appear in the model are generally small in size. We do,
however, observe that nuXmv does not always report the smallest possible counterexample, but together
with the other available tools for interacting with eflint specifications, they are reasonable enough for
identifying which parts of the provided specification caused the violation of a property.
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7.1.3 Research Question 3
Our third research question was: How can the results that follow from model checking a norm specification
be presented to the user in an actionable and intuitive way?

In our nuXmv encoding of eflint specifications, we keep track of the last action that was taken in each
transition. Moreover, we can configure nuXmv in such a way that it provides us with a trace of these
actions. By translating these traces back into executable eflint scenarios, users can use the eflint
read-eval-print-loop (REPL) to explore their specifications based on these scenarios, in order to identify
mistakes in their specifications.

7.1.4 Research Question 4
Our fourth research question was: What is the practical viability of adopting model checking of norm
specifications for the purposes we identified in RQ 1(a)?

The GPDR case study we performed in Chapter 6 demonstrates how eLTL and eflint-check can be
used for the different purposes we identified in Chapter 3. With this case study, we have shown how
norms can be captured by eLTL and how, together with eflint-check, these properties can serve a
meaningful purpose for the formalization and implementation of norms using eflint.

However, we must also acknowledge that our current implementation of eflint-check exhibits sig-
nificant scalability issues, which means that the tool is not (yet) fit to be used for checking large-scale
norm specifications. While state space explosion is an inherent problem in model checking, we identify
several methods that we could use to minimize this problem as much as possible. We will discuss these
methods in Section 7.3.

7.2 Threats to validity
The main threat to validity in the work presented here is the correctness of our encoding of eflint
specifications into nuXmv input. When this encoding is incorrect, the underlying system represented
by the generated nuXmv input will not be equivalent to the one represented by the original eflint
scenario. In turn, this could lead to false positives, where counterexamples might be found in the nuXmv
model that are not present in the eflint specification, or false negatives, where nuXmv does not report
counterexamples even though it should. While both are undesired, false negatives are especially harmful
as they are hidden from the user until a concrete scenario that contains the undesired behaviour is
encountered, at which point it might be too late to fix this problem.

As we discussed in Section 5.7, we have created a small framework containing different specifications
and properties to validate and gain confidence in the correctness of our implementation. Additionally,
during the GPDR case study we did not encounter any suspicious results, which leads us to believe that
our implementation is correct. To gain even more confidence in the correctness of the implementation, we
can extend our validation framework to include more specifications and properties. This will especially
be important if we extend eflint-check with the remaining language features of eflint and if we
implement the optimizations to the compilation process that we will discuss in the next section.

7.3 Future work
Throughout the design, implementation and evaluation of eLTL and eflint-check, we encountered
possible extensions and improvements that are necessary or interesting to explore next in the context of
this work. We discuss these in this section.

7.3.1 eLTL and the specification of properties
The implementation of eLTL in eflint directly represents the operators defined by this logic. While
this allows for a large amount of freedom in terms of the properties that can be expressed, it might be
difficult or even unintuitive for users unfamiliar with temporal logic to accurately specify the properties
they have in mind. Therefore, a possible next step could be to redefine the property language to make
it more intuitive. One approach to this might be to provide more abstract syntax for common patterns
that might occur in these properties. For example, we noticed that many properties we wrote during our
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work rely on logical implication, for example in properties where it is expected that the execution of one
action leads to a certain fact to hold in the next state. These implication operators must be preceded by
a globally (□) LTL operator to make sure that they hold in every state onward, but this may not seem
obvious to someone not familiar with these operators. By abstracting these operators away into more
intuitive syntax, we might be able to avoid unnecessary errors in the specified properties.

Additionally, we could extend the property declarations introduced in this thesis to be able to refer
to each other. This could open up the possibility of capturing one norm using multiple properties and
thereby improving the readability of these properties, or the reuse of properties of multiple norms. This
could also open up the possibility for the specification of conditional properties, where the results of one
property could dictate how other properties should be checked.

7.3.2 Selecting the model checking bound
An important consideration in bounded model checking (BMC) is the selection of the length of the
maximum bound k. Ideally, k should be large enough such that all relevant behaviour of the model is
explored in such a way that a larger k would only explore traces that have already been visited. In
the work presented here, we either let the user choose the bound themselves or use a default bound of
10. However, for users that do not have a sufficient understanding of the BMC procedure, this value
might not mean anything which introduces the risk of them picking a bound that is too small, therefore
potentially missing property violations and counterexamples. Different methods of varying complexity
and accuracy have been developed for computing suitable bounds [22], and nuXmv supports some of
these methods. A next step might therefore be to investigate the feasibility of automatically determining
the bound, without significantly decreasing the performance of eflint-check.

7.3.3 Performance and scalability optimizations
Staying on the subject of performance, we identify multiple different optimizations that could reduce
the size of the generated nuXmv input and the time it takes to model-check the systems they represent.
One approach is to perform more static processing upfront. For example during the generation of the
LKS, we currently do not do anything with the domain constraint of a declaration except add it as a
precondition. This essentially adds state variables to the nuXmv that can never exist in the corresponding
eflint system, and that will therefore also never change as an effect of any action. However, they still
contribute to the size of the generated input. By evaluating the domain constraints before generating the
encoding, we could potentially significantly reduce the state space. For example, in the tutoring example
that we used throughout this thesis, we could express the fact that a person cannot be their own tutor
as a domain constraint for the tutor-of fact. By evaluating this expression and the effects it has on
the instance domain of this fact during the compilation stage of eflint-check, we can omit nuXmv
state variables that represent the fact instances that do not satisfy this expression. However, we should
also note the fact that some of these domain constraints may require information about the current
state of the knowledge base, making it difficult to evaluate them without first explicitly exploring the
complete state space (which we want to prevent by using model checking in the first place). A possible
way approach is to only do this for a specific subset of domain constraints such as those that only contain
operators comparing the value of one field to another.

During our work, two new eflint keywords have been introduced to restrict fact types, which we were
not able to incorporate in our design and implementation due to time constraints, but that could offer
significant improvements to the performance and scalability of eflint. The Var fact restriction pertains
to atomic-type facts, and ensures that such facts can only have one instance that holds in the knowledge
base at a time. Essentially, this means they act similar to variables in general-purpose languages. For the
encoding to nuXmv, this in turn means that we don’t have to create a state variable for each possible
domain instance. Instead, we can define one state variable with a type specifier that corresponds to
the domain of the fact it represents, and update the value of this state variable when it appears in the
postconditions of actions. It follows that this could significantly reduce the size of the generated nuXmv
input, and most likely the time it takes to model check this input as well. As an added benefit, this
approach would make it possible to represent unbounded integer-type facts, because the SMT-based
BMC engine we use in eflint-check supports state variables with infinite integer domains.

The Function restriction is similar to Var, except that it pertains to record-type facts. Here, all fields
except for the last one act as the domain to the function, with the last field acting as the codomain.
Similar to the Var restriction, only one instance for each domain can exist at a time. Again, we can take
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this into account in the encoding of these facts in nuXmv. Here, we do still need to create separate state
variables for the different possible domains, but we can represent the codomain in the same way we just
described for the Var restriction.

7.3.4 The model-checking backend
In the version of eflint-check presented in this thesis, we used the model checker nuXmv as our
backend. We discussed why we chose this tool in Section 5.2. However, there exists a plethora of model-
checking tools, where each tool has its intended use and considerations. A systematic review of these
tools for use with normative systems was outside the scope of this thesis but would be recommended if
the work on eflint-check continues. Moreover, we might want to investigate the possibility of directly
encoding the model representation and properties that follow from eflint specifications into an SMT
problem instead of using an existing model checker, as that could decrease the overhead of encoding
specifications and invoking an underlying model checker, and it could give more fine-grained control over
how eflint specifications can be represented and used to check eLTL properties in a robust and scalable
way.

7.3.5 Integration of eFLINT-check in the explorer
eflint supports the dynamic generation of policies [23]. Essentially, this means that eflint specifications
can be modified and extended on the fly. In Section 4.2.1, we discussed why this possibility cannot be
captured by eflint-check. However, it would be interesting to integrate eflint-check in the eflint
reasoner such that it could be invoked as soon as the specification gets updated. By integrating the
model representation in the configuration for the explorer backend of eflint, we could keep track of the
internal LKS representing the specification and update it as declarations are added or updated. We can
invoke the parts of eflint-check responsible for encoding the LKS into nuXmv input and executing
nuXmv to perform the actual model checking, either by default for every change that is made or by
introducing a query statement that activates this. However, before we can do this, we must address the
performance and scalability issues that we currently run into, for example by implementing the proposed
optimizations in the previous subsection.
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Related work

In this chapter, we discuss the work related to our research. We will discuss alternative logics to LTL,
and how they can be generalised to be used for normative systems. Then, we will discuss other research
related to model checking of normative systems and specifications.

8.1 Linear vs. branching temporal logic
In our work, we solely focused on linear temporal logic (LTL) and derivations thereof. However, de-
pending on the model checking purpose, different temporal logics may be used. Another popular logic
is computational tree logic (CTL), which has the same operators as LTL but requires every temporal
operator to be preceded by a quantifier operator that indicates that the formula should hold “for all
paths” (A) or “for some paths” (E) [13]. This makes it possible to distinguish between properties that
must hold in all paths and properties for which at least one path should hold. Another popular temporal
logic is CTL⋆, which combines LTL and CTL by allowing path quantification but lifting the restriction
that every temporal operator should be preceded by one. Both LTL and CTL have advantages and dis-
advantages that are discussed in-depth by Vardi [42] but ultimately, the decision for which logic would
be best to use depends on the underlying system and the purposes for which to check this system.

8.2 Temporal logics for norms
Multiple temporal logics have been proposed for capturing temporal properties over norms. Ågotnes, van
der Hoek, Rodríguez-Aguilar, Sierra, and Wooldridge [43] introduce Normative Temporal Logic (NTL),
which is a temporal logic that replaces the path quantifiers of CTL by deontic operators relating to
obligations and permissions.

Another approach is Temporal Defeasible Logic (TDL), presented by [44]. Defeasible logic relates
facts (not to be confused with eflint fact types), rules (which are made up of facts), and three kinds of
relations between rules that pertain to their premises and conclusion. TDL adds the notion of temporality
to this logic by adding timestamps to facts.

8.3 Model checking norm systems and specifications
FIEVeL is a specification language for modelling institutions [45]. Its syntax is based on Ordered Many-
Sorted First-Order Temporal Logic (OMSFOTL) that allows users to both specify the normative system,
as well as provide temporal properties to check them. FIEVeL has a built-in model checker in which the
specifications and their properties are represented are translated into CTL formulae and subsequently
encoded as Ordered Binary Decision Diagrams (OBDDs) [46], and in turn, uses SAT solving to find the
solution. This language is solely intended for model-checking institutional policies and does not support
on-the-fly compliance checking of the specifications, which is the case with eflint.

Norms are related to multi-agent systems (MAS) [9]. Astefanoaei, de Boer, Dastani, and Meyer [47]
present a language with operational semantics to regulate the behaviour between agents and use LTL to
check the norms expressed with this language.

Symboleo [7] is a norm specification language with similar foundations and semantics as eflint, but
which is designed specifically for the purpose of creating blockchain-based smart contracts from norms.
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A model checker for these specifications is in the process of being designed and implemented [48], but at
the time of writing, its results have not yet been officially published.

Revani [49] is a norm specification language for analysing and verifying norms of stakeholder require-
ments regarding privacy. They use CTL for the specification of properties and NuSMV [50], which is the
finite-state predecessor of nuXmv to model check these specifications. Revani is meant to be used to
guide the design phase of sociotechnical systems and, similar to FIEVeL, cannot check compliance with
these specifications on the fly.
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Chapter 9

Conclusion

In this thesis, we set out to apply the notion of temporal property specification and model checking to
normative systems. We did so in the context of the domain-specific language eflint which enables the
specification and runtime compliance checking of such normative systems. We identified four different
purposes where property specification and model checking could be useful with regard to normative
systems, namely to (a) identify mistakes in a specification; (b) more accurately capture the temporal
nature some norms might have; (c) give guarantees about the correctness of specifications as norms
change; and (d) be able to more closely relate actions in the physical world to the norms that exist in the
social reality. With these purposes in mind, we defined eLTL, which is a generalization of state/event
linear temporal logic (SE-LTL) with operators that specifically pertain to norms. Furthermore, we
designed and implemented eflint-check, a tool using the symbolic model checker nuXmv for checking
specifications against eLTL properties and providing intuitive counterexamples. We evaluated eLTL
and eflint-check through a case study on the General Data Protection Regulation (GPDR), where
we demonstrated how our work might be used for the purposes we identified. Although our current
implementation of eflint-check suffers from significant scalability issues, we have identified a number
of optimizations to mitigate these issues. Furthermore, we make suggestions to be able to make the
specification of eLTL properties more intuitive and identify a possible next step for further integration
of eflint-check in the eflint reasoner.
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LTS labelled transition system. 11, 25

REPL read-eval-print-loop. 9, 21, 24, 26, 39, 47

SAT boolean satisfiability. 13, 14, 26, 30, 50
SE-LTL state/event linear temporal logic. 13, 16, 25, 46, 52
SMT satisfiability modulo theories. 13, 14, 19, 26, 30, 37, 46, 48, 49

temporal logic A system of rules and symbols for reasoning about propositions that capture the notion
of time. 4, 12
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Appendix A

Full SMV encoding of the tutoring
specification

MODULE person(person)
DEFINE val := person;
VAR holds : boolean;

MODULE assignment_deadline_passed(student)
VAR holds : boolean;

MODULE is_student(student)
VAR holds : boolean;

MODULE tutor_of(student, tutor)
VAR holds : boolean;

MODULE tutoring_duty(_holder, _claimant)
VAR holds : boolean;
DEFINE holder_val := _holder;
DEFINE claimant_val := _claimant;

MODULE main
CONSTANTS

"Alice", "Bob";
VAR

course_active.holds : boolean;
person$Alice : person("Alice");
person$Bob : person("Bob");
assignment_deadline_passed$Alice : assignment_deadline_passed("Alice");
assignment_deadline_passed$Bob : assignment_deadline_passed("Bob");
is_student$Alice : is_student("Alice");
is_student$Bob : is_student("Bob");
tutor_of$Bob_Alice : tutor_of("Bob", "Alice");
tutor_of$Alice_Alice : tutor_of("Alice", "Alice");
tutor_of$Bob_Bob : tutor_of("Bob", "Bob");
tutor_of$Alice_Bob : tutor_of("Alice", "Bob");
tutoring_duty$Bob_Alice : tutoring_duty("Bob", "Alice");
tutoring_duty$Alice_Alice : tutoring_duty("Alice", "Alice");
tutoring_duty$Bob_Bob : tutoring_duty("Bob", "Bob");
tutoring_duty$Alice_Bob : tutoring_duty("Alice", "Bob");
last_trans : {none, request_tutoring$Alice_Bob, request_tutoring$Alice_Alice,

request_tutoring$Bob_Bob, request_tutoring$Bob_Alice, deadline_passes,
provide_tutoring$Bob_Alice, provide_tutoring$Alice_Alice,
provide_tutoring$Bob_Bob, provide_tutoring$Alice_Bob};

DEFINE person$Alice.derivation := FALSE;
DEFINE person$Bob.derivation := FALSE;
DEFINE assignment_deadline_passed$Alice.derivation := FALSE;
DEFINE assignment_deadline_passed$Bob.derivation := FALSE;
DEFINE is_student$Alice.derivation := (tutor_of$Bob_Alice.holds) | (tutor_of$Alice_Alice.holds);
DEFINE is_student$Bob.derivation := (tutor_of$Bob_Bob.holds) | (tutor_of$Alice_Bob.holds);
DEFINE tutor_of$Bob_Alice.derivation := FALSE;
DEFINE tutor_of$Alice_Alice.derivation := FALSE;
DEFINE tutor_of$Bob_Bob.derivation := FALSE;
DEFINE tutor_of$Alice_Bob.derivation := FALSE;
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DEFINE request_tutoring$Alice_Bob.enabled := ((person$Alice.val) != (person$Bob.val))
& ((!(tutor_of$Bob_Alice.holds))
& (course_active.holds));

DEFINE request_tutoring$Alice_Alice.enabled := ((person$Alice.val) != (person$Alice.val))
& ((!(tutor_of$Alice_Alice.holds))
& (course_active.holds));

DEFINE request_tutoring$Bob_Bob.enabled := ((person$Bob.val) != (person$Bob.val))
& ((!(tutor_of$Bob_Bob.holds))
& (course_active.holds));

DEFINE request_tutoring$Bob_Alice.enabled := ((person$Bob.val) != (person$Alice.val))
& ((!(tutor_of$Alice_Bob.holds))
& (course_active.holds));

DEFINE deadline_passes.enabled := ((is_student$Bob.holds) | (is_student$Alice.holds)) & (TRUE);
DEFINE provide_tutoring$Bob_Alice.enabled := (tutor_of$Alice_Bob.holds) & (TRUE);
DEFINE provide_tutoring$Alice_Alice.enabled := (tutor_of$Alice_Alice.holds) & (TRUE);
DEFINE provide_tutoring$Bob_Bob.enabled := (tutor_of$Bob_Bob.holds) & (TRUE);
DEFINE provide_tutoring$Alice_Bob.enabled := (tutor_of$Bob_Alice.holds) & (TRUE);
DEFINE tutoring_duty$Bob_Alice.derivation := tutor_of$Alice_Bob.holds;
DEFINE tutoring_duty$Bob_Alice.violated := (assignment_deadline_passed$Bob.holds)

| (!(course_active.holds));
DEFINE tutoring_duty$Alice_Alice.derivation := tutor_of$Alice_Alice.holds;
DEFINE tutoring_duty$Alice_Alice.violated := (assignment_deadline_passed$Alice.holds)

| (!(course_active.holds));
DEFINE tutoring_duty$Bob_Bob.derivation := tutor_of$Bob_Bob.holds;
DEFINE tutoring_duty$Bob_Bob.violated := (assignment_deadline_passed$Bob.holds)

| (!(course_active.holds));
DEFINE tutoring_duty$Alice_Bob.derivation := tutor_of$Bob_Alice.holds;
DEFINE tutoring_duty$Alice_Bob.violated := (assignment_deadline_passed$Alice.holds)

| (!(course_active.holds));
INIT person$Alice.holds = TRUE;
INIT person$Bob.holds = TRUE;
INIT course_active.holds = TRUE;
INIT assignment_deadline_passed$Alice.holds = FALSE;
INIT is_student$Alice.holds = FALSE;
INIT tutoring_duty$Alice_Alice.holds = FALSE;
INIT tutor_of$Alice_Alice.holds = FALSE;
INIT tutoring_duty$Alice_Bob.holds = FALSE;
INIT tutor_of$Alice_Bob.holds = FALSE;
INIT assignment_deadline_passed$Bob.holds = FALSE;
INIT is_student$Bob.holds = FALSE;
INIT tutoring_duty$Bob_Alice.holds = FALSE;
INIT tutor_of$Bob_Alice.holds = FALSE;
INIT tutoring_duty$Bob_Bob.holds = FALSE;
INIT tutor_of$Bob_Bob.holds = FALSE;
INIT last_trans = none;
TRANS

(request_tutoring$Alice_Bob.enabled & (
next(last_trans) = request_tutoring$Alice_Bob
& next(person$Alice.holds) = (person$Alice.holds | person$Alice.derivation)
& next(person$Bob.holds) = (person$Bob.holds | person$Bob.derivation)
& next(course_active.holds) = (course_active.holds)
& next(assignment_deadline_passed$Alice.holds) = (assignment_deadline_passed$Alice.holds

| assignment_deadline_passed$Alice.derivation)
& next(is_student$Alice.holds) = (is_student$Alice.holds | is_student$Alice.derivation)
& next(tutoring_duty$Alice_Alice.holds) = (tutoring_duty$Alice_Alice.holds

| tutoring_duty$Alice_Alice.derivation)
& next(tutor_of$Alice_Alice.holds) = (tutor_of$Alice_Alice.holds

| tutor_of$Alice_Alice.derivation)
& next(tutoring_duty$Alice_Bob.holds) = (tutoring_duty$Alice_Bob.holds

| tutoring_duty$Alice_Bob.derivation)
& next(tutor_of$Alice_Bob.holds) = (tutor_of$Alice_Bob.holds | tutor_of$Alice_Bob.derivation)
& next(assignment_deadline_passed$Bob.holds) = (assignment_deadline_passed$Bob.holds

| assignment_deadline_passed$Bob.derivation)
& next(is_student$Bob.holds) = (is_student$Bob.holds | is_student$Bob.derivation)
& next(tutoring_duty$Bob_Alice.holds) = (tutoring_duty$Bob_Alice.holds

| tutoring_duty$Bob_Alice.derivation)
& next(tutor_of$Bob_Alice.holds) = (TRUE)
& next(tutoring_duty$Bob_Bob.holds) = (tutoring_duty$Bob_Bob.holds

| tutoring_duty$Bob_Bob.derivation)
& next(tutor_of$Bob_Bob.holds) = (tutor_of$Bob_Bob.holds | tutor_of$Bob_Bob.derivation)
)

)
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xor (request_tutoring$Alice_Alice.enabled & (
next(last_trans) = request_tutoring$Alice_Alice
& next(person$Alice.holds) = (person$Alice.holds | person$Alice.derivation)
& next(person$Bob.holds) = (person$Bob.holds | person$Bob.derivation)
& next(course_active.holds) = (course_active.holds)
& next(assignment_deadline_passed$Alice.holds) = (assignment_deadline_passed$Alice.holds

| assignment_deadline_passed$Alice.derivation)
& next(is_student$Alice.holds) = (is_student$Alice.holds | is_student$Alice.derivation)
& next(tutoring_duty$Alice_Alice.holds) = (tutoring_duty$Alice_Alice.holds

| tutoring_duty$Alice_Alice.derivation)
& next(tutor_of$Alice_Alice.holds) = (TRUE)
& next(tutoring_duty$Alice_Bob.holds) = (tutoring_duty$Alice_Bob.holds

| tutoring_duty$Alice_Bob.derivation)
& next(tutor_of$Alice_Bob.holds) = (tutor_of$Alice_Bob.holds | tutor_of$Alice_Bob.derivation)
& next(assignment_deadline_passed$Bob.holds) = (assignment_deadline_passed$Bob.holds

| assignment_deadline_passed$Bob.derivation)
& next(is_student$Bob.holds) = (is_student$Bob.holds | is_student$Bob.derivation)
& next(tutoring_duty$Bob_Alice.holds) = (tutoring_duty$Bob_Alice.holds

| tutoring_duty$Bob_Alice.derivation)
& next(tutor_of$Bob_Alice.holds) = (tutor_of$Bob_Alice.holds | tutor_of$Bob_Alice.derivation)
& next(tutoring_duty$Bob_Bob.holds) = (tutoring_duty$Bob_Bob.holds

| tutoring_duty$Bob_Bob.derivation)
& next(tutor_of$Bob_Bob.holds) = (tutor_of$Bob_Bob.holds | tutor_of$Bob_Bob.derivation)
)

)
xor (request_tutoring$Bob_Bob.enabled & (

next(last_trans) = request_tutoring$Bob_Bob
& next(person$Alice.holds) = (person$Alice.holds | person$Alice.derivation)
& next(person$Bob.holds) = (person$Bob.holds | person$Bob.derivation)
& next(course_active.holds) = (course_active.holds)
& next(assignment_deadline_passed$Alice.holds) = (assignment_deadline_passed$Alice.holds

| assignment_deadline_passed$Alice.derivation)
& next(is_student$Alice.holds) = (is_student$Alice.holds | is_student$Alice.derivation)
& next(tutoring_duty$Alice_Alice.holds) = (tutoring_duty$Alice_Alice.holds

| tutoring_duty$Alice_Alice.derivation)
& next(tutor_of$Alice_Alice.holds) = (tutor_of$Alice_Alice.holds

| tutor_of$Alice_Alice.derivation)
& next(tutoring_duty$Alice_Bob.holds) = (tutoring_duty$Alice_Bob.holds

| tutoring_duty$Alice_Bob.derivation)
& next(tutor_of$Alice_Bob.holds) = (tutor_of$Alice_Bob.holds | tutor_of$Alice_Bob.derivation)
& next(assignment_deadline_passed$Bob.holds) = (assignment_deadline_passed$Bob.holds

| assignment_deadline_passed$Bob.derivation)
& next(is_student$Bob.holds) = (is_student$Bob.holds | is_student$Bob.derivation)
& next(tutoring_duty$Bob_Alice.holds) = (tutoring_duty$Bob_Alice.holds

| tutoring_duty$Bob_Alice.derivation)
& next(tutor_of$Bob_Alice.holds) = (tutor_of$Bob_Alice.holds | tutor_of$Bob_Alice.derivation)
& next(tutoring_duty$Bob_Bob.holds) = (tutoring_duty$Bob_Bob.holds

| tutoring_duty$Bob_Bob.derivation)
& next(tutor_of$Bob_Bob.holds) = (TRUE)
)

)
xor (request_tutoring$Bob_Alice.enabled & (

next(last_trans) = request_tutoring$Bob_Alice
& next(person$Alice.holds) = (person$Alice.holds | person$Alice.derivation)
& next(person$Bob.holds) = (person$Bob.holds | person$Bob.derivation)
& next(course_active.holds) = (course_active.holds)
& next(assignment_deadline_passed$Alice.holds) = (assignment_deadline_passed$Alice.holds

| assignment_deadline_passed$Alice.derivation)
& next(is_student$Alice.holds) = (is_student$Alice.holds | is_student$Alice.derivation)
& next(tutoring_duty$Alice_Alice.holds) = (tutoring_duty$Alice_Alice.holds

| tutoring_duty$Alice_Alice.derivation)
& next(tutor_of$Alice_Alice.holds) = (tutor_of$Alice_Alice.holds

| tutor_of$Alice_Alice.derivation)
& next(tutoring_duty$Alice_Bob.holds) = (tutoring_duty$Alice_Bob.holds

| tutoring_duty$Alice_Bob.derivation)
& next(tutor_of$Alice_Bob.holds) = (TRUE)
& next(assignment_deadline_passed$Bob.holds) = (assignment_deadline_passed$Bob.holds

| assignment_deadline_passed$Bob.derivation)
& next(is_student$Bob.holds) = (is_student$Bob.holds | is_student$Bob.derivation)
& next(tutoring_duty$Bob_Alice.holds) = (tutoring_duty$Bob_Alice.holds

| tutoring_duty$Bob_Alice.derivation)
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& next(tutor_of$Bob_Alice.holds) = (tutor_of$Bob_Alice.holds | tutor_of$Bob_Alice.derivation)
& next(tutoring_duty$Bob_Bob.holds) = (tutoring_duty$Bob_Bob.holds

| tutoring_duty$Bob_Bob.derivation)
& next(tutor_of$Bob_Bob.holds) = (tutor_of$Bob_Bob.holds | tutor_of$Bob_Bob.derivation)
)

)
xor (deadline_passes.enabled & (

next(last_trans) = deadline_passes
& next(person$Alice.holds) = (person$Alice.holds | person$Alice.derivation)
& next(person$Bob.holds) = (person$Bob.holds | person$Bob.derivation)
& next(course_active.holds) = (course_active.holds)
& next(assignment_deadline_passed$Alice.holds) = (assignment_deadline_passed$Alice.holds

| assignment_deadline_passed$Alice.derivation)
& next(is_student$Alice.holds) = (is_student$Alice.holds | is_student$Alice.derivation)
& next(tutoring_duty$Alice_Alice.holds) = (tutoring_duty$Alice_Alice.holds

| tutoring_duty$Alice_Alice.derivation)
& next(tutor_of$Alice_Alice.holds) = (tutor_of$Alice_Alice.holds

| tutor_of$Alice_Alice.derivation)
& next(tutoring_duty$Alice_Bob.holds) = (tutoring_duty$Alice_Bob.holds

| tutoring_duty$Alice_Bob.derivation)
& next(tutor_of$Alice_Bob.holds) = (tutor_of$Alice_Bob.holds | tutor_of$Alice_Bob.derivation)
& next(assignment_deadline_passed$Bob.holds) = (assignment_deadline_passed$Bob.holds

| assignment_deadline_passed$Bob.derivation)
& next(is_student$Bob.holds) = (is_student$Bob.holds | is_student$Bob.derivation)
& next(tutoring_duty$Bob_Alice.holds) = (tutoring_duty$Bob_Alice.holds

| tutoring_duty$Bob_Alice.derivation)
& next(tutor_of$Bob_Alice.holds) = (tutor_of$Bob_Alice.holds | tutor_of$Bob_Alice.derivation)
& next(tutoring_duty$Bob_Bob.holds) = (tutoring_duty$Bob_Bob.holds

| tutoring_duty$Bob_Bob.derivation)
& next(tutor_of$Bob_Bob.holds) = (tutor_of$Bob_Bob.holds | tutor_of$Bob_Bob.derivation)
)

)
xor (provide_tutoring$Bob_Alice.enabled & (

next(last_trans) = provide_tutoring$Bob_Alice
& next(person$Alice.holds) = (person$Alice.holds | person$Alice.derivation)
& next(person$Bob.holds) = (person$Bob.holds | person$Bob.derivation)
& next(course_active.holds) = (course_active.holds)
& next(assignment_deadline_passed$Alice.holds) = (assignment_deadline_passed$Alice.holds

| assignment_deadline_passed$Alice.derivation)
& next(is_student$Alice.holds) = (is_student$Alice.holds | is_student$Alice.derivation)
& next(tutoring_duty$Alice_Alice.holds) = (tutoring_duty$Alice_Alice.holds

| tutoring_duty$Alice_Alice.derivation)
& next(tutor_of$Alice_Alice.holds) = (tutor_of$Alice_Alice.holds

| tutor_of$Alice_Alice.derivation)
& next(tutoring_duty$Alice_Bob.holds) = (tutoring_duty$Alice_Bob.holds

| tutoring_duty$Alice_Bob.derivation)
& next(tutor_of$Alice_Bob.holds) = (tutor_of$Alice_Bob.holds | tutor_of$Alice_Bob.derivation)
& next(assignment_deadline_passed$Bob.holds) = (assignment_deadline_passed$Bob.holds

| assignment_deadline_passed$Bob.derivation)
& next(is_student$Bob.holds) = (is_student$Bob.holds | is_student$Bob.derivation)
& next(tutoring_duty$Bob_Alice.holds) = (tutoring_duty$Bob_Alice.holds

| tutoring_duty$Bob_Alice.derivation)
& next(tutor_of$Bob_Alice.holds) = (FALSE)
& next(tutoring_duty$Bob_Bob.holds) = (tutoring_duty$Bob_Bob.holds

| tutoring_duty$Bob_Bob.derivation)
& next(tutor_of$Bob_Bob.holds) = (tutor_of$Bob_Bob.holds | tutor_of$Bob_Bob.derivation)
)

)
xor (provide_tutoring$Alice_Alice.enabled & (

next(last_trans) = provide_tutoring$Alice_Alice
& next(person$Alice.holds) = (person$Alice.holds | person$Alice.derivation)
& next(person$Bob.holds) = (person$Bob.holds | person$Bob.derivation)
& next(course_active.holds) = (course_active.holds)
& next(assignment_deadline_passed$Alice.holds) = (assignment_deadline_passed$Alice.holds

| assignment_deadline_passed$Alice.derivation)
& next(is_student$Alice.holds) = (is_student$Alice.holds | is_student$Alice.derivation)
& next(tutoring_duty$Alice_Alice.holds) = (tutoring_duty$Alice_Alice.holds

| tutoring_duty$Alice_Alice.derivation)
& next(tutor_of$Alice_Alice.holds) = (FALSE)
& next(tutoring_duty$Alice_Bob.holds) = (tutoring_duty$Alice_Bob.holds

| tutoring_duty$Alice_Bob.derivation)
& next(tutor_of$Alice_Bob.holds) = (tutor_of$Alice_Bob.holds | tutor_of$Alice_Bob.derivation)
& next(assignment_deadline_passed$Bob.holds) = (assignment_deadline_passed$Bob.holds
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| assignment_deadline_passed$Bob.derivation)
& next(is_student$Bob.holds) = (is_student$Bob.holds | is_student$Bob.derivation)
& next(tutoring_duty$Bob_Alice.holds) = (tutoring_duty$Bob_Alice.holds

| tutoring_duty$Bob_Alice.derivation)
& next(tutor_of$Bob_Alice.holds) = (tutor_of$Bob_Alice.holds | tutor_of$Bob_Alice.derivation)
& next(tutoring_duty$Bob_Bob.holds) = (tutoring_duty$Bob_Bob.holds

| tutoring_duty$Bob_Bob.derivation)
& next(tutor_of$Bob_Bob.holds) = (tutor_of$Bob_Bob.holds | tutor_of$Bob_Bob.derivation)
)

)
xor (provide_tutoring$Bob_Bob.enabled & (

next(last_trans) = provide_tutoring$Bob_Bob
& next(person$Alice.holds) = (person$Alice.holds | person$Alice.derivation)
& next(person$Bob.holds) = (person$Bob.holds | person$Bob.derivation)
& next(course_active.holds) = (course_active.holds)
& next(assignment_deadline_passed$Alice.holds) = (assignment_deadline_passed$Alice.holds

| assignment_deadline_passed$Alice.derivation)
& next(is_student$Alice.holds) = (is_student$Alice.holds | is_student$Alice.derivation)
& next(tutoring_duty$Alice_Alice.holds) = (tutoring_duty$Alice_Alice.holds

| tutoring_duty$Alice_Alice.derivation)
& next(tutor_of$Alice_Alice.holds) = (tutor_of$Alice_Alice.holds

| tutor_of$Alice_Alice.derivation)
& next(tutoring_duty$Alice_Bob.holds) = (tutoring_duty$Alice_Bob.holds

| tutoring_duty$Alice_Bob.derivation)
& next(tutor_of$Alice_Bob.holds) = (tutor_of$Alice_Bob.holds | tutor_of$Alice_Bob.derivation)
& next(assignment_deadline_passed$Bob.holds) = (assignment_deadline_passed$Bob.holds

| assignment_deadline_passed$Bob.derivation)
& next(is_student$Bob.holds) = (is_student$Bob.holds | is_student$Bob.derivation)
& next(tutoring_duty$Bob_Alice.holds) = (tutoring_duty$Bob_Alice.holds

| tutoring_duty$Bob_Alice.derivation)
& next(tutor_of$Bob_Alice.holds) = (tutor_of$Bob_Alice.holds | tutor_of$Bob_Alice.derivation)
& next(tutoring_duty$Bob_Bob.holds) = (tutoring_duty$Bob_Bob.holds

| tutoring_duty$Bob_Bob.derivation)
& next(tutor_of$Bob_Bob.holds) = (FALSE)
)

)
xor (provide_tutoring$Alice_Bob.enabled & (

next(last_trans) = provide_tutoring$Alice_Bob
& next(person$Alice.holds) = (person$Alice.holds | person$Alice.derivation)
& next(person$Bob.holds) = (person$Bob.holds | person$Bob.derivation)
& next(course_active.holds) = (course_active.holds)
& next(assignment_deadline_passed$Alice.holds) = (assignment_deadline_passed$Alice.holds

| assignment_deadline_passed$Alice.derivation)
& next(is_student$Alice.holds) = (is_student$Alice.holds | is_student$Alice.derivation)
& next(tutoring_duty$Alice_Alice.holds) = (tutoring_duty$Alice_Alice.holds

| tutoring_duty$Alice_Alice.derivation)
& next(tutor_of$Alice_Alice.holds) = (tutor_of$Alice_Alice.holds

| tutor_of$Alice_Alice.derivation)
& next(tutoring_duty$Alice_Bob.holds) = (tutoring_duty$Alice_Bob.holds

| tutoring_duty$Alice_Bob.derivation)
& next(tutor_of$Alice_Bob.holds) = (FALSE)
& next(assignment_deadline_passed$Bob.holds) = (assignment_deadline_passed$Bob.holds

| assignment_deadline_passed$Bob.derivation)
& next(is_student$Bob.holds) = (is_student$Bob.holds | is_student$Bob.derivation)
& next(tutoring_duty$Bob_Alice.holds) = (tutoring_duty$Bob_Alice.holds

| tutoring_duty$Bob_Alice.derivation)
& next(tutor_of$Bob_Alice.holds) = (tutor_of$Bob_Alice.holds | tutor_of$Bob_Alice.derivation)
& next(tutoring_duty$Bob_Bob.holds) = (tutoring_duty$Bob_Bob.holds

| tutoring_duty$Bob_Bob.derivation)
& next(tutor_of$Bob_Bob.holds) = (tutor_of$Bob_Bob.holds | tutor_of$Bob_Bob.derivation)
)

)
xor ((!request_tutoring$Alice_Bob.enabled & !request_tutoring$Alice_Alice.enabled

& !request_tutoring$Bob_Bob.enabled & !request_tutoring$Bob_Alice.enabled
& !deadline_passes.enabled & !provide_tutoring$Bob_Alice.enabled
& !provide_tutoring$Alice_Alice.enabled & !provide_tutoring$Bob_Bob.enabled
& !provide_tutoring$Alice_Bob.enabled) & (

next(last_trans) = none
& next(person$Alice.holds) = person$Alice.holds
& next(person$Bob.holds) = person$Bob.holds
& next(assignment_deadline_passed$Alice.holds) = assignment_deadline_passed$Alice.holds
& next(assignment_deadline_passed$Bob.holds) = assignment_deadline_passed$Bob.holds
& next(is_student$Alice.holds) = is_student$Alice.holds
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& next(is_student$Bob.holds) = is_student$Bob.holds
& next(tutor_of$Bob_Alice.holds) = tutor_of$Bob_Alice.holds
& next(tutor_of$Alice_Alice.holds) = tutor_of$Alice_Alice.holds
& next(tutor_of$Bob_Bob.holds) = tutor_of$Bob_Bob.holds
& next(tutor_of$Alice_Bob.holds) = tutor_of$Alice_Bob.holds
& next(tutoring_duty$Bob_Alice.holds) = tutoring_duty$Bob_Alice.holds
& next(tutoring_duty$Alice_Alice.holds) = tutoring_duty$Alice_Alice.holds
& next(tutoring_duty$Bob_Bob.holds) = tutoring_duty$Bob_Bob.holds
& next(tutoring_duty$Alice_Bob.holds) = tutoring_duty$Alice_Bob.holds
)

)
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Appendix B

Complete nuXmv input Mustache
template

N.B. this template is also available online.

{{#atomicFacts}}
MODULE {{afName}}({{afName}})

DEFINE val := {{afName}};
VAR holds : boolean;

{{/atomicFacts}}
{{#recordFacts}}
MODULE {{rfName}}({{rfFields}})

VAR holds : boolean;

{{/recordFacts}}
{{#duties}}
MODULE {{dName}}(_holder, _claimant)

VAR holds : boolean;
DEFINE holder_val := _holder;
DEFINE claimant_val := _claimant;

{{/duties}}
MODULE main

CONSTANTS
{{#atomicFacts}}{{#afIsString}}{{#afInstances}}

{{#fiParams}}"{{{fpValue}}}"{{/fiParams}}{{^fiLast}}, {{/fiLast}}
{{/afInstances}}{{^afLast}}, {{/afLast}}{{/afIsString}}{{/atomicFacts}};
VAR

{{#boolFacts}}
{{bName}}.holds : boolean;
{{/boolFacts}}
{{#atomicFacts}}
{{#afInstances}}
{{fiIdentifier}} : {{afName}}({{#fiParams}}"{{{fpValue}}}"{{^fpLast}}, {{/fpLast}}{{/fiParams}});
{{/afInstances}}
{{/atomicFacts}}
{{#recordFacts}}
{{#rfInstances}}
{{fiIdentifier}} : {{rfName}}({{#fiParams}}"{{{fpValue}}}"{{^fpLast}}, {{/fpLast}}{{/fiParams}});
{{/rfInstances}}
{{/recordFacts}}
{{#duties}}
{{#dInstances}}
{{diIdentifier}} : {{dName}}({{#diParams}}"{{{fpValue}}}"{{^fpLast}}, {{/fpLast}}{{/diParams}});
{{/dInstances}}
{{/duties}}
last_trans : {none{{#transitions}},

{{#tInstances}}{{tiIdentifier}}{{^tiLast}}, {{/tiLast}}{{/tInstances}}
{{/transitions}}};

{{#atomicFacts}}
{{#afInstances}}
DEFINE {{fiIdentifier}}.derivation := {{fiDerivation}};
{{/afInstances}}
{{/atomicFacts}}
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{{#recordFacts}}
{{#rfInstances}}
DEFINE {{fiIdentifier}}.derivation := {{fiDerivation}};
{{/rfInstances}}
{{/recordFacts}}
{{#transitions}}
{{#tInstances}}
DEFINE {{tiIdentifier}}.enabled := {{{tiPrecon}}};
{{/tInstances}}
{{/transitions}}
{{#duties}}
{{#dInstances}}
DEFINE {{diIdentifier}}.derivation := {{diDerivation}};
DEFINE {{diIdentifier}}.violated := {{diViolationCon}};
{{/dInstances}}
{{/duties}}
{{#initialState}}
INIT {{sIdentifier}}.holds = {{sValue}};
{{/initialState}}
INIT last_trans = none;
TRANS

{{#transitions}}{{#tInstances}}({{tiIdentifier}}.enabled & (
next(last_trans) = {{tiIdentifier}}

{{#tiPostcons}}
& next({{tpIdentifier}}.holds) = ({{tpAssignment}}{{#tpAssignmentToSelf}}.holds{{^tpIsBool}}
| {{tpIdentifier}}.derivation{{/tpIsBool}}{{/tpAssignmentToSelf}})

{{/tiPostcons}}
)

)
{{^tiLast}} xor {{/tiLast}}{{/tInstances}}{{^tLast}} xor {{/tLast}}{{/transitions}} xor (({{#transitions}}

{{#tInstances}}!{{tiIdentifier}}.enabled{{^tiLast}} & {{/tiLast}}{{/tInstances}}{{^tLast}} & {{/tLast}}
{{/transitions}}) & (

next(last_trans) = none
{{#atomicFacts}}
{{#afInstances}}
& next({{fiIdentifier}}.holds) = {{fiIdentifier}}.holds
{{/afInstances}}
{{/atomicFacts}}
{{#recordFacts}}
{{#rfInstances}}
& next({{fiIdentifier}}.holds) = {{fiIdentifier}}.holds
{{/rfInstances}}
{{/recordFacts}}
{{#duties}}
{{#dInstances}}
& next({{diIdentifier}}.holds) = {{diIdentifier}}.holds
{{/dInstances}}
{{/duties}}
)

)

{{#properties}}
{{#pIsInvariant}}
INVARSPEC NAME {{{pName}}} := {{{pFormula}}}
{{/pIsInvariant}}
{{^pIsInvariant}}
LTLSPEC NAME {{{pName}}} := {{{pFormula}}}
{{/pIsInvariant}}
{{/properties}}
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Appendix C

Validation specifications

C.1 Single act instance

Fact x Identified by X
Fact y Identified by Y

Fact xy Identified by x * y

Act make - record
Actor x
Recipient y
Holds when x && y
Conditioned by !xy(x, y)
Creates xy(x, y).

Property good -a Where Always If Taken (make - record (x, y)) Then Holds (xy(x, y)).
Property good -b Where Not Holds (xy(x, y)) Until Taken (make - record (x, y)).

Property bad -a Where Always If Taken (make - record (x, y)) Then Not Holds (xy(x, y)).
Property bad -b Where Holds (xy(x, y)) Until Taken (make - record (x, y)).

+x(X).
+y(Y).

C.2 Multiple act instances

Fact x Identified by X
Fact y Identified by Y

Fact xy Identified by x * y

Act make - record
Actor x
Recipient y
Holds when x && y
Conditioned by !xy(x, y)
Creates xy(x, y)

Act remove - record
Actor x
Recipient y
Holds when x && y
Conditioned by xy(x, y)
Creates xy(x, y).

Property good -a Where Always If Taken (make - record (x, y)) Then Holds (xy(x, y)).
Property good -b Where Not Holds (xy(x, y)) Until Taken (make - record (x, y)).

Property bad -a Where Always If Taken (make - record (x, y)) Then Not Holds (xy(x, y)).
Property bad -b Where Holds (xy(x, y)) Until Taken (make - record (x, y)).

+x(X).
+y(Y).
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C.3 Act loop

Fact x Identified by X1 , X2
Fact y Identified by Y

Fact xy Identified by x * y

Act make - record
Actor x
Recipient y
Holds when x && y
Conditioned by !xy(x, y)
Creates xy(x, y)

Act remove - record
Actor x
Recipient y
Holds when x && y
Conditioned by xy(x, y)
Creates xy(x, y).

Property good -a Where Always If Taken (make - record (x, y)) Then Holds (xy(x, y)).
Property good -b Where Not Holds (xy(x, y)) Until Taken (make - record (x, y)).

Property bad -a Where Always If Taken (make - record (x, y)) Then Not Holds (xy(x, y)).
Property bad -b Where Holds (xy(x, y)) Until Taken (make - record (x, y)).

+x(X1).
+x(X2).
+y(Y).

C.4 Duties

Fact x Identified by X1
Fact y Identified by Y1
Fact z Identified by x * y

Duty duty
Holder x
Claimant y
Violated when z(x, y)

Act create -duty
Actor x
Recipient y
Holds when x && y
Creates duty(x, y)

Act resolve -duty
Actor x
Recipient y
Holds when x && y
Terminates duty(x, y)

Act violate -duty
Actor x
Recipient y
Holds when x && y
Creates z(x, y).

Property good -a Where Always If Not Taken (violate -duty(x, y)) Then Always Not Violated (duty(x, y))

+x(X1).
+y(Y1).
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Appendix D

Performance evaluation templates

D.1 Variable domain size for atomic-type fact

Fact atom Identified by {{# literals }} {{ ident }} {{^last }} , {{/last }} {{/ literals }}

Placeholder x For atom
Placeholder y For atom

Fact record Identified by x * y

Act make - record
Actor x
Recipient y
Holds when x && y
Conditioned by ! record (x, y)
Creates record (x, y)

Property prop Where Always If Taken (make - record (x, y)) Then Holds ( record (x, y)).

D.2 Variable field size for record-type fact

Fact atom Identified by A, B

Placeholder actor For atom
Placeholder recipient For atom
{{# fields }}
Placeholder {{ ident }} For atom
{{/ fields }}

Fact record
Identified by actor * recipient * {{# fields }} {{ ident }} {{^last }} * {{/last }} {{/ fields }}

Act make - record
Actor actor
Recipient recipient
Related to {{# fields }} {{ ident }} {{^last }} , {{/last }} {{/ fields }}
Holds when {{# fields }} {{ ident }} {{^last }} && {{/last }} {{/ fields }}
Creates record (actor , recipient , {{# fields }} {{ ident }} {{^last }} , {{/last }} {{/ fields }})

Property prop Where
Always If Taken (make - record (actor , recipient ,

{{# fields }} {{ ident }} {{^last }} , {{/last }} {{/ fields }}))
Then Holds ( record (actor , recipient ,

{{# fields }} {{ ident }} {{^last }} , {{/last }} {{/ fields }})).
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